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ABSTRACT 

In the past few years, community structure detection has garnered much 

attention due to its significant role in analyzing complex network structures and 

functions. Detecting natural divisions in complex networks is proved to be an 

extremely Non-deterministic Polynomial-time hard (NP-hard) problem, which has 

been solved using evolutionary computation methods. Despite many efforts to design 

an effective community structure formula, the definition is still general, depending 

solely on the nodes' intra- and inter-connections. It lacks complete reflection of 

inherent topological properties, such as graphlet measure in terms of graphlet degree 

signatures and signature similarities, that can accurately detect complex communities' 

structure such as topological and biological community. The research proposes a new 

method termed MOEA_CGN (MultiObjective Evolutionary Algorithm based on 

Cooperation between Graphlet-based measure and Neighborhood relations) to 

improve the detection quality of complex topological and biological community 

structure in terms of accuracy and velocity. Thus, the contribution of this study is 

summarized in threefold. First, a new multiobjective optimization function is proposed 

to tackle the issue of a community structure definition. Second, a heuristic mutation 

operator is designed to enhance MOEA_CGN performance to accurately detect 

complex topological community structure by tackling the resolution limit problem. 

Third, the heuristic mutation operator is improved to make the MOEA_CGN method 

identify and detect complex biological community structure accurately by tackling the 

heterogeneity issue of real-world networks. Systematic experiments on different real-

world networks from various domains and synthetic networks of different 

complexities have demonstrated the proposed method's effectiveness and robustness 

to define the community detection problem. Specifically, the proposed method has 

achieved detection reliability with an average improvement of 6.7% in detecting 

complex topological communities and 9.17% in detecting complex biological 

communities compared with the state-of-the-art benchmark studies. Moreover, the 

proposed MOEA_CGN method has demonstrated its ability to detect the optimal 

community structures in most complex networks faster than the competent 

multiobjective models based on community detection. 
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ABSTRAK 

Dalam beberapa tahun kebelakangan ini, pengesanan struktur komuniti telah 

mendapat banyak perhatian kerana peranannya yang signifikan dalam menganalisis 

struktur dan fungsi rangkaian yang kompleks seperti komuniti topologi dan biologi. 

Mengesan pembahagian semula jadi dalam rangkaian kompleks terbukti menjadi 

masalah tegar polinomial-masa tidak deterministik (NP-tegar), yang telah diselesaikan 

dengan menggunakan kaedah pengkomputeran evolusi. Walaupun terdapat banyak 

usaha untuk merancang formula struktur komuniti yang berkesan, definisi ini masih 

umum, bergantung sepenuhnya pada hubungan intra dan inter nod. Ia kekurangan 

gambaran lengkap mengenai sifat topologi yang wujud, seperti ukuran grafik, dalam 

erti kata tandatangan darjah graflet dan persamaan tandatangan, yang dapat mengesan 

struktur komuniti yang kompleks dengan tepat. Penyelidikan ini mencadangkan 

kaedah baru yang dikenali sebagai MOEA_CGN (Algoritma Evolusi Multi Objektif 

berdasarkan Kerjasama antara Graphlet dan hubungan Kejiranan) untuk meningkatkan 

kualiti pengesanan struktur komuniti topologi dan biologi yang kompleks dari segi 

ketepatan dan halaju. Oleh itu, sumbangan kajian ini diringkaskan dalam tiga elemen 

berikut. Pertama, fungsi pengoptimuman multiobjektif baru dicadangkan untuk 

mengatasi masalah definisi struktur komuniti. Kedua, pengendalian mutasi heuristik 

dirancang untuk meningkatkan prestasi MOEA_CGN dalam mengesan struktur 

komuniti topologi yang kompleks dengan menangani masalah had penyelesaian. 

