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ABSTRACT 

Water desalination is the most effective strategy in dealing with global water 

crisis. However, the current thin film composite (TFC) reverse osmosis (RO) 

membranes which dominate the desalination process are still susceptible to 

permeability and selectivity trade-off, fouling and chlorine attack. These issues were 

resolved in this work by optimizing the synthesis conditions of interfacial 

polymerization (IP) technique for TFC membrane fabrication followed by adopting 

interlayer-assisted IP technique and graphene oxide (GO) incorporation for the 

fabrication of thin film nanocomposite (TFN) membrane. Polyethyleneimine (PEI) 

was used as interlayer for TFN membrane fabrication to avoid defects caused by GO 

incorporation in the polyamide (PA) layer. The effects of post IP rinsing on the TFC 

membrane were first investigated prior to the TFN membrane fabrication. It was found 

that the rinsing solution properties such as boiling point, surface tension and 

miscibility could affect the efficiency of unreacted monomers removal, altering the 

physicochemical properties of PA layer and yielding reproducible TFC membrane 

with higher water flux and least deteriorated salt rejection. Aqueous solution rinsing 

was found to be able to enhance membrane pure water flux (PWF) from 17.53 to 22.56 

L/m2·h at 15 bar without significantly trading off its promising sodium chloride (NaCl) 

rejection (97.70%) when compared to the control membrane and organic solvent-

rinsed membrane. For the TFN membrane, the presence of PEI interlayer was found 

to improve the distribution and orientation of GO in the PA layer which minimized the 

defects formed. Compared to the typical TFN membrane fabricated using conventional 

IP, the PEI-interlayered TFN membranes containing the same amount of GO (0.015 

wt/v%) were found to exhibit a relatively thinner but rougher PA. As a result, almost 

all PEI-interlayered TFN membrane exhibited better desalination performances than 

the typical TFN membrane. It was also discovered that the substrate of membrane 

coated with a single layer of 0.05 wt/v% PEI followed by 60-min drying produced 

promising TFN membrane (i.e., iTFN-C0.05-T60-L1), achieving 96.66% NaCl 

rejection and 2.24 L/m2·h·bar PWF. The experimental results also revealed that the 

use of optimum GO loading (0.01 wt/v% GO) in the PA layer fabricated via interlayer-

assisted IP could further improve TFN membrane performance, leading to the highest 

PWF (2.66 L/m2·h·bar) achieved without compromising NaCl rejection (~97.5%). 

This was caused by the improved membrane surface hydrophilicity and roughness 

paired with the nanochannels created by GO. The optimized TFN membrane also 

showed improved resistivity against alginate and least deteriorated desalination 

property after chlorination. Although the antibacterial property of GO was hindered 

by the PA layer, the membrane still exhibited better antibacterial property than that of 

commercial RO membrane. The outcomes of this study suggested that properly 

arranged GO in PA layer is necessary to minimize the formation of defects that could 

be detrimental for membrane separation. The position of GO in PA layer is particularly 

important to optimize its functionality. As a conclusion, the PEI-interlayered TFN 

membrane fabricated in this study portrayed a great potential in addressing the 

drawbacks of commercial TFC membrane for seawater or brackish water desalination.  
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ABSTRAK 

Penyahgaraman air adalah strategi yang paling efektif dalam menangani krisis 
air global. Namun, membran osmosis berbalik (RO) komposit filem nipis (TFC) yang 
mendominasi proses penyahgaraman kini masih terdedah kepada keseimbangan antara 
kebolehtelapan dan kememilihan, pengotoran dan serangan klorin. Masalah-masalah 
ini diselesaikan dalam kajian ini dengan mengoptimumkan keadaan teknik sintesis 
pempolimeran antaramuka (IP) untuk pembuatan membran TFC diikuti dengan 
menggunakan teknik antara lapisan berbantu IP dan penggabungan grafin oksida (GO) 
untuk fabrikasi membran komposit nano filem nipis (TFN). Polietilenaimina (PEI) 
digunakan sebagai lapisan antara untuk fabrikasi membran TFN bagi mengelakkan 
ketidaksempurnaan yang disebabkan oleh penggabungan GO dengan lapisan 
poliamida (PA). Kesan pembilasan selepas IP pada membran TFC diselidiki terlebih 
dahulu sebelum fabrikasi membran TFN. Didapati bahawa sifat larutan bilas seperti 
suhu didih, tegangan permukaan dan kebolehcampuran boleh menpengaruhi 
kecekapan penyingkiran monomer yang tidak bertindak balas, mengubah sifat 
fizikokimia lapisan PA dan menghasilkan membran TFC yang boleh dihasilkan 
semula dengan fluks air yang lebih tinggi dan penolakan garam yang paling sedikit 
merosot. Pembilas larutan akueus didapati mampu meningkatkan PWF membran dari 
17.53 hingga 22.56 L/m2·h pada 15 bar tanpa mengubah penolakan natrium klorida 
(NaCl) dengan ketara (97.70%) jika dibandingkan dengan membran kawalan dan 
membran yang dibilas oleh pelarut organik. Untuk membran TFN, kehadiran lapisan 
antara PEI didapati meningkatkan penyebaran dan orientasi GO dalam lapisan PA dan 
meminimumkan pembentukan ketidaksempurnaan. Dibandingkan dengan membran 
TFN biasa yang dibuat dengan menggunakan IP konvensional, membran TFN dengan 
lapisan antara PEI dengan kuantiti GO yang sama (0.015 wt/v%) mempunyai PA yang 
lebih nipis tetapi kasar. Hasilnya, hampir semua membran TFN dengan lapisan antara 
PEI menunjukkan prestasi penyahgaraman yang lebih baik daripada membran TFN 
biasa. Didapati bahawa substratum membran yang dimodifikasi dengan lapisan 
tunggal PEI sebanyak 0.05 wt/v% diikuti pengeringan 60-minit menghasilkan 
membran TFN (iaitu iTFN-C0.05-T60-L1) dengan prestasi penyahgaraman terbaik 
(96.66% penolakan NaCl dan 2.24 L/m2·h·bar). Hasil eksperimen juga menunjukkan 
bahawa penambahan GO yang optimum (0.01 wt/v% GO) dalam lapisan PA yang 
dibuat dengan teknik antara lapisan berbantu IP dapat menambahbaik prestasi 
membran TFN, memberi peningkatan dalam PWF (2.66 L/m2·h·bar), tanpa 
menjejaskan penolakan NaCl (~97.5%). Ini disebabkan oleh peningkatan 
kehidrofilikan dan kekasaran permukaan membran disamping saluran nano yang 
dibuat oleh GO. Membran TFN yang dioptimumkan ini juga menunjukkan ketahanan 
yang lebih baik terhadap alginat dan kemerosotan sifat penyahgaraman yang sedikit 
selepas pengklorinan. Walaupun sifat antibakteria GO dihalang oleh lapisan PA, 
membran ini masih menunjukkan sifat antibakteria yang lebih baik apabila 
dibandingkan dengan membran RO kelas komersial. Kajian ini menunjukkan bahawa 
GO yang disusun dengan betul dalam lapisan PA diperlukan untuk meminimumkan 
pembentukan ketidaksempurnaan yang boleh memudaratkan prestasi penyahgaraman 
membran. Kedudukan GO dalam lapisan PA penting untuk mengoptimumkan 
fungsinya. Sebagai kesimpulan, membran TFN dengan lapisan antara PEI yang dibuat 
dalam kajian ini mempunyai potensi besar dalam mengatasi kekurangan membran 
TFC komersial untuk penyahgaraman air laut atau air payau. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Research 

Water crisis has become a threatening issue in many parts of the world despite 

the Earth is covered by 75% of water (Ali et al., 2018). 97.5% of the 75% is made up 

of seawater and saline aquifers (Zaidi et al., 2015) while fresh water only comprises 

of 2.5%. Out of the 2.5% of fresh water, only 0.3% is usable by human (Youssef, Al-

Dadah and Mahmoud, 2014). The situation worsens when the available conventional 

freshwater resources are polluted by human activities and overexploited. In the 20th 

century, human population increases by four times but the demand for water has 

increased by nine times (Shenvi, Isloor and Ismail, 2015).  

Figures 1.1A and 1.1B show the water withdrawal, gross domestic product 

(GDP) pro-capita and world population and the breakdown of human water 

consumption from various sectors while Figure 1.1C demonstrates the graphical 

concept of water crisis when demand is continuously increased while clean water 

availability is decreasing. The linear relationship of water withdrawal and world 

population, as observed in Figure 1.1A, further confirms that human population is the 

primary factor for the increase in global water demand. The global water withdrawal, 

which is in line with the sectoral water consumption, is predicted to rise continuously, 

with no sign of slowing down, until ~2099 (see Figure 1.1B). The drastic rise in 

irrigation and livestock water consumption is attributable to the increasing food 

demand, while the surge in domestic and industrial water use is ascribed to the increase 

in electricity and energy usage. Climate change is another factor that contributes to the 

remarkably high irrigation water consumption (Wada and Bierkens, 2014). It is 

intuitive that the growing demand and shrinking water availability will ultimately cross 

each other (see Figure 1.1C) when water withdrawal rate overcomes the nature’s self-

replenishing rate. At that moment, water crisis happens.   
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Figure 1.1 (A) Water withdrawal, GDP pro-capita and world population (Boretti 

and Rosa, 2019), (B) Estimated and projected trends of total blue water withdrawal, 

sectoral blue water consumption and ground water extraction over the period of 1960 

to 2099 (Wada and Bierkens, 2014) and (C) graphical concept of water scarcity, 

resulting from a more than linear growing demand and a similarly more than a linear 

reduction of clean water availability (Boretti and Rosa, 2019) 
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It was previously mentioned by Service (2006) in his article “Desalination 

Freshens Up” that over 1 billion of people did not have access to clean drinking water 

and approximately 2.3 billion of people, which were about 41% of world population, 

were living in water stress region. It is also revealed in the United Nations World Water 

Development Report Edition 2018 that approximately 6 billion of people will suffer 

from clean water scarcity in 2050. Figure 1.2 predicts expansion of water stress region 

from 2019 to 2050. Based on the Global Risk report, water crisis has been listed and 

remained as the top 5 risk by severity of impact since 2014 (Brende, 2020).  

 

Figure 1.2 Expansion of water-stressed region from year 2019 (Uhlenbrook et al., 

2020) to year 2040 (Luo, Young and Reig., 2015) 

The water crisis issue has urged mankind to search for a solution in resolving 

the Earth’s meagered fresh water supplies, leading to the development of water reuse 

and water desalination (Jiang, Li and Ladewig, 2017). Water reuse has been widely 
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applied to produce freshwater for irrigation, industrial activities, recharging of ground 

water and as a method for indirect drinking water production. Meanwhile, water 

desalination remains as the most preferred choice for drinking water production due to 

its ability to produce freshwater that fulfils the drinking water standard of the World 

Health Organization (WHO) (Greenlee et al., 2009).  

The two commonly applied desalination technologies are membrane-based 

technology and thermal-based technology. However, due to high energy consumption 

of thermal-based technology, membrane-based technology is more preferred. 

Membrane-based technology which is pressure-activated utilizes high pressure to 

force water across semipermeable membrane and leave salts behind (Youssef, Al-

Dadah and Mahmoud, 2014). Reverse osmosis (RO) is currently the most promising 

membrane-based desalination technology. Besides being energy saving, RO also 

exhibits excellent separation performance with high water permeability fulfilling the 

demand of human population (Jiang, Li and Ladewig, 2017). Figure 1.3 shows the 

number and capacity of operational desalination plants by technology. According to 

Jones et al. (2019), RO is the most dominating process that accounts for 84% of the 

total number of operational desalination plants and produces 69% of global desalinated 

water.  

 

Figure 1.3 Number and capacity of operational desalination facilities by 

technology (Jones et al., 2019) 



 

5 

To date, desalination technology is dominated by thin film composite (TFC) 

polyamide (PA) RO membranes (Lee, Arnot and Mattia, 2011), which was introduced 

by Cadotte and his co-workers in the 1970s (Cadotte et al., 1980). This type of 

membrane consists of three layers, ultrathin PA layer, porous substrate and non-woven 

polyester (PET) fabric that is prepared via interfacial polymerization (IP) method. It 

exhibits excellent salt rejection of >99% and relatively higher water permeability, 

~0.74 L/m2·h·bar as compared to asymmetric RO membranes. TFC membrane also 

exhibits better tolerance to temperature, chemical, wider range of pH and compaction. 

Nevertheless, the TFC membrane is subject to ubiquitous trade-off relationship 

between permeability and selectivity which hinders the simultaneous improvement of 

membrane water permeability and solute rejection. Apart from that, the TFC 

membrane is also susceptible to fouling and chlorine attack (Li, Yan and Wang, 2016).  

Following this, numerous studies were carried out by membrane scientists to address 

its drawbacks by modifying the structural properties and surface chemistry of TFC 

membrane, aiming to increase its resistibility against potential foulants and free active 

chlorine as well as improving its water permeability. Interlayer regulated IP process is 

one of the emerging strategies to improve the performances of TFC membrane (Dai, 

Li and Wang, 2020; Ng et al., 2021). Compared to the conventional IP, interlayer-

assisted IP usually produces PA which is thinner, smoother and more compact. These 

features grant the resultant TFC membrane its higher water permeability and salt 

rejection (Dai, Li and Wang, 2020). 

Another effective strategy is to integrate inorganic nanofillers into the ultra-

thin barrier layer, resulting in the development of new type of composite membrane 

named as thin film nanocomposite (TFN) membrane. The nanofillers can be added 

into the selective PA layer via IP method. Addition of nanofillers is not only able to 

improve membrane water permeability, but also prevent the membrane selectivity 

from being compromised, as initially reported by Jeong et al. (2007). Apart from that, 

the incorporation of nanofillers could improve membrane antifouling, chlorine 

resistivity, antibacterial, mechanical property and thermal resistivity. Some of the 

inorganic nanofillers investigated include carbon-based (e.g., carbon nanotube (CNT), 

graphene oxide (GO)), metal and metal oxides-based (e.g., silver (Ag), copper (Cu), 

titanium dioxide (TiO2), zinc oxide (ZnO) and metal organic framework (MOF)), 

silica, zeolite and halloysite nanotube (HNT) (Saleem and Zaidi, 2020). 
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Lately, GO has become one of the promising nanofillers for the development 

of TFN RO membrane (Liu and Xu, 2016). GO is attractive due to two main reasons, 

i.e., unique structure and superior hydrophilicity (Liu and Xu, 2016; Akther et al., 

2020). Its two dimensional (2D), single atom-thick sheet-like structure is capable of 

creating additional channels for water to pass through when they are stacked (Choi et 

al., 2013). Meanwhile, the existence of abundant oxygen functional entities such as 

hydroxyl, epoxy and carboxyl groups locating at the surfaces and edges of GO could 

make it highly hydrophilic (Dreyer et al., 2010; Shamaila, Sajjad and Iqbal, 2016; 

Inurria et al., 2019). These properties provide the resultant TFN membrane with 

enhanced surface hydrophilicity, leading to improved permeability and antifouling 

property, when the GO is incorporated into the PA layer. Besides, the ability of GO to 

form intermolecular hydrogen bonding with PA layer could prevent the amide bond 

from being attacked by free chlorine (Ali et al., 2016). GO also possesses antimicrobial 

property which is useful in mitigating biofouling of the resultant TFN membrane 

(Inurria et al., 2019). Direct contact of bacteria with GO nanosheets results in the 

disruption of the cell membrane integrity and the oxidation of cellular components, 

which can induce loss of cell viability (Li et al., 2011; Sanchez et al., 2012; Mangadlao 

et al., 2015). Albeit all the advantages of GO incorporated TFN membranes, there 

remains some limitations in the membrane properties that needed to be addressed such 

as incomplete accommodation, uneven distribution and random arrangement within 

the PA layer (Lai et al., 2019; Lim et al., 2020; Rodríguez et al., 2020). Therefore, this 

study aims to investigate the combine effects of intermediate layer and GO 

incorporation on the physicochemical properties and performances of the resultant 

TFN membranes for desalination process. The effects of intermediate layer on the 

deposition of GO in the PA layer are explored.  

1.2 Problem Statements 

IP technique is widely employed for TFC and TFN membranes fabrication. 

Generally, it involves the reaction of two monomers (i.e., amine in aqueous medium 

and acyl chloride in organic medium) at the interface of two immiscible solutions to 

produce a thin and dense PA layer followed by heat treatment to improve the cross-
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linking degree and remove excess solvents (Ghosh et al., 2008). Nevertheless, the 

current TFC membrane still suffers from permeability/selectivity trade-off, chlorine 

attack and fouling. To deal with these problems, studies were conducted to alter the 

physicochemical properties of TFC membrane, among which varying PA synthesis 

conditions (i.e., IP parameters) and nanofillers incorporation (Xu, Wang and Li, 2013; 

Otitoju, Saari and Ahmad, 2018) are some of the effective strategies. Lately, the 

potential of post IP rinsing in improving water flux at the expense of solute rejection 

of TFC membrane was reported by Chong et al. (2018). Post IP rinsing is often 

required to remove unreacted monomers from the TFC membrane surface prior to heat 

treatment process. However, its effects on membrane physicochemical properties 

remain largely unclear. Thus, the first part of this research intends to study in depth 

the effects of post IP rinsing on the physicochemical properties and performances of 

TFC membranes by using various organic solvents (i.e., hexane, cyclohexane and 

Isoparrafin-G) to compare with water at different rinsing conditions (i.e., with rinsing 

(meaning the membrane is immediately rinsed after IP) and with post air-drying and 

rinsing (meaning the membrane is subjected to 1 min air-drying after IP before 

subjecting to rinsing). It is anticipated that highly reproducible TFC membranes with 

insignificant permeability/selectivity trade-off could be fabricated and serve as a stable 

baseline for the development of PEI-interlayered TFN membranes.  

In this study, GO nanosheets are proposed as the nanofillers for the fabrication 

of TFN membrane owing to its unique structure and superior hydrophilicity 

(containing an abundance of oxygen rich functional groups). Nevertheless, there 

remain several problems that need to be addressed when adding GO into the PA layer 

via IP method. In terms of method, IP process which involves the use of rubber roller 

to remove excess amine monomers prior to introducing acyl chloride monomers often 

leads to uneven distribution and/or significant loss of GO from the substrate surface 

(Lai et al., 2019), especially when GO is weakly adhered to the substrate (Lim et al., 

2020). In terms of nanofillers, large lateral size of GO could affect PA integrity by 

obstructing the diffusion of amine to the organic phase and its incomplete 

accommodation within the PA layer. As reported by Akther et al. (2020), GO with 

average area of 1.06 μm2 or lateral size <5 μm could lead to defective PA layer. Despite 

being atom-level thick, the large lateral size of GO makes it difficult to be completely 

accommodated within the several hundreds of nanometer thick PA (Yin, Zhu and 
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Deng, 2016; Rodríguez et al., 2020), particularly when these nanosheets are not 

properly arranged (Lim et al., 2020). Therefore, in the second part of this study, a 

positively charged polyethyleneimine (PEI) is used as interlayer while the rubber 

rolling method is replaced with oven-drying method to remove the excess amine 

monomers. The purpose of using PEI interlayer is to improve the 

arrangement/orientation and adherence of negatively charged GO via electrostatic 

interaction while the adoption of oven-drying method is to minimize uneven 

distribution of GO on substrate surface. Interlayer-assisted IP is an emerging technique 

that could precisely control the polymerization process to produce thin and defect-free 

PA layer. This technique has been demonstrated for the fabrication of nanofiltration 

(NF) and forward osmosis (FO) membranes, but its potential use for RO membrane 

fabrication is yet to be documented. It is anticipated that TFN membranes with 

enhanced PA integrity, by minimizing defects formation, could be generated via the 

PEI-interlayered assisted IP. 

Loading is another important factor when adding GO into the PA layer. Even 

though GO exhibits good dispersity in aqueous or polar solvents, excessive amount of 

GO can still lead to agglomeration. GO agglomeration or aggregation is undesired 

because it could lead to the formation of non-selective interfacial voids that adversely 

affects the separation performances of membrane. To date, numerous studies were 

conducted to investigate the effects of GO loading on the properties and performances 

of TFN membrane (He et al., 2015; Yin, Zhu and Deng, 2016; Ali et al., 2016) but not 

for interlayered TFN membrane. Alignment of GO induced by PEI could possibly 

affect the maximum amount of GO that could be accommodated within the PA layer. 

Thus, the third part of this study will investigate the effects of GO loading on the 

properties and performances of PEI-interlayered TFN membrane. In addition, the 

change in GO position due to the presence of PEI interlayer could possibly affect its 

positive features. Thus, the performances of PEI-interlayered TFN membrane with 

respect to chlorine resistivity, antifouling and antibacterial property will be evaluated 

at the last part of this study.  
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1.3 Research Objectives 

Based on the research problems highlighted in the previous sub-section, the 

following objectives are set out: 

1. To investigate the effects of post IP rinsing on the physicochemical properties 

and filtration performances of TFC RO membrane by varying the types of 

rinsing solution and rinsing conditions.   

2. To investigate the impacts of PEI interlayer on the physicochemical properties 

and filtration performances of TFN RO membrane by depositing the PEI on 

the surface of polysulfone (PSf) substrate at different coating parameters. 

3. To investigate the effects of GO on the physicochemical properties and 

filtration performances of PEI-interlayered TFN RO membrane by 

incorporating different GO loadings into the PA layer. 

4. To evaluate the performances of selected PEI-interlayered TFN RO membrane 

with respect to chlorine resistivity, antifouling and antibacterial properties. 

1.4 Research Scopes 

In order to achieve the objectives of this research, the following scopes are 

planned: 

For Objective 1: 

(a) Fabricating TFC RO membranes via IP using rubber rolling technique 

(aqueous phase: 2 wt/v% m-phenylenediamine (MPD); organic phase: 0.1 

wt/v% trimesoyl chloride (TMC)). The resultant membranes are subjected to 

post IP rinsing using water and various organic solvents (i.e., hexane, 

cyclohexane and Isoparaffin-G) at different rinsing conditions (i.e., with 

rinsing and with post air-drying and rinsing) prior to heat treatment. 
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(b) Characterizing surface hydrophilicity, morphology, roughness and functional 

groups of TFC RO membranes using contact angle goniometer, field emission 

scanning electron microscopy (FESEM), atomic force microscopy (AFM) and 

attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-

FTIR). 

(c) Estimating membranes pore radii based on irreversible thermodynamic model 

and Steric Hindrance Pore Model by filtrating 40 mg/L glucose, glycerol and 

ethylene glycol (EG) at different pressures (i.e., 11, 13, 15 and 17 bar) using 

dead-end RO filtration system. 

(d) Evaluating the pure water flux (PWF) and sodium chloride (NaCl) rejection of 

TFC RO membranes fabricated via IP using RO water and 2000 mg/L NaCl, 

respectively, as feed solution in dead-end RO filtration system. 

For Objective 2: 

(a) Synthesizing GO from graphite powder using modified Hummers’ method. 

(b) Characterizing the physicochemical properties of self-synthesized GO using 

transmission electron microscopy (TEM), AFM, FTIR, Ultraviolet-visible 

(UV-vis) spectrophotometry and X-ray diffraction (XRD) spectroscopy. 

(c) Modifying PSf substrate using PEI solution by varying several coating 

parameters (i.e., concentration (0.005‒0.2 wt/v%), drying time (0‒120 min) 

and coating layer number (1‒3 layers)). 

(d) Characterizing surface hydrophilicity, morphology, roughness, charge and 

functional groups of PEI-coated PSf substrates using contact angle goniometer, 

FESEM, AFM, zeta potential analyzer and ATR-FTIR. 

(e) Determining PEI-coated PSf substrates molecular weight cut-off (MWCO) by 

filtrating 100 mg/L polyethylene glycol (PEG) with different molecular weight 

(MW) (i.e., 600, 3400, 8000, 10,000 and 12,000 g/mol) using dead-end RO 

filtration system. 

(f) Fabricating TFN RO membranes via IP and interlayer-assisted IP using oven-

drying technique (aqueous phase: 2 wt/v% MPD and 0.015wt/v% GO; organic 

phase: 0.1 wt/v% TMC). The resultant membrane is subjected to post IP rinsing 
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using the best rinsing solution and condition discovered from Objective 1 prior 

to heat treatment. 

(g) Characterizing surface hydrophilicity, morphology, roughness, and functional 

groups of TFN RO membranes using contact angle goniometer, TEM, FESEM, 

AFM and ATR-FTIR. 

(h) Evaluating the pure water permeability (PWP) and NaCl rejection of TFN RO 

membranes fabricated via IP and interlayer-assisted IP using RO water and 

2000 mg/L NaCl, respectively, as feed solution in dead-end RO filtration 

system. 

For Objective 3: 

(a) Fabricating TFC RO membrane via IP using oven-drying technique (aqueous 

phase: 2 wt/v% MPD; organic phase: 0.1 wt/v% TMC). The resultant 

membrane is subjected to post IP rinsing using the best rinsing solution and 

condition discovered from Objective 1 prior to heat treatment. 

(b) Fabricating TFC and TFN RO membranes via interlayer-assisted IP using 

oven-drying technique (aqueous phase: 2 wt/v% MPD and 0‒0.02wt/v% GO; 

organic phase: 0.1 wt/v% TMC). The resultant membrane is subjected to post 

IP rinsing using the best rinsing solution and condition discovered from 

Objective 1 prior to heat treatment. 

(c) Characterizing surface hydrophilicity, morphology, roughness, charge and 

functional groups of TFN RO membranes using contact angle goniometer, 

FESEM, AFM, zeta potential analyzer, ATR-FTIR and X-ray photoelectron 

spectroscopy (XPS). 

(d) Evaluating the PWP and NaCl rejection of TFC and TFN RO membranes 

fabricated via IP and interlayer-assisted IP using RO water and 2000 mg/L 

NaCl, respectively, as feed solution in dead-end RO filtration system. 
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For Objective 4: 

(a) Comparing chlorine resistivity of TFC with optimized TFN RO membrane 

fabricated via interlayer-assisted IP by exposing the membranes to different 

concentrations of sodium hypochlorite (NaOCl) (i.e., 500 and 1000 mg/L).  

(b) Comparing antifouling property of TFC with optimized TFN RO membrane 

fabricated via interlayer-assisted IP using a mixture of 1000 mg/L sodium 

alginate (NaAlg) with 2000 mg/L NaCl as feed solution.  

(c) Comparing antibacterial property of TFC with optimized TFN RO membrane 

fabricated via interlayer-assisted IP using two different types of bacteria (i.e., 

gram-negative Escherichia Coli (E. coli) and gram-positive Staphylococcus 

aureus (S. aureus)).  

1.5 Significance of Study 

Over the past decade, TFN membrane acted as one of the most promising 

strategies to tackle all the limitations of PA TFC membranes. Previous studies showed 

that the addition of nanofillers, particularly GO, into the PA layer mostly focused on 

overcoming the membrane permeability and selectivity trade-off, chlorine sensitivity 

and fouling propensity (Chae et al., 2015; He et al., 2015; Yin, Zhu and Deng, 2016; 

Ali et al., 2016; Inurria et al., 2019). Little attention was paid on the effects of GO 

deposition on PA integrity and thus the membrane performances. Referring to some of 

the previous studies, random arrangement of large GO within the PA layer could affect 

membrane integrity and jeopardize its selectivity (Lim et al., 2020; Rodríguez et al., 

2020). Significant loss and/or poor distribution of GO within the PA layer could reduce 

the positive features of GO in the synthesized TFN membrane (Lai et al., 2016b,  

2019).  

This study aims to pioneer the production of GO incorporated TFN membrane 

with improved arrangement/orientation and optimized loading that paves ways to the 

better PA integrity via interlayer-assisted IP technique. The use of interlayer for the 

fabrication of NF and FO membranes are common but not for RO membrane. 
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Introducing interlayer as demonstrated in this work is able to improve the deposition 

of nanofillers in the RO membrane, improving the membrane water permeability 

without significantly compromising its selectivity. The findings of this work also 

provides an in-depth insight to the effects of GO position on membrane 

physicochemical properties and their ultimate performances on membrane chlorine 

resistivity, antifouling and antibacterial property. This could prevent membrane 

researchers from stumble upon the same issue and speed up the development of 

membrane for saline water desalination in the future. The outcomes of the study clearly 

indicates the potential of interlayer-assisted IP in producing GO-containing TFN 

membrane with better PA integrity and properties for water desalination. 

1.6 Assumptions and Limitations of Study 

Due to the flexibility of IP parameters (i.e., monomer types and concentrations, 

immersion and reaction time, heat treatment conditions and types of organic solvent 

used), the parameters used for the fabrication of TFC and TFN membranes as reported 

by Wan Azelee et al. (2017) was adopted to narrow down the scope. The incomplete 

removal of preservatives coated on commercial substrate could possibly affect the 

formation of PA or the performance of resultant TFC membrane and to narrow down 

the scope again, the exact preservatives removal procedure that was reported by Chong 

et al. (2018) was followed. The amount of nanofillers deposited within the selective 

layer was not quantified as it was nearly impossible to isolate the thin PA from the 

nanofillers. Moreover, it was difficult to distinguish whether the elemental 

composition of carbon and oxygen in the selective layer and the chemical bonding of 

O=C=O and C-C analyzed from the high-resolution spectra was contributed by GO or 

PA since both of them contain these elements and functional groups. The exact 

chemical interaction between MPD and PEI was unable to be accurately determined 

since it is not a strong chemical bond like ionic or covalent bond.  
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