
 

POLYAMIDE THIN FILM NANOCOMPOSITE MEMBRANE INCORPORATED 

WITH CARBON NITRIDE FOR FORWARD OSMOSIS DESALINATION 

 

 

 

 

 

 

 

 

AIZAT ABDUL AZIZ 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Philosophy 

 

 

School of Chemical and Energy Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

FEBRUARY 2021 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my father, who taught me that the best kind of 

knowledge to have is that which is learned for its own sake. It is also dedicated to my 

mother, who taught me that even the largest task can be accomplished if it is done 

one step at a time. 

  



v 

ACKNOWLEDGEMENT 

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed towards my understanding and 

thoughts. In particular, I wish to express my sincere appreciation to my main 

supervisor, Assoc. Prof. Dr. Goh Pei Sean, for encouragement, guidance, sharing 

knowledge and friendship. I am also very thankful to my co-supervisor Prof. Datuk 

Dr. Ahmad Fauzi Ismail for the guidance, advices, and motivation. Without their 

continuous support and interest, I will not be able to graduate smoothly. 

I am also indebted to Universiti Teknologi Malaysia (UTM) under Research 

University Grant (RSG) and Ministry of Higher Education Malaysia under HiCOE 

grants (4J182 and 4J196) for funding my master’s study. I am also wanted to give a 

special thanks to Advance Membrane Technology Research Centre (AMTEC) for 

providing facilities and instrument to completing my research. Also, special thanks to 

all technical staff who always being helpful and supportive during this work. 

My fellow postgraduate friends in AMTEC and undergraduates should also be 

recognised for their support and encouragement. My sincere appreciation also extends 

to all my colleagues and others who have aided at various occasions. Not to forget, my 

fellow workmates that encourage and support myself to finish this thesis.  Lastly, to 

all my family members and for those that involved directly and indirectly in this work, 

may Allah bless all of you. 

  



vi 

ABSTRACT 

Forward osmosis (FO) is an emerging desalination process. It has been extensively studied 

to enhance the production of fresh water owing to its lower energy consumption and fouling 

tendency compared to the conventionally used reverse osmosis (RO). The design of a desired 

membrane structure has been recognized as one of the most crucial factors to counter some 

drawbacks of FO processes, such as internal concentration polarization effect and reverse passage 

of the draw solute. Hence, the main objective of this study is to develop a thin film nanocomposite 

(TFN) FO membrane for desalination application. The polyamide (PA) TFN FO membranes 

incorporated with protonated and unprotonated carbon nitride (CN) were prepared through 

interfacial polymerization of m-phenylenediamine and trimesoyl chloride. CN was synthesized 

through a thermal condensation method using melamine as the precursor. The protonated carbon 

nitride (pCN) was obtained by treating the as-synthesized CN with inorganic acid. pCN 

morphology observed less agglomeration nanosheet compared to CN and the size was shown to be 

approximately 28.95 nm based on the transmission electron microscopy images. Besides that, the 

acid treatment towards CN had changed the surface charge from -34.6 to 8.3 mV due to positive 

charged hydrogen absorption on the CN structure. Also, pCN peak on x-ray diffraction analysis 

pattern representing planar graphitic interlayer was shifted from 28° to 27.2° that makes the 

distance to become 0.325 from 0.318 nm. Meanwhile, on attenuated total reflectance Fourier 

transform infrared spectra, broader peak was observed on N-H stretching of CN instead of pCN. 

Performance evaluation of the TFN membrane was conducted in RO and FO modes. In RO mode, 

the water permeability and salt rejection were determined, while in FO system, the structural 

parameter and the reverse salt flux were determined in both active layers facing feed solution (AL-

FS) and active layer facing draw solution (AL-DS). With the addition of pCN within the substrate, 

the pore and leaf-like structure became larger, as observed in the field emission scanning electron 

microscopy cross-sectional images. The presence of pCN had also increased the average surface 

roughness of the substrate. The formation of PA through IP was performed with 0.05, 0.1, and 0.15 

w/v% loadings of pCN and CN dispersed in TMC monomer solution. Based on atomic force 

microscope images, the increasing loading of pCN and CN within the PA layer increased the 

surface roughness of the resultant TFN membrane as compared to that of TFC membrane. The 

decrease in water contact angle observed through goniometry analysis suggested the increase in 

the surface hydrophilicity of the TFN membrane. Other than that, the membrane surface charge 

was also changed. TFC membrane showed high negativity of -47.3 mV. However, the presence of 

pCN decreased the surface negativity to -5.76 mV and with the increasing loadings of CN, the 

negativity was further reduced to -10.2 mV compared to TFC membrane. The effect of the loading 

of nanomaterials in the range of 0.05 to 0.15 % on the performance of the membranes was also 

studied. Among the membranes prepared, 0.05 CN-pCN-TFN membranes which contained 0.05 

w/v% CN in PA layer and 0.5 w/v% pCN within the support membrane was identified as the best 

performing membrane. The water flux achieved was 6.20 and 9.23 Lm-2h-1 in AL-FS and AL-DS 

mode, respectively. The reverse salt flux was recorded as 0.08 and 0.03 gm-2h-1 for AL-FS mode 

and AL-DS mode, respectively. With this optimal membrane, fouling behaviour was studied and 

compared with TFC membrane by using sodium alginate and bovine serum albumin (BSA) as 

model foulants. 0.05 CN-pCN-TFN membrane outperformed the TFC membrane in both tests with 

water flux reduced to 96 % after 9 h operation compared to TFC membrane which had reduced to 

91.5 % for sodium alginate test and maintained at 100 % of water flux after 9 h operation for BSA 

compared to 97.5 % water flux for TFC membrane. This work evidenced the potential of using 

both CN and pCN in the design and fabrication of TFN to simultaneously achieve improved water 

flux, salt rejection and antifouling properties.  
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ABSTRAK 

Osmosis hadapan (FO) adalah proses penyahgaraman yang sedang berkembang. Pelbagai 

penyelidikan dilakukan bagi meningkatkan penghasilan bekalan air bersih dengan penggunaan 

tenaga dan tahap pencemaran yang rendah berbanding osmosis balikan (RO) yang lazim 

digunakan. Rekabentuk struktur membran yang terbaik telah dikenalpasti sebagai faktor yang 

penting bagi mengatasi kekurangan proses FO seperti kesan pengutuban kepekatan dalaman dan 

pengaliran garam berbalik. Dengan sebab itu, tujuan utama kajian ini adalah untuk membangunkan 

membran osmosis hadapan nanokomposit filem tipis (TFN) untuk aplikasi penyahgaraman. 

Membran poliamida (PA) TFN FO campuran bersama karbon nitrida (CN) dan protonasi karbon 

nitrida (pCN) difabrikasi dengan cara pempolimeran antara permukaan antara monomer m-

fenilenadiamina dan trimesoyl klorida. CN disintesis dengan menggunakan kaedah pemeluwapan 

haba terhadap melamin yang bertindak sebagai prapenanda. Proton CN (pCN) dihasilkan dengan 

merawat CN yang disintesis dengan campuran asid tak organik. Morfologi pCN menunjukkan 

kurang penggumpalan nanokepingan berbanding CN dan menunjukkan saiz hampir 28.95 nm 

berdasarkan imej mikroskop elektron penghantaran. Selain itu, rawatan asid terhadap CN telah 

mengubah cas permukaan daripada -34.6 kepada 8.3 mV disebabkan oleh penyerapan hidrogen 

bercas positif ke dalam struktur CN. Begitu juga, puncak pCN pada corak belauan sinar-X 

mewakili satah grafitik antara lapisan teranjak dari 28° ke 27.2° menjadikan jarak berubah kepada 

0.325 dari 0.318 nm. Sementara itu, pada spektrum jumlah pantulan terkecil inframerah jelmaan 

Fourier, puncak yang lebih lebar dicerap pada regangan N-H CN berbanding pCN. Prestasi 

membran TFN dinilai melalui mod RO dan FO. Di dalam proses RO, kebolehtelapan air dan 

penyingkiran garam ditentukan, manakala di dalam sistem FO, parameter struktur dan fluks garam 

balikan ditentukan dalam lapisan aktif menghadap larutan suapan (AL-FS) dan lapisan aktif 

menghadap larutan larut (AL-DS). Dengan penambahan pCN di dalam substratum, struktur liang 

dan struktur berbentuk daun menjadi lebih besar berdasarkan pemerhatian pada imej keratan rentas 

mikroskop elektron imbasan pancaran medan. Kehadiran pCN juga telah meningkatkan purata 

kekasaran permukaan substratum. Pembentukan PA melalui IP dilakukan melalui penambahan 

pCN dan CN sebanyak 0.05, 0.1, dan 0.15 % yang diuraikan ke dalam larutan TMC. Berdasarkan 

imej daya atom mikroskop, penambahan nanopartikel pCN dan CN di dalam lapisan PA telah 

menyebabkan permukaan membran TFN lebih kasar berbanding membran TFC. Pemerhatian 

terhadap penurunan sudut sentuhan air melalui analisis goniometri menunjukkan permukaan 

hidrofilik membran TFN semakin meningkat. Selain itu, cas permukaan membran turut berubah. 

Membran TFC menunjukkan permukaan negatif yang tinggi (-47.3 mV). Manakala, peningkatan 

kandungan pCN mengurangkan kenegatifan sehingga mencecah -5.76 mV dan peningkatan jisim 

CN telah menurunkan kenegatifan sehingga -10.2 mV berbanding membran TFC. Kesan daripada 

penambahan nanopartikel adalah dalam julat 0.05 sehingga 0.15 % terhadap prestasi membran juga 

dikaji. Antara membran yang difabrikasi, membran 0.05 CN-pCN-TFN yang mengandungi 0.05 

% CN di dalam lapisan PA dan 0.5 % pCN di dalam membran penyokong dikenalpasti sebagai 

membran yang terbaik. Ketelapan air mencapai 6.20 dan 9.23 Lm-2h-1 masing-masing dalam AL-

FS dan AL-DS. Manakala, pengaliran garam berbalik direkodkan sebanyak 0.08 dan 0.03 gm-2h-1 

masing-masing untuk AL-FS dan AL-DS. Dengan membran optimum ini, ketahanan membran ini 

dikaji dan dibandingkan dengan membran TFC dengan menggunakan natrium alginat dan albumin 

serum lembu (BSA) sebagai rujukan bahan cemar. Membran 0.05 CN-pCN-TFN mengatasi 

membran TFC dalam kedua-dua ujian dengan ketelapan air menurun kepada 96% selepas 9 jam 

operasi berbanding membran TFC yang menurun kepada 91.5 % di dalam ujian natrium alginat 

dan ketelapan air kekal sebanyak 100 % selepas proses selama 9 jam di dalam ujian dengan BSA 

berbanding 97.5 % ketelapan air bagi membran TFC. Kajian ini membuktikan potensi penggunaan 

kedua-dua CN dan pCN dalam rekabentuk dan fabrikasi membran TFN untuk sentiasa mencapai 

peningkatan di dalam ketelapan air, penyingkiran garam dan sifat anti cemar.  
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CHAPTER 1  

 

 

INTRODUCTION 

 Research Background 

About 71 % of the surface of the Earth is covered by water. Seawater holds 

about 97 % of total water in the Earth and only about 3.0 % of the freshwater sources 

is available as drinkable water (1). Unfortunately, 2.5 % of this drinkable water is 

frozen and locked up in Antarctica and Arctic as glaciers, hence hardly be reached by 

human. With this limited availability of drinkable water, it is a great challenge to fulfill 

the fresh water demand by global population that expected to rise up to 6900 billion 

m3 in 2030 (2). The scenario has been further exacerbated with the population growth. 

Based on the figure revealed by the United Nations, the total population has  reached 

about 7 billion in 2015 (3). By 2030, total population in the world are expected to 

increase until approximately 8 billion peoples. As water is the most essential 

component to survive, the demand of fresh water is expected to drastically increase 

with the increasing of the total global population (4–6).  

Due to the increasing demand for the fresh water supply, various resources are 

being considered to fulfill the needs. These include the construction of a new reservoir 

in developed areas (2). Additionally, approaches have also been attempted to obtain 

fresh water from seawater, low-quality water, brackish water, storm water and 

wastewater (7). Among the strategies, the most promising method to fulfill the demand 

of freshwater supply is probably by desalination (5). Desalination has been regarded 

as a sustainable climate-independent solution for water shortage and most promising 

methods to recover fresh water supply considering the amount of seawater exists. 

Seawater is available in most countries, highly reliable and open access especially for 

countries that located at the coastal regions.  
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 There are two types of desalination namely thermal-based and membrane-

based desalination. In thermal desalination, energy or heat is used to evaporate the 

seawater. Then, the evaporated steam is condensed to produce fresh water (6). While 

in membrane desalination, membrane acts as a medium to separate water from the 

solute solution. The most promising technologies being used in membrane-based 

desalination industry is reverse osmosis (RO). A large number of RO desalination 

plants have been installed worldwide to address the water shortage issues (8). In RO 

operation, external hydraulic pressure is required as a driving force to flow water pass 

through the semi permeable membrane and produce fresh water (9). RO is a matured 

and well accepted desalination technology worldwide. Compared to thermal 

desalination, RO only needs relatively low energy consumption to produce fresh water 

and the product water is of high quality. Despite the attractive features, RO still faces 

some shortages. The energy requirement is still higher than many conventional water 

reclamation technologies which makes RO less affordable for many countries (10). 