Ketiga, pengendali mutasi heuristik diperbaiki untuk menjadikan kaedah 

MOEA_CGN dapat mengenalpasti dan mengesan struktur komuniti biologi yang 

kompleks dengan tepat dalam menangani masalah heterogenitas rangkaian dunia 

nyata. Eksperimen sistematik pada rangkaian dunia nyata yang berbeza dari pelbagai 

domain dan rangkaian sintetik dengan kerumitan yang berbeza telah menunjukkan 

keberkesanan dan keteguhan kaedah yang dicadangkan untuk menentukan masalah 

pengesanan komuniti. Secara khusus, kaedah yang dicadangkan telah mencapai 

kebolehpercayaan pengesanan dengan peningkatan purata 6.7% dalam mengesan 

komuniti topologi kompleks dan 9.17% dalam mengesan komuniti biologi yang 

kompleks berbanding dengan kajian penanda aras terkini. Tambahan pula, kaedah 

MOEA_CGN yang dicadangkan telah menunjukkan kemampuannya untuk mengesan 

struktur komuniti yang optimum di rangkaian yang paling kompleks dengan lebih 

cepat daripada model multiobjektif yang kompeten berdasarkan pengesanan komuniti. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Nowadays, many real complex systems from various fields of sociology, 

biology, engineering, and communication can be modelled and studied as complex 

networks of connected communities. In fact, complex networks are an effective 

formalism in representing the relationships among objects composing many real world 

systems. Protein interaction networks, neural networks, collaboration networks, 

world-wide-web networks, Internet network, communication networks, paper citation 

networks, transport networks, biological and metabolic networks are some examples 

of complex real-life networks (Pizzuti, 2018; Cheng et al., 2018; Pourkazemi and 

Keyvanpour, 2017). In general, complex networks can be represented as an undirected 

graph included all the given system's entities, wherein the vertices of the network 

correspond to the objects of the system, and the edge (or link) between a pair of objects 

corresponds to the activities between them. For instance, in biological networks, 

Protein-Protein Interaction (PPI) network is shaped by considering the collaboration 

between proteins, wherein the proteins represented the network cardinality (nodes), 

and the functional or physical interactions between proteins represented the network 

volume (edges) (Elmsallati et al., 2016; Guzzi and Milenković, 2017). In social 

complex networks, on the other hand, the objects or entities of the network can be 

people, and the edges of the network match the various social relations between people 

like friendship, familiarities, and everyday interests, etc.  

Due to increasing the appearance of such complex systems and many other real 

networked systems, this has fostered the desire to solve and analyze them into 

organized-topological structures; under the name of modules, clusters, or communities 

using different mechanisms, in order to provide some organizational principles and 

fundamentals for real-world networks (Žalik and Žalik, 2018a; Pizzuti, 2018). 
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Detecting hidden communities in such complex networks has considered a crucial and 

proceeding challenge since lots of networked problems such as clustering, aligning 

and searching for relationships are corresponding to the subgraph isomorphism 

problem known in the literature as NP-hard (Non-deterministic Polynomial-time hard) 

that lately witnessed a considerable interest (Said et al., 2018; Rao et al., 2018; 

Elmsallati et al., 2016; Cook, 1971). Research on complex networks analysis and 

community detection is of a prime interest and has a multidisciplinary nature coming 

from the graph theory, physics, statistics, and data mining. The problem has been 

widely addressed as a data analysis problem where Girvan and Newman formally 

stated it as a community structure detection problem or shortly, Community Detection 

(CD) problem (Girvan and Newman 2002; Newman and Girvan, 2004). Community 

detection, or community structure mining in complex networks, means partitioning a 

given complex network represented as an undirected sparse graph, into communities 

or groups of vertices (or nodes) having dense intra connections among them and sparse 

interconnections with the nodes of other clusters.  

Thus, a community detection algorithm should be able to divide a complex 

network into communities with relatively sparse inter-connections and relatively dense 

intra-connections. This problem may not be accurately solved by using traditional 

methods due to its complexity and intractable computations where it has been 

classified as a highly combinatorial optimization NP-hard problem (Gach and Hao, 

2012), so it solved using evolutionary computation methods, and thereby it is modelled 

in the literature as an optimization problem. In the last decade, multiobjective 

evolutionary algorithms have given a significant contribution in detecting complex 

community structure and outperforming the single objective evolutionary algorithms. 

A main characteristic of the multiobjective approach is that the set of Pareto optimal 

solutions reveals the hierarchical organization of the network. This peculiarity gives a 

great chance to analyze the network at various hierarchical levels and study 

communities with different modular levels. Hence, the decision-makers can make their 

decisions easily (Pizzuti, 2018; Pourkazemi and Keyvanpour, 2017).  

All earlier community detection- based evolutionary algorithms focused on 

solving complex community detection by optimizing neighborhood relations in terms 
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of intra- and inter- community connections. But most of them, if not all, ignored 

employing graphlet measure in terms of nodes signature and nodes signature similarity 

along with the neighborhood relations in defining community structure in complex 

networks. Solving complex community detection problem by considering cooperation 

between graphlet-based measures and neighborhood relations has a significant impact 

in identifying ambiguous nodes to more suitable communities. Since it greatly helps 

to investigate the entire area of the node's vicinity by looking at all types of graphlet 

that a node can touch, and hence, the detection accuracy will be improved notably. In 

this study, a new multi objective method is proposed termed 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 

(MultiObjective Evolutionary Algorithm based on Cooperation between Graphlet-

based measure and Neighborhood relations) to detect the structure of topological and 

biological communities more accurately than the earlier methods. The purpose of this 

chapter is to provide an overview of the research, including problem statement, the 

research goal, the objectives, the scope, and the significance of the research.  

1.2 Problem Background 

The last decade has witnessed the emergence of several novel evolutionary 

computation-based community detection approaches. In which several heuristics have 

been customized and developed using various types of optimizing objective functions, 

which either be single objective optimization or multiobjectives optimization. Based 

on the term of the optimization functions, only one objective function is optimized in 

the single objective optimization techniques. In contrast, many objective functions are 

simultaneously optimized in MultiObjective Optimization (MOO) techniques. Here, a 

few recent studies of MultiObjective Evolutionary Algorithm (MOEA) have been 

reviewed that achieved prominent performance in addressing the community detection 

problem and proved their ability to overcome the drawbacks of the single-objective 

evolutionary algorithm and the other traditional techniques.  

The use of multiobjective frameworks to define the community structure in 

complex networks was first proposed by Pizzuti in 2009, 2012. The researcher used 

an NSGA-II framework for formulating 𝑀𝑂𝐺𝐴 − 𝑁𝑒𝑡, a multiobjective model to 
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maximize two objective functions, namely, 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 and 

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑓𝑖𝑡𝑛𝑒𝑠𝑠. At the same year, Shi et al. (2012) defined the community 

structure as a multiobjective minimization model, called MOCD, wherein the 

modularity function ( 𝑄 ) was split into two terms. Based on the formulations given by 

Shi et al. (2012) and Pizzuti (2012), the emphasis was on neighborhood relations in 

terms of intra- community connections while the influence of the inter-community 

connections is either implicitly or indirectly optimized (Attea et al., 2016). The 

connections between the network nodes is one of the key concepts to define 

community detection problem, so it will be right to separate those connections that link 

set of nodes within a single cluster or community explicitly from those that link nodes 

with different clusters or communities by considering both inter- and intra- cluster 

connections and nodes' degree generalization (i.e., graphlet measures) to define 

community structure effectively. 

Gong et al. (2012) followed a similar method to that of Shi et al. (2012) by 

splitting the 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 formula into two terms, namely, Negative Ratio 

Association (𝑁𝑅𝐴) and Ratio Cut (𝑅𝐶), to detect community structure in complex 

networks. Accordingly, