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ABSTRACT 

A self-healing concrete has emerged as a potential solution for tackling 
cracking issues in concrete. Self-healing works through the infiltration of healing 
agents into the cracks, followed by the curing process that prevents further crack 
penetration in the concrete matrix. As far as the literature is concerned, the effect of 
the curing reaction on its rheological properties has not been addressed adequately. In 
addition, a fluid flow model considering the capillary effect and curing reaction has 
not been established for flow behaviours within discrete cracks in the encapsulation-
based self-healing concrete. Therefore, in this study, a coupled fluid flow and curing 
reaction model was proposed to simulate the concrete encapsulation system’s 
mechanics better. The healing agent flow was modelled using the Volume-of-Fluid 
(VOF) method. This study proposed using the viscosity function to describe the curing 
effect using the Castro-Macosko model. The dynamic mechanical analysis experiment 
cured and changed the cyanoacrylate's rheological properties. The fluid flow and 
curing reaction models were coupled in ANSYS Fluent in the form of self-developed 
user-defined functions. Parametric studies were carried out to determine the influence 
of healing agent rheological properties (surface tension, contact angle and viscosity) 
and crack geometries (planar, inclined and tapered) on the healing efficiency. The 
coupled model was validated against available experiment results and the model's 
capability to predict the healing agent's flow accurately and the curing process was 
shown. For flows in small cracks driven by capillary action, the simulated VOF 
outcomes with constant contact angles were in poor agreement with the experiment. 
The simulation results showed a better prediction of the capillary flow with the use of 
dynamic contact angles (DCA). For example, when validated against the modified 
Lucas-Washburn equation (LWE), the VOF predictions considering the velocity-
dependent DCA have mean absolute percentage errors of between 3.1 – 5.3%, much 
lower than that of classical LWE with errors between 17.0 – 42.9%. The results 
indicated that a DCA influences the initial speed of the capillary flow and plays a vital 
role in the healing efficiency of fast-curing healing agents. Due to the curing reaction, 
the increasing viscosity arrests the capillary flow of the healing agent in a small 
discrete crack. DCA and viscosity control the infiltration speed of capillary flow via 
frictional dissipation and flow resistance, respectively. However, they do not affect the 
final equilibrium height in capillary rise. A higher frictional coefficient in the DCA 
model decreases the infiltration speed at the initial state of the capillary rise. In said 
capillary flow, the infiltration length of the healing agent depends on the capillary 
pressure, which is strongly influenced by the surface tension, equilibrium contact angle 
and crack widths. Based on the Young-Laplace equation, the capillary pressure is 
directly proportional to the surface tension force and inversely proportional to the 
crack width. A lower contact angle indicates good wettability and provides faster 
liquid spreading on a surface. Overall, this study has provided a new coupled self-
healing model for predicting the transport and curing processes in encapsulation-based 
self-healing systems in concrete. The model can provide a better understanding of flow 
mechanisms and serves as a sound basis for future researchers to design a more 
efficient concrete self-healing system. 
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ABSTRAK 

