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ABSTRACT 

Sample preparation for the analysis of biological fluid samples posed 

significant challenges to the clinical laboratory. The current sample preparation 

practice involves multi-steps procedure that are time consuming and may lead to 

analytes lost. In this study, a low-cost, single-use sampling probe was introduced for 

electric field driven extraction. The sampling probe consists of a non-conductive glass 

capillary substrate, and a polymer inclusion membrane (PIM) dip-coated on the glass 

capillary substrate. The probe features a user-friendly design that can electrically 

extract targeted analytes from biological fluid sample. The glass capillary, closed at 

one end, was dipped in a homogeneous membrane solution that consists of an optimum 

composition of cellulose triacetate (CTA), 2-nitrophenyl octyl ether (2-NPOE) and 1-

ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]), 

yielded a PIM with thickness of 30 µm on the sampling probe. The effects of dipping 

cycles (thickness), voltage applied, and sample pH on the extraction efficiency of the 

sampling probe were thoroughly investigated. The concept of electrokinetic extraction 

using the PIM sampling probe was first demonstrated on the cationic model analyte, 

Rhodamine 6G at 500 V for 60 mins. The proven concept was then successfully 

applied to the extraction of the anticancer drug doxorubicin from samples in liquid or 

dried form, including dried blood spot (DBS), human plasma and human serum 

samples. The practicability and reliability of the electrokinetic extraction process were 

evaluated using liquid chromatography with tandem mass spectrometry (LC-MS/MS) 

to quantify the desorption of extracted doxorubicin from the PIM sampling probe. 

Under optimised conditions, the new method provided good linearity over a 

concentration range of 0.2 to 20 ng/mL; additionally, quantification limits of 0.2 to 2 

ng/mL were achieved for the three biological samples and the relative recoveries 

ranged from 82.7 to 113.8% for DBS, human plasma and human serum samples; good 

method reproducibility was also achieved, with relative standard deviations (RSDs) 

ranging from 0.9 and 4.6%. The PIM sampling probe was further integrated into a 

portable battery-device for safe, lower-voltage (36 V) electrokinetic extraction. The 

correlation coefficients, r, for the two pairs of data were determined using the 

laboratory setup and the battery-powered device; values in the range of 0.9926 to 

0.9996 were found, indicating an acceptable agreement. This new electrokinetic 

extraction approach represents a new opportunity for processing samples during 

sampling and transportation, saving time and reducing manual handling to produce 

more reliable test results efficiently. 
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ABSTRAK 

Penyediaan sampel untuk analisis sampel biologi menimbulkan cabaran besar 

kepada makmal klinikal. Amalan penyediaan sampel semasa melibatkan prosedur 

berbilang langkah yang memakan masa dan boleh menyebabkan kehilangan analit. 

Dalam kajian ini, probe persampelan sekali guna, kos rendah telah diperkenalkan 

untuk pengekstrakan dipacu medan elektrik. Probe persampelan terdiri daripada 

substrat kapilari kaca bukan konduktif, dan membran rangkum polimer (PIM) bersalut 

celup pada substrat kapilari kaca. Probe ini mempunyai reka bentuk mesra pengguna 

yang boleh mengekstrak analit disasarkan daripada sampel biologi di bawah aplikasi 

medan elektrik. Kapilari kaca yang ditutup pada satu hujung telah dicelup dalam 

larutan membran homogen mengandungi komposisi optimum yang terdiri daripada 

selulosa triasetat (CTA), 2-nitrofenil oktil eter (2-NPOE) dan 1-etil-3-

metilimidazolium bis(trifluorometilsulfonil)imida ([EMIM][NTf2]) untuk 

menghasilkan PIM dengan ketebalan 30 µm pada probe persampelan. Kesan kitaran 

pencelupan (ketebalan), voltan yang dikenakan dan pH sampel ke atas kecekapan 

pengekstrakan probe persampelan telah dikaji dengan teliti. Konsep pengekstrakan 

elektrokinetik menggunakan probe persampelan PIM adalah kali pertama ditunjukkan 

pada analit model kationik, Rhodamine 6G pada 500 V selama 60 minit. Konsep 

kemudiannya terbukti berjaya digunakan untuk pengekstrakan drug antikanser 

doksorubisin daripada sampel dalam bentuk cecair atau kering termasuk tompok darah 

kering (DBS), sampel plasma manusia dan sampel serum manusia. Kebolehamalian 

dan kebolehpercayaan proses pengekstrakan elektrokinetik telah dinilai menggunakan 

kromatografi cecair dengan spektrometri jisim tandem (LC-MS/MS) untuk mengukur 

penyaherapan doksorubisin yang diekstrak daripada probe pensampelan PIM. Di 

bawah keadaan yang dioptimumkan, kaedah baharu memberikan kelinearan yang baik 

pada julat kepekatan 0.2 hingga 20 ng/mL; di samping itu, had kuantifikasi 0.2 hingga 

2 ng/mL telah dicapai untuk tiga sampel biologi dan pemulihan relatif adalah antara 

82.7 hingga 113.8% untuk sampel DBS, plasma manusia dan serum manusia; 

kebolehulangan kaedah yang baik juga dicapai, dengan sisihan piawai relatif (RSD) di 

antara 0.9 dan 4.6%. Probe persampelan PIM disepadukan lagi ke dalam peranti bateri 

mudah alih untuk pengekstrakan elektrokinetik voltan rendah (36 V) yang selamat. 

Pekali korelasi, r, untuk dua pasangan data telah ditentukan dengan menggunakan 

persediaan makmal dan peranti berkuasa bateri; nilai dalam julat 0.9926 hingga 0.9996 

didapati, menunjukkan persetujuan yang boleh diterima. Pendekatan pengekstrakan 

elektrokinetik ini mewakili peluang baharu untuk memproses sampel semasa 

pensampelan dan pengangkutan, menjimatkan masa dan mengurangkan pengendalian 

manual untuk menghasilkan keputusan ujian yang lebih dipercayai dengan cekap.
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Biological fluid samples—such as whole blood, plasma, urine and saliva—

generally contain complex matrices which are known to be major obstacles to 

obtaining an accurate analytical outcome. These matrices, ranging from various 

inorganic ions and endogenous and exogenous organic molecules to 

biomacromolecules, are the coexisting impurities that can be adsorbed by the pores of 

the stationary phase in the analytical columns and adhere to the inner surface of the 

pipelines. This may lead to a reduction in the lifetime and efficiency of the column as 

well as to the blockage of the pipeline system (1). Many efforts have been made—in 

sample collection, sample preparation and instrumental analysis—to improve the 

existing analytical procedure, remove the coexisting interfering substances, accelerate 

the procedure, and improve the accuracy of the final analytical outcome. Despite 

tremendous advances having been made in the development of state-of-the-art 

analytical instruments for the qualitative and quantitative analysis of analytes in 

biological fluid samples, sample preparation remains a challenging task for researchers. 

Sample preparation is a multi-step procedure that is employed with the purpose 

of pre-concentration of samples; the process involves the removal of the complex 

matrices and impurities in order to obtain a higher purity of the target analyte and thus 

more accurate results. Analytes may be lost by applying inappropriate sample 

preparation methods. Hence, an appropriate sample preparation method that is able to 

purify and pre-concentrate target analytes is a fundamental element of reliable sample 

analysis, particularly for samples with an extremely low concentration of target 

analytes. Traditional sample preparation methods such as liquid-liquid extraction 

(LLE) and solid-phase extraction (SPE) are widely employed prior to the analysis of 

biological fluid samples (2). However, the procedures of LLE and SPE are tedious, 
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time-consuming and harmful to the environment due to the high volume of solvent 

consumption. Miniaturized versions of the above sample preparation methods—

namely, solid-phase microextraction (SPME), liquid-phase microextraction (LPME) 

and hollow fiber-liquid-phase microextraction (HF-LPME)—were introduced, 

offering such advantages as reduced analysis time, low solvent consumption, high 

extraction efficiency and environmental friendliness (3, 4). 