Furthermore, the high hydraulic pressure operation has also accelerated membrane 

fouling tendency (6). As a result, additional cost is incurred for membrane cleaning 

and membrane replacement.  

Forward osmosis (FO), an emerging desalination technology with low fouling 

tendency and low energy consumption has attracted attentions as promising alternative 

for RO desalination. FO system relies on osmotic pressure difference as a driving force 

for mass transport to purify seawater. The main advantage of using FO is that the 

osmotic pressure produced by the high concentration of solute solution is used as 

driving force for water to pass through the semi-permeable membrane. This favorable 

condition has also reduced the tendency of membrane fouling. The internal 

concentration polarization (ICP) issue that is related to the loss of draw solute into the 

feed solution and concentration polarization are the major problems of FO. Currently, 

FO membranes and system have been widely investigated and optimized to improve 

its capability to improve the water flux and fouling resistance as well as reducing the 

effect of ICP (6,11,12). 
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For FO membranes, the hydrophilicity of the membrane surface rather than 

reduce the thickness of the membrane is important to increase its performance (13). 

Recently, mixed matrix membrane and thin film nanocomposite (TFN) have been 

acknowledged as emerging nano-enabled membranes that hold good potential to solve 

the underlying issues of polymeric and inorganic membranes. Nanoparticles (NPs) 

such as silver, alumina, silica, zinc oxide, titanium dioxide (TNT) and graphene oxide 

(GO) are introduced as additive or nanofiller to enhance the performance of polymeric 

membranes (14,15). Up to present, many more NPs that being introduced and 

developed into the desalination research field. Among them is  carbon nitride (CN) 

that structural properties identically to that of GO.  With their chemical and thermal 

resistance, CN has been widely used as photocatalyst and semiconductor. The 

modification of FO membrane substrate layer and selective layer with nanoparticles is 

known to be one of the most straightforward approaches to increase the FO 

performance and counter the drawbacks of FO membranes. The usage of NPs in the 

polymer substrate and polyamide (PA) layer significantly improves the physico-

chemical properties such as mechanical strength, hydrophilicity, surface charges, 

porosity and anti-fouling properties. 

 Problem Statements 

Currently, membrane desalination has been acknowledged as one the most 

efficient and low-cost method to produce fresh water from seawater or brackish water. 

Up to date, RO is undeniably the most promising technology for desalination. 

However, one of the most significant drawbacks of RO desalination is the high energy 

consumption and severe membrane fouling, which eventually associated with the 

desalination production cost. FO comes with a great benefits and solution to overcome 

the problems in RO. As an osmotically pressure driven process, FO possesses some 

advantages such as low energy consumption and low fouling propensity compared to 

its RO counterpart. FO was favourable since it is driven by the osmotic pressure 

difference between two separate solution. 
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Despite its advantages, FO still suffers several limitations. ICP is one of the 

issues that responsible for the water flux decline in FO (16). ICP takes place at the 

substrate layer of the typically used thin film composite (TFC) FO membranes. Since 

ICP cannot be addressed by altering the hydrodynamic conditions, membrane 

modification has become a prominent approach to mitigate ICP effect. The increase of 

membrane substrate hydrophilicity has known to solve ICP problem that exists in TFC 

membrane (17,18). To achieve this purpose, TFN membrane that is embedded with 

nanomaterials serves as an attractive option. Hydrophilic nanomaterials that are 

embedded in the substrate layer or PA layer can significantly increase the water 

permeability of the FO membrane.    

Like ICP, fouling is an inevitable issue of FO membranes. Although the fouling 

tendency of FO is generally lower than that of RO, fouling still happens on the 

membrane surface after long term operation. As a result, the overall permeability 

performance of the membrane decreases. Currently, many researchers focusing on 

altering the PA layer to improve their FO membrane performances either in water 

permeability, salt separation or anti-fouling properties and neglected the importance 

of substrate modification that also playing roles in inquiring the optimum membrane 

performance (19,20). In fact, both layers can be simultaneously approach and modified 

since the water transport not solely depends on the PA layer (21). Nanomaterials are 

incorporated onto or into the substrate or PA layer to reduce the adhesion of foulant 

thus ensure the performance of the membrane to be optimum as possible. Also, most 

of the studies only focused on the effect of hydrophilicity of NPs on the membrane 

performance (22,23). Effect of membrane surface charge has been scarcely reported 

Surface charge of the membrane also has an important role in determining the 

membrane performance since its characteristics is important in salt rejection. In 

addition, charged surface capable to reduce the fouling factor against the same charge 

molecule or solution (24). 

In this research, PA TFN consists of polysulfone (PSf) substrate and PA 

selective layer was fabricated.  Carbon nitride (CN) and protonated CN (pCN) was 

embedded in both PSf substrate and PA layer to simultaneously address ICP and 

fouling issues. The surface protonation of CN was aimed to alter the surface charge of 
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the NPs, in order to facilitate the formation PA layer while maintaining the membrane 

surface hydrophilicity. Although many types of nanomaterials have been attempted to 

enhance the performance of TFN FO membranes, no studies have been reported on the 

effects of positively and negatively charged CN on the formation of substrate and PA 

layer of the TFN. Thus, it was expected that this study would provide insights into the 

physio-chemical properties and separation performance of the CN and pCN 

incorporated TFN for FO desalination.  

 Objective of the Study 

The aim of this study is to fabricate TFN FO membrane incorporated with CN 

and pCN for desalination application. Based on the aim of this study, the specific 

objectives were listed below: 

i) To fabricate and characterize PA TFN membranes that are incorporated with 

pCN in the substrate and CN or pCN in the PA layer. 

ii) To evaluate the desalination performance of the TFN membranes with different 

loading of CN and pCN in terms of the pure water flux, reverse salt flux, salt 

rejection and antifouling properties in RO and FO processes. 

 Scope of the Study 

In order to achieve the objectives, the following scopes have been identified. 

Objective i: 

1. Preparation of CN through condensation method using melamine as 

precursor. 

2. Protonation of CN to form pCN through acid treatment using 5.0 M 

hydrochloric acid. 
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3. Characterization of CN and pCN in terms of morphology, crystallinity, 

functional group, and surface charge using transmission electron 

microscopy (TEM), X-ray diffractometry (XRD), attenuated total 

reflectance fourier transmission infrared spectroscopy (ATR-FTIR), and 

zeta potential analyzer, respectively. 

4. Preparation of PSf substrate using phase inversion method. Substrate 

formulation was 17.5 wt% of PSf, 0.5 wt% of PVP K29-32 and 82 % of 

NMP. 0.5 wt% of pCN was added to produce PSf/pCN substrate.  

5. Formation of PA layer on the neat and PSf/pCN substrate via interfacial 

polymerization (IP) of 2.0 w/v% amine monomer (MPD) in aqueous 

solution and 0.1 w/v% of acyl chloride monomer (TMC) in n-hexane 

solution. 

6. Incorporation of CN and pCN with loadings of 0.05 w/v%, 0.1 w/v% and 

0.15 w/v% respectively in the TMC phase prior to interfacial 

polymerization with MPD to form PA layer. 

7. Characterization of the fabricated TFN membranes using field emission 

scanning electronic microscope (FESEM), attenuated total reflectance 

fourier transmission infrared spectroscopy (ATR-FTIR), atomic force 

microscopy (AFM), zeta potential analyzer and contact angle goniometer.  

Objective ii: 

8. Evaluation of TFN membranes performance in RO system and 

determination of S parameter for water permeability and NaCl rejection.  

9. Performance evaluation of synthesized TFN membranes in terms of water 

flux and reverse draw solute using RO dead end permeation system (feed 

solution used distilled water and 2000 ppm of NaCl solution, pressure: 15 

bar) and FO system (feed solution: distilled water, draw solution: 2 M 

NaCl solution, flow rates: 257.1 mLmin-1).  

10. Antifouling performance evaluation based on the optimum membrane 

using 500 ppm of sodium alginate and bovine serum albumin (BSA). The 

testing was performed for 9 h in active layer facing feed solution (AL-FS) 

mode. 
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 Significance of the Study 

This study was conducted to improve the membrane properties embedded with 

nanofillers thus enhance the performances of the membrane proved via salt rejection 

and water flux. Relation between water flux and salt rejection have attracted researcher 

to improve the membrane performances by adding the nanofillers in their TFN 

membrane. It was expected the water flux of embedded CN on TFN membrane 

improved without sacrificing the salt rejection due to the characteristic of CN that 

increased the hydrophilicity of the membrane. Other than that, acid treated CN reduced 

agglomeration of NPs in the PA layer, thus improving the water flux and salt rejection. 

It is also solved the reverse solute flux problem in FO. Besides that, the incorporation 

of CN and pCN within the TFN membrane has been proven to improve the membrane 

anti-fouling properties. This work is the first attempt to incorporate oppositely charged 

NPs in TFN membrane to improve the interaction between PA layer and substrate. 

Thus, the effects of opposite charges on membrane surface are investigated in depth to 

contribute to the advancement of knowledge in this aspect.
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