Konkrit penyembuhan diri muncul sebagai penyelesaian yang berpotensi untuk 
menangani masalah retakan dalam konkrit. Penyembuhan diri bertindak melalui 
penyusupan agen penyembuhan ke dalam retakan, diikuti dengan proses pengawetan 
yang menghalang penembusan retakan selanjutnya dalam matriks konkrit. Kajian 
literatur menunjukkan kesan tindak balas pengawetan agen penyembuhan terhadap 
sifat rheologi masih belum difahami dengan baik. Di samping itu, model aliran 
bendalir yang mengambil kira kesan daya kapilari dan tindak balas pengawetan belum 
ditetapkan untuk aliran dalam retakan diskret dalam konkrit penyembuhan diri 
berasaskan pengkapsulan. Oleh itu, mekanisme yang terlibat dalam sistem 
pengkapsulan konkrit dapat disimulasikan dengan baik menggunakan model 
gandingan antara aliran bendalir dan tindak balas pengawetan. Aliran agen 
penyembuhan dimodelkan dengan menggunakan kaedah Volume-of-Fluid (VOF). 
Kajian ini mencadangkan penggunaan fungsi kelikatan untuk menerangkan kesan 
pengawetan dengan menggunakan model Castro-Macosko. Eksperimen menggunakan 
analisis mekanikal dinamik menunjukkan bukti korelasi antara pengawetan dan 
perubahan dalam sifat rheologi agen penyembuhan. Model aliran bendalir dan model 
tindak balas pengawetan telah digandingkan dalam ANSYS Fluent dengan 
menggunakan fungsi takrifan pengguna. Kajian parametrik telah dijalankan untuk 
mengenalpasti kesan pengaruh sifat rheologi agen penyembuhan (tegangan 
permukaan, sudut sentuhan dan kelikatan) dan geometri retakan (planar, cenderung 
dan tirus) terhadap kecekapan penyembuhan. Keputusan eksperimen yang sedia 
mengesahkan keupayaan model gandingan tersebut dalam meramalkan aliran agen 
penyembuhan dan proses pengawetannya. Untuk aliran kapilari dalam retakan kecil, 
keputusan simulasi VOF dengan sudut sentuhan malar tidak selari dengan keputusan 
eksperimen. Keputusan simulasi menunjukkan ramalan aliran kapilari yang lebih baik 
dengan penggunaan sudut sentuhan dinamik. Keputusan tersebut menunjukkan 
bahawa sudut sentuhan dinamik mempengaruhi kelajuan aliran kapilari di peringkat 
permulaan dan memainkan peranan penting dalam kecekapan dan tindak balas 
penyembuhan. Ini disebabkan oleh tindak balas pengawetan dan peningkatan kelikatan 
yang merencatkan aliran kapilari agen penyembuhan dalam retakan diskret yang kecil. 
Sudut sentuhan dinamik dan kelikatan mengawal kelajuan infiltrasi aliran kapilari 
melalui pelesapan geseran dan rintangan aliran. Namun, kedua-dua parameter tersebut 
tidak memberi kesan terhadap ketinggian keseimbangan dalam peningkatan kapilari. 
Panjang infiltrasi agen penyembuh bergantung kepada tekanan kapilari yang 
merangkumi tegangan permukaan dan sudut sentuhan keseimbangan. Dalam aliran 
kapilari, panjang infiltrasi agen penyembuh sangat dipengaruhi oleh ketegangan 
permukaan, sudut sentuhan keseimbangan dan lebar retakan. Kesimpulannya, kajian 
ini telah menyediakan model penyembuhan diri gandingan yang baru untuk 
meramalkan aliran dan proses pengawetan dalam konteks sistem penyembuhan diri 
berasaskan pengkapsulan. Model tersebut boleh digunakan untuk memberikan 
pemahaman yang lebih baik tentang mekanisme aliran dan menyediakan asas kukuh 
kepada penyelidik di masa hadapan dalam usaha untuk mereka bentuk sistem 
penyembuhan diri konkrit yang lebih cekap.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of the study 

Self-healing concrete is emerging as an innovative construction material to 

tackle the environmental issues caused by carbon dioxide emissions from concrete 

manufacturing industries. By mimicking the natural healing ability in the human body, 

self-healing concrete is designed to heal itself without external human intervention. 

Self-healing concrete can also play an essential role in addressing concrete structures' 

durability and serviceability issues, as the inevitable formation of cracks in the 

concrete matrix allows the penetration of harmful substances and thus reduces the 

durability of the concrete over time. 

Over the past decade, self-healing concrete has been garnering interest from 

many researchers. With the support from the government and policymakers, the 

development of self-healing concrete is getting traction in recent years. For instance, 

in 2017, an ongoing five-year research project, Resilient Materials 4 Life (RM4L), was 

funded and firmly supported by Engineering and Physical Science Research Council 

(EPSRC) (Al-Tabbaa et al., 2018; Davies et al., 2018; Paine et al., 2019). To show the 

extent of support from various parties, the project is in fact joined by Cardiff, 

Cambridge, Bath and Bradford universities and a whopping amount of 22 industrial 

companies as well. The project aims to develop a sustainable construction material 

with self-healing, self-sensing and self-diagnosing abilities, as well as being immune 

against physical and chemical damages. 

Figure 1.1 shows the taxonomy in self-healing concrete. The self-healing 

process in concrete is classified into two major groups: autogenous and autonomous 

healing (De Belie et al., 2018; Sidiq et al., 2019; Van Tittelboom & De Belie, 2013; 

Xue et al., 2019). Autogenous healing occurs via the hydration process of un-hydrated 
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cement particles in the concrete matrix without any external intervention, while 

autonomous healing involves the addition of external engineered materials such as 

polymers, microorganisms, chemical compounds and admixtures for healing purposes. 

Autogenous healing occurs naturally in concrete, but is limited to the healing of crack 

widths of less than 300 μm (De Belie et al., 2018). Autonomous healing provides better 

healing for crack widths of more than 300 μm and can heal cracks up to 1 mm. 

A significant number of studies on self-healing concrete have used 

encapsulation techniques, in which the healing agent are released and delivered to the 

damaged areas when cracking occurs (Gupta & Kua, 2016; Xue et al., 2019). Different 

techniques have been introduced to encapsulate and deliver the healing agent in the 

self-healing concrete, such as encapsulation and vascular networks methods. Different 

healing agents have been studied as well, such as polymers, adhesives, mineral 

admixtures and chemical compounds. Various experimental characterisation 

techniques have been introduced to evaluate the performance of self-healing systems 

in concrete too (Ferrara et al., 2018; Muhammad et al., 2016; Sidiq et al., 2019). At 

the same time, significant research works have been done in the numerical modelling 

of self-healing systems in concrete as well (T. Jefferson et al., 2018; Mauludin & 

Oucif, 2019). 

As presented in Figure 1.1, self-healing techniques such as encapsulation and 

vascular networks methods are rely on healing agents to achieve mechanical and 

durability recovery after healing action. While abundant progress has been done on 

many aspects in encapsulation-based self-healing concrete, the transportation of 

Self-healing 
concrete 

Autogenous 

Autonomous 

Encapsulation 

Vascular networks 

Bacteria 

Shape memory polymer 

Healing agent 
application 

Hydration of un-hydrated cement particles 

Figure 1.1 Taxonomy in self-healing concrete. 
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healing agent in the concrete itself has rarely been researched (Z. Dong et al., 2015). 

In addition, the researchers have acknowledged the complexity of self-healing 

processes in concrete. They have highlighted that the self-healing process in concrete 

is a set of multi-physics problems as it involves three interacting physical processes: 

fracture mechanism, fluid flow, and chemical reactions as presented in Figure 1.2. For 

the encapsulation techniques in self-healing concrete, the capsules containing a liquid 

healing agent are mixed in the concrete. If the crack forms, it will rupture the capsules,  

the glue-like healing agent that will glue together the cracks after the healing agent 

cures.  

 

Figure 1.2 The schematic concept of encapsulation-based autonomic healing for 
cementitious materials (Xue et al., 2019). 

Fast-curing healing agent, such as, cyanoacrylate cures rapidly when contacts 

with the moisture on the concrete surface. During the rapid curing process, the 

viscosity of the healing agent increases and might retards the healing agent flow in the 

discrete crack. In order to achieve satisfying healing efficiency, it is required to ensure 

that a sufficient amount of healing agent is delivered to the discrete crack before the 

healing agent is fully cured. Therefore, the in-depth investigation on the combination 

effects of the fluid flow and the curing processes is getting interested and requires 

further discussion within the field of encapsulation-based self-healing system in 

concrete. 
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1.2 Problem Statement 

In the autonomic self-healing system, the transportation of the healing agent 

plays a primary role in determining the concrete healing efficiency. Self-healing 

techniques like encapsulation and vascular networks store, deliver and release the 

embedded healing agent to the damaged site when cracking occurs. In order to 

understand the self-healing mechanisms, it is required to study the transport processes 

of healing agents in concrete. Several numerical works that address transport processes 

in self-healing concrete have focused on the transportation of moisture and ions 

associated with carbonation and autogenous healing (Aliko-Benítez et al., 2015; 

Freeman, 2017; Huang et al., 2010; Huang & Ye, 2016; Ranaivomanana & 

Benkemoun, 2017). Although they are related to this study, the present work places 

more focus on the transportation of healing agents in autonomous self-healing concrete 

instead. 

In the actual healing agent flow in discrete cracks within the concrete matrix, 

the visualisation of the healing agent flow phenomenon is inherently challenging and 

is constrained by the limitation of visualisation equipment, small crack size and 

concrete opaqueness. In terms of flow modelling, the classical Lucas-Washburn 

equation (LWE) has a limitation in predicting the capillary flow in non-uniform 

channels and complex porous media since the LWE is developed with the assumption 

on the fluid flow as one-dimensional laminar flow in a uniform channel with a constant 

contact angle. The LWE equation is required to be modified to describe the capillary 

flow in different porous systems. Therefore, a numerical simulation might be an 

alternative to better characterise the capillary flow process and provide a better 

depiction of the multiscale physical process of capillary flow. Numerical simulation 

can also aid with the visualisation and examination of the capillary flow from a 

microscopic perspective. However, to date, a limited number of numerical models 

have taken into account the coupled effects of flow and curing processes in self-healing 

systems. 

Apart from the works by previous researchers (Freeman & Jefferson, 2020; 

Gardner et al., 2012, 2014, 2017; Gilabert et al., 2017; Selvarajoo et al., 2020), there 



 

5 

is no other work on the investigation of healing agent flow in autonomic self-healing 

concrete. It has been proven that the viscosity of the healing agent increases during the 

curing reaction process and undergoes a liquid/solid transition (Freeman & Jefferson, 

2020; Gardner et al., 2017). To date, the influence of the curing process on its 

rheological properties has not been adequately addressed during the healing agent 

infiltration. In addition, a numerical simulation model considering the combination 

effects between capillary action and curing processes in encapsulation-based self-

healing concrete has not been established yet. To consider the curing effect, the 

inclusion of Castro-Macosko viscosity model in the capillary flow model needs further 

investigation and validity checking. Thus, in the present study, experimental and 

numerical investigations are performed to study the influence of the curing reaction on 

the rheological properties of healing agents during the capillary flow event in the 

encapsulation-based self-healing system in concrete. 

1.3 Objectives 

The present study looks into the transportation of healing agents during the 

curing process in encapsulation-based self-healing concrete. Understanding the 

transport process of the healing agent is essential to designing a better self-healing 

system in concrete. Some of the specific objectives in this study include: 

• To determine the correlation between curing effect and changes in rheological 

properties of the healing agent by using dynamic mechanical analysis. 

• To simulate the capillary flow of the healing agent in discrete cracks using the 

Volume-of-Fluid method together with the implementation of the dynamic 

contact angle model. 

• To describe the viscosity change of the healing agent using the Castro-

Macosko viscosity model and couple the model with the aforementioned fluid 

flow model to better simulate the curing effect of healing agents under varying 

capillary flows. 
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• To examine the various parametric effects on the capillary flow and 

corresponding self-healing efficiency by using the coupled model. 

1.4 Scope of the Study 

In the present study, both experimental and numerical studies are carried out 

to provide a better insight into the physics of the problems and to allow for the 

enhancement of the self-healing performance by comprehensively simulating and 

designing a better self-healing system. This work is not trying to replicate the 

embedded capsules in any particular vascular or encapsulated self-healing system in 

concrete. The key target for this study is to investigate the effects of curing reaction 

on the capillary flow during the infiltration of the healing agent in discrete cracks in 

concrete. This work focuses on encapsulation-based self-healing systems that use 

cyanoacrylate as a healing agent but could readily be extended to a wide range of other 

healing agents as well. 

In terms of experimental measurement and analysis, the measurement of 

rheological properties of the cyanoacrylate-based healing agent are performed by using 

dynamic mechanical analysis in a rotational rheometer. The rheological measurement 

results are utilized specifically to show the correlation between the viscosity properties 

and the curing reaction of the cyanoacrylate adhesive. In terms of numerical modelling, 

a viscosity function is used to describe the curing effect on the rheological properties. 

The Castro-Macosko model is selected and specified as the viscosity function for this 

study. Material constitutive models, such as dynamic contact angle model, Castro-

Macosko viscosity model, and degree of cure functions, is written in the form of user-

defined functions and coupled via ANSYS Fluent with ANSYS 2021 R1 Student 

Version. ANSYS Fluent, a Finite Volume-based computational fluid dynamic (CFD) 

simulation software is selected as the software of choice for this study as it can be used 

to solve the fluid flow modelling by simulating the transport processes of the healing 

agent in a discrete crack. A Volume-of-Fluid (VOF) technique is applied to track the 

moving meniscus in the crack.  
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In the simulation, healing agent flow is assumed to be laminar and 

incompressible. When cracking occurs, the embedded capsule ruptures and releases 

the healing agent into discrete concrete cracks. Therefore, the healing agent flow is 

assumed to be driven by capillary action (Z. Dong et al., 2015). Surface tension and 

wall adhesion models are used to determine the capillary pressure in the capillary flow. 