The majority of the miniaturized sample preparation techniques—including 

SPME, LPME and liquid membrane extraction—are based on passive diffusion, which 

results in poor efficiency of extraction and unsatisfactory selectivity, particularly for 

the extraction of polar compounds and charged molecules. Traditionally, 

derivatisation, alkalization or acidification have been employed to decrease the 

polarity of the polar compounds in order to improve the partition coefficients of the 

analytes, hence, the efficiency of extraction (5). However, the derivatisation steps 

involve expensive and toxic reagents, while some analytes are unstable in extremely 

acidic or alkali conditions. Therefore, auxiliary energy—including acoustic wave, 

microwave, thermal and electrical energy—is introduced to the sample preparation 

procedure to promote energy exchange and the mass transfer of molecules, thus 

accelerating the entire extraction process, reducing the operation time and improving 

the efficiency (6). Among these field-assisted techniques, the appeal of electric field 

driven sample preparation has increased significantly in recent years due to the 

considerable improvement in the efficiency of extraction that it brings (7).  

Electromembrane extraction (EME) is a novel LPME technique that was 

developed in 2006 by Pedersen-Bjergaard and Rasmussen (8, 9). EME has 

demonstrated that analytes can be electrokinetically isolated across a supported liquid 

membrane (SLM). The SLM is a porous hydrophobic supported membrane with a 

microliter volume of water-immiscible organic solvent immobilised in the pores. 

Notably, target analytes are ionised and extracted from the sample (donor solution) 

through an SLM, to an acceptor solution, in the presence of an electric field. In EME, 

the direct current (DC) electric potential across the SLM is the driving force for 

electrokinetic migration (10). Moreover, the electric potential controls the selectivity 

of the extraction as ions move based on the direction of the electric field. For the 
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extraction of cations, the cathode is placed in the acceptor solution, and the cations 

move towards the cathode trapped in the acceptor solution; for the extraction of anions, 

meanwhile, the anode is placed in the acceptor solution and the anions move towards 

the anode (direction of acceptor solution) (2). The EME method has considerable 

technical and analytical advantages over the conventional sample preparation methods. 

A comparative study has been made between HF-LPME and EME in the extraction of 

polar drugs from biological samples (11). The results proved that EME demonstrated 

a higher pre-concentration factor and a shorter extraction time; thus it was concluded 

to be a more efficient method than HF-LPME for extracting and pre-concentrating 

polar drugs from complex matrices (11). The success of EME in sample preparation 

has attracted considerable attention regarding the application of electric fields in 

sample preparation techniques.  

For instance, electromembrane-surrounded solid-phase microextraction (EM-

SPME) is an electrically enhanced solid-phase extraction technique that combines the 

merits of EME and SPME. In EM-SPME, the conductive SPME fiber acts as one of 

the electrodes and is located in the lumen of the hollow fiber, together with the SLM 

and the acceptor solution (12, 13). Under the application of an electric field, the 

analytes in the sample solution migrate through the SLM into the acceptor solution 

and are further adsorbed by the SPME fibers in the hollow fiber lumen (14). EM-

SPME demonstrated better sample clean-up than the conventional SPME approach 

since the SLM around the SPME fibers acts as a “first line of defence” filter that 

prohibits the complex matrices from entering the acceptor solution, hence avoiding the 

risk of fiber saturation in the analysis of samples with complicated matrices (15, 16). 

The polymer inclusion membrane (PIM) was introduced as an alternative to 

the SLM in the EME system. The PIMs demonstrated higher mechanical stability and 

improved mechanical robustness in the presence of an electric field (17). The PIM is 

a self-supporting liquid membrane that consists of a base polymer, a plasticizer and a 

carrier. The base polymer is the backbone of the PIM and provides mechanical support, 

while the plasticizer acts as a solvent in the membrane, providing it with flexibility 

and softness. The carrier in the PIM plays a significant role as it is the extractant that 

determines the selectivity of the PIM. A carrier, generally an ionic liquid, initiates ion 
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exchange reactions and forms ion complexes with target ions. Generally, the PIM is 

prepared by dissolving the base polymer, plasticizer and carrier in a volatile organic 

solvent, before casting the membrane solution as a thin film following the evaporation 

of the solvent. To date, a number of studies on the applications of PIMs in the 

aforementioned EME system have been published, in which the extraction of target 

analytes from feed solutions to the acceptor solution through the PIM under the 

application of an electric field has been demonstrated (18-20). These studies have 

proven the enhanced stability of the PIM over the SLM; hence, PIMs are more 

preferred in separation technologies nowadays, particularly in the EME system. Due 

to the presence of carriers and plasticizers, PIMs have good ionic conductivity and are 

thus effective ion transporters. By employing the concept of electrophoresis, the 

electrokinetic extraction of small drug analytes from a dried blood spot (DBS) matrix 

was conducted on a dried PIM in the absence of liquid reagents (21). The analytes 

were migrated and extracted through the thin film PIM under the application of an 

electric field, emphasising the potential and suitability of PIMs for electroextraction. 

The portability of the developed electrokinetic extraction method allowed for in-transit 

sample preparation, thus reducing the turn-around time for the analysis (21). 

In the sample preparation approaches published thus far, PIMs have generally 

taken the form of thin films (19, 20, 22, 23) or hollow fibers (24, 25). In this study, the 

PIM was cast on a non-conductive glass capillary substrate using the dip-coating 

method and was applied in the form of a miniaturized sampling probe for electrokinetic 

extraction. No acceptor phase was involved and the voltage was directly applied onto 

the conductive PIM surface. The PIM-based sampling probe simultaneously acted as 

an electrode and as the extraction phase in the electrokinetic extraction. The extraction 

efficiency of this developed PIM sampling probe was studied using a charged 

fluorescent dye molecule, Rhodamine 6G, under the application of an electric field. 

The PIM sampling probe is potentially capable of extracting, preconcentrating and 

storing target analytes prior to the sample analysis. 

With the rising awareness of the importance of immediate decentralised sample 

processing to prevent degradation and adulteration of samples, a large amount of 

research has been conducted on the development of miniaturized and portable 
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analytical methods. For example, a number of portable and easy-to-use point-of-care 

(POC) diagnostic tests have been developed for the immediate analysis of patients’ 

samples at the sampling point for disease screening (26).  

Patient-centric microsampling techniques such as DBS and volumetric 

absorptive microsampling (VAMS) (27) are less invasive blood sampling methods that 

extract only a microliter volume of capillary blood from a finger prick. These 

approaches allow patients to conduct self-sampling in a familiar and convenient 

environment (such as the home) thus reducing their frequency of visits to health 

facilities (28). They have particular benefits for newborn screening, therapeutic drug 

monitoring (TDM) and disease diagnostics (29). In spite of the advantages and the 

wide range of applications of microsampling techniques, the majority of the DBS 

samples are sent by mail and processed in the laboratory. The general sample for 

preparation of  DBS samples comprises sonication, centrifugation, extraction and 

reconstitution; these processes are required to be conducted in the designated 

laboratory. To date, the development of a portable sample preparation technique for 

processing DBS samples during the transportation is hitherto unreported. 

In this study, the optimised PIM sampling probe was employed to 

electrokinetically extract the anticancer drug doxorubicin from DBS, human plasma 

and human serum samples. Doxorubicin has demonstrated a narrow therapeutic 

window and serious side effects of cardiotoxicity (30). It is essential that the drug 

intake is monitored, particularly for childhood cancer survivors treated with 

doxorubicin, in order to prevent severe cardiac adverse events. In contrast to the 

existing analytical workflow, the sampling probe allows sample preparation to be 

conducted during transportation, with an electric field as its driving force. 

Consequently, it accelerates the entire analytical workflow for TDM and facilitates 

immediate analytical outcomes for patients. Figure 1.1 shows the comparison between 

the general analytical workflow and the analytical procedure by using electrokinetic 

extraction with a PIM sampling probe. PIM sampling probe simplifies the analytical 

workflow by electrokinetic extraction of analytes during the transportation of samples 

to the laboratory. To enable the portability of the electrokinetic extraction set up for 

sample preparation during transportation, the PIM sampling probe was further 
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integrated into a portable battery-powered electrokinetic extraction device. This study 

focuses on the design and demonstration of the prototype of the device. A lower 

voltage was applied to the PIM sampling probe for the electrokinetic extraction. The 

extracted analytes on the PIM sampling probe were further desorbed and quantified 

using liquid chromatography with tandem mass spectrometry (LC-MS/MS) in the 

laboratory in order to obtain more accurate and higher-sensitivity analytical results. 

Figure 1.1 Comparison between the general analytical workflow and the analytical 

procedure by using electrokinetic extraction with PIM sampling probe. 

 

 

General analytical procedure on 
blood samples

Collection of blood samples by
conventional venipuncture or finger
prick as DBS.

Blood samples in anticoagulant tubes
are sent to the laboratory in cold
chain system; DBS samples are sent
to the laboratory by mail.

In the laboratory, blood samples are
centrifuged and filtered to remove
blood cells; DBS samples are eluted
out from filter paper

Filtered samples undergo secondary
sample pretreatment such as LLE,
SPE, SPME and LPME to obtain
cleanest sample for analysis.

Extracted samples are introduced to
the instrument for analysis.

Analytical procedure on blood 
samples by electrokinetic 

extraction with PIM sampling 
probe

Collection of blood samples by
conventional venipuncture or finger
prick as DBS.

Blood samples are introduced to the
portable electrokinetic extraction
device to extract target analytes by
the PIM sampling probe during the
transportation.

In the laboratory, extracted analytes
on the PIM sampling probe are eluted
and introduced to the instrument for
analysis.



 7 

1.2 Problem Statement 

Nowadays, the preanalytical stage of sample collection and preparation is a 

time-consuming procedure, and samples are generally processed and analysed 

following their arrival in the laboratory. Many test results are inconclusive, sometimes 

incorrect, due to the fact that the sample was not stabilised for analysis by the central 

laboratory test. Moreover, there are also significant challenges in terms of the 

transportation of stabilised samples as the transportation network between the 

sampling site and many central laboratories are inadequate. The inconvenience of 

transporting samples from rural, remote areas to the centralised laboratory services 

may lead to low-quality of analytical and diagnostic services. In addition, traditional 

methods for the collection of liquid samples in bulk quantities involve high-cost cold 

chain systems during transportation to preserve the liquid samples for subsequent 

pretreatment and analysis in the laboratory. Sample preparation steps that employ huge 

amounts of toxic solvents for extraction are not environmentally friendly and are 

commonly performed in the laboratory after samples have been received. Patients are 

required to frequently visit healthcare premises for their routine medical check-ups, 

which is inconvenient, particularly for the elderly, children and patients who require 

TDM. Even before the outbreak of the COVID-19 pandemic, the decentralisation and 

miniaturization of sample preparation procedures have been a topic of great interest to 

analytical scientists.  

The world has had to change and evolve in a variety of ways in order to adapt 

to the ongoing COVID-19 pandemic. Since the outbreak of the pandemic, there has 

been a growing trend for the decentralisation and digitalisation of healthcare services 

since most people have deemed visiting healthcare facilities for routine visits to be a 

high-risk course of action (31). Therefore, the only way for sample collection and 

preparation methods to keep up with this trend will be to introduce a simple and user-

friendly portable device for patients to be able to closely monitor their conditions 

during pandemics.  

The DBS method is a less-invasive and patient-friendly microsampling 

technique that can be easily performed by patients at home with adequate training. 
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Blood samples are collected from a finger prick and dried on a paper substrate for at 

least three hours before being sent to the laboratory for sample preparation and 

instrumental analysis. DBS samples are relatively stable; hence they are sent by mail 

to the laboratory, avoiding the need for a cold-chain system. Nevertheless, the 

surrounding humidity and moisture content might destroy the DBS samples. DBS 

require a significant sample preparation procedure to meet satisfactory levels of 

reliability on analytical results. In the laboratory, DBS samples are desorbed with 

suitable solvents and are further processed using traditional sample preparation 

techniques, including protein precipitation and LLE (32, 33). To date, no research has 

been conducted on the processing of DBS samples during transportation using an 

electric field, hence the motivation for this study. 

A portable battery-powered electrokinetic extraction device using electric field 

driven sample preparation was developed in this study. The device is designed for the 

electrokinetic extraction of drug analytes from DBS, human plasma and human serum 

samples during sample transportation. The core of the device is a miniaturized PIM-

based sampling probe, the PIM being fabricated using a simple dip-coating method. 

The PIM is robust, with a strong mechanical structure, and exhibits excellent 

performance in adsorbing targeted analytes in sample matrices under an electric field. 

In addition, the new sampling probe is quick and easy to manufacture and, most 

importantly, cost-effective, thus benefiting end users in the commercial market. 

1.3 Objectives of the Study 

This project focuses on the development of a new self-assembly PIM sampling 

probe for electric field driven extraction. The aims of this proposal are:  

(a) To evaluate the capability and performance of a new self-assembly PIM 

sampling probe—comprising a PIM dip-coated on a non-conductive glass 

capillary substrate—in an electric field driven extraction. 

(b) To determine the optimal PIM composition and operating conditions for the 

electric field driven extraction of target charged analytes on the PIM sampling 

probe. 
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(c) To validate and apply the developed approach as a new method of 

electrokinetic extraction of doxorubicin from human plasma, human serum and 

DBS samples. 

(d) To investigate the efficiency and feasibility of the PIM sampling probe 

integrated with a portable battery-powered device for electrokinetic extraction 

of doxorubicin. 

 

1.4 Scopes of the Research 

In this study, a PIM-based sampling probe was developed to electrokinetically 

extract doxorubicin from DBS, human plasma and human serum samples. The 

potential of the PIM sampling probe for application in electrokinetic extraction was 

investigated and monitored using the cationic fluorescent dye, Rhodamine 6G. In this 

work, the PIM sampling probes were designed, prepared and characterised for 

electrokinetic extraction. The PIM sampling probes were characterised using field 

emission-scanning electron microscopy (FE-SEM), nitrogen adsorption/ desorption 

analysis and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) 

spectroscopy analysis. The thermal stability and phase transitions of the PIM were 

studied using thermogravimetric analysis (TGA) and differential scanning calorimetry 

(DSC) (Objective a). 

A series of optimisation studies were performed to determine the composition 

of the PIM, including the amount of carrier (1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide [EMIM][NTf2]) in the range of 0 to 75 mg, the 

amount of plasticizer (2-nitrophenyloctyl ether [2-NPOE]) in the range of 0 to 150 mg, 

the amount of base polymer (cellulose triacetate [CTA]) in the range of 50 to 150 mg, 

and the thickness of the PIM on the glass capillary (controlled by the number of 

dipping cycles of the glass capillary in the membrane solution).  The electrophoretic 

parameters, such as voltage applied (0 – 500 V) and pH of the solution (pH 3 – pH 8), 

were optimised to determine the effectiveness of the extraction. Analytical 

performances of the developed PIM sampling probe on the extraction of Rhodamine 

6G dye were evaluated and visualised using a handheld fluorescence microscope. The 
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fluorescence intensity of the extracted Rhodamine 6G was quantified using ImageJ 

software (Objective b).  

The performance of the PIM sampling probe was further evaluated by 

extracting the fluorescent anticancer drug doxorubicin from real biological fluid 

samples under the application of an electric field. The doxorubicin in DBS, human 

plasma and human serum samples was electrokinetically extracted using the PIM 

sampling probe and then desorbed in the suitable desorption solvent for LC-MS/MS 

analysis. The LC-MS/MS procedure assessed the practicability and reliability of the 

PIM sampling probe by quantifying the desorption of extracted doxorubicin from the 

sampling probe. The probe was applied to the electrokinetic extraction of doxorubicin 

from human plasma, human serum and DBS samples in order to evaluate and validate 

the analytical performance of the developed method. The method validation 

parameters include linearity and range, the limit of quantification (LOQ), the limit of 

detection (LOD), recovery and repeatability (Objective c). Ultimately, the PIM 

sampling probe was integrated into a portable battery-powered electrokinetic 

extraction device prototype to improve the portability of the setup, and the 

effectiveness of electrokinetic extraction of the developed device was evaluated 

(Objective d). 

1.5 Significance of the Study 

In this study, the electrokinetic extraction capabilities of a portable 

miniaturized PIM-based sampling probe were investigated. The developed PIM 

sampling probe is envisioned to provide significant improvements in sampling 

efficiency and sample preparation procedures as well as in the transportation of 

samples in the presence of an electric field. In addition, the presence of this electric 

field in the extraction process means that liquid samples can be extracted with solvents 

in microliter volumes, resulting in a more environmentally friendly, cost-effective 

procedure.  
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Furthermore, the process of shipping conventional samples is both costly and 

time-consuming, particularly in some large countries; thus, our developed portable 

battery-powered electrokinetic extraction device brings significant benefits to the 

nation. The ability to conduct sample preparation during transportation using this 

portable device will reduce the incidence of mortality resulting from delayed diagnoses. 

It will shorten the time required to reach a clinical outcome following sample 

collection. Since the analytes are extracted and stored in the PIM sampling probe 

during sample transportation, it will also lead to reduced shipping costs. 

Transformation of remote clinical outposts into high-quality analytical and diagnostic 

units is also achievable with the introduction of this device. In addition, with this novel 

portable sampling probe, Malaysia can position itself as a pioneer in the development 

of portable sample preparation technology. 

From an economic standpoint, the global sample preparation market size is 

estimated to increase at a compound annual growth rate (CAGR) of 6.6% from $7.57 

billion in 2021 to $8.06 billion in 2022. The market is projected to rise to $9.84 billion 

in 2026 at a CAGR of 5.1% (34). Therefore, the development of this portable 

electrokinetic extraction device into a commercially viable product is expected to bring 

significant economic gains to the country as one of the advanced sample preparation 

techniques. 

1.6 Outline of the Thesis 

This thesis comprises five chapters.  

Chapter 1 gives a detailed description of the research background, problem 

statement, objectives, scope and significance of the project.  

Chapter 2 provides a review of the literature on existing miniaturized sample 

preparation techniques, electric field enhanced sample preparation techniques, PIMs, 

miniaturized blood sampling techniques, miniaturized analytical tools, TDM and 

doxorubicin.  
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Chapter 3 describes the method of fabrication of the PIM sampling probe, the 

set parameters for each characterisation technique, the sample and standard solution 

preparation procedure, the electrokinetic extraction platform, the electrokinetic 

extraction procedure in real sample matrices, and the quantification assays using 

HPLC-FLD and LC-MS/MS.  

Chapter 4 discusses the configuration and physical characteristics of the PIM 

sampling probe, followed by a discussion on the optimisations of PIM composition, 

the number of dipping cycles in the PIM sampling probe fabrication process and 

operating conditions for electrokinetic extraction. The application of the developed 

electrokinetic extraction setup was firstly demonstrated through the visualisation of 

the fluorescent dye Rhodamine 6G extracted on the PIM sampling probe. This chapter 

also reports the application of the PIM sampling probe in the electrokinetic extraction 

of the anticancer drug doxorubicin from biological fluid samples, including human 

plasma, human serum and DBS samples. Spiked doxorubicin was electrokinetically 

extracted using the PIM sampling probe; this was followed by desorption of the 

extracted analytes in a suitable solvent for LC-MS/MS analysis. The PIM sampling 

probe was further integrated into a portable battery-powered device for in-transit 

sample preparation. The performance of the PIM sampling probe in the electrokinetic 

extraction of doxorubicin in real sample matrices was validated. 

Chapter 5 provides a conclusion to the thesis. The main elements of the study—

including the design, the optimal conditions and the applications of the electrokinetic 

extraction technique—are summarised. Suggestions for future studies are also 

presented. 
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