As the scope of this study encompasses both the healing agent flow and the viscosity 

change (corresponding to the curing degree of the healing agent in the crack) during 

the curing reaction (polymerisation), the capillary flow model is coupled with the 

Castro-Macosko model to comprehensively predict the healing agent flow and its 

reaction in discrete concrete cracks. The coupled model is validated with available 

capillary rise data, and hopefully the simulation results will provide a better 

visualisation for the transport process of the healing agent in discrete cracks. To 

supplement the numerical modelling and experimental validation, parametric studies 

are conducted to investigate the influence of the healing agent's rheological properties 

and crack geometry on the capillary flow and corresponding self-healing efficiency in 

discrete concrete cracks. 

1.5 Significance of the Study 

This study contributes to the knowledge development in self-healing concrete 

with practical and theoretical significances as follows: 

a) Theoretical significance 

a. This study introduces a VOF multiphase model combined with surface 

tension and dynamic contact angle models to simulate the capillary rise 

of liquids in discrete cracks. The velocity-dependent dynamic contact 

angle model can be determined from capillary rise measurement data.  

b. This study develops a novel, coupled model consisting of the VOF, 

surface tension, dynamic contact angle, and viscosity models. The 

coupled model can comprehensively simulate a reacting healing agent 

flow in the discrete cracks within self-healing concrete and allows for 
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a better understanding of the intricate mechanism of reaction-based 

healing in encapsulation-based self-healing concrete. This, in turn, can 

serve as a sound basis for future researches in the similar vein. 

c. This study proposes a new experimental measurement method in order 

to determine the material and rheological properties of cyanoacrylate-

based healing agent used in encapsulation-based self-healing concrete. 

With the novel implementation of said measurement method in this 

field, it allows for a more comprehensive measurement and analysis of 

the material and rheological properties of self-healing concrete 

samples, thus improving related research analysis efforts as a whole. 

b) Practical significance 

a. The numerical simulation technique provides a clear visualisation and 

a reliable prediction of the transport processes of the healing agent in 

discrete cracks. The result provides a better understanding of the 

healing agent's flow behaviours and shows how the curing reaction 

affects the capillary flow with increasing viscosity. Thus, the result can 

be used for selecting a suitable healing agent with an optimised healing 

rate and volume. The numerical model is ready to be extended to 

simulate the healing agent flow in a more complex crack geometry. In 

addition, the model can be used for a wide range of healing agents, thus 

expanding the model’s inherent practicality. 

b. The parametric studies provide a better understanding of healing agent 

flow mechanisms and help related industries to design a better self-

healing system. The results give a deeper insight into the impacts of the 

parameters (surface tension, contact angle, viscosity, crack 

configurations) on the capillary flow of the healing agent in discrete 

cracks and can help other researchers in their investigations by 

modifying the healing agent's material properties to improve the 

healing efficiency of the self-healing system, thus benefiting the 

concrete manufacturing industry and tackling the ensuing sustainability 

issues in the long run. 
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1.6 Outlines 

The thesis presents the development of a numerical simulation model for the 

healing agent's capillary flow in the concrete's discrete crack. This thesis includes six 

chapters which are organised as follows: 

Chapter 2 presents a literature review on self-healing concrete and specifies the 

knowledge gaps that have to be bridged by this research. The review starts with the 

background and the types of healing mechanisms in self-healing concrete, such as 

autogenous and autonomic healings. The review also discusses different techniques 

used in the autonomic healing system and the evaluation methods for assessing self-

healing efficiency. Next, the review discusses the experimental and numerical 

investigation of healing agent flow in capillary cracks and its curing process.  

Chapter 3 presents the detailed methodology of the study. The numerical model 

and its governing equations for simulating the healing agent's capillary flow in the 

discrete crack are discussed. The testing methods in order to determine the rheological 

properties of a cyanoacrylate-based healing agent is presented. 

Chapter 4 presents the validation of the VOF capillary flow model and the 

simulation of the capillary flow with the help of Computational Fluid Dynamic (CFD) 

packages in ANSYS Fluent simulation software. The inclusion of the dynamic contact 

angle model in improving the capillary flow prediction is discussed. Later, the 

validation of the VOF capillary flow model coupling the Castro-Macosko viscosity 

model is presented and discussed. 

Chapter 5 presents the simulation of the healing agent flow in discrete cracks, 

considering the curing effect after validating the coupled model (coupling of fluid flow 

model and Castro-Macosko viscosity model) as presented in Chapter 4. The capillary 

flow of the healing agent in the discrete crack and its flow characteristics are 

investigated with various flow parameters, which in turn affect the infiltration rate and 

the final location of the healing agent in the discrete crack. 
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Chapter 6 summarises and concludes this research with some 

recommendations for future works. 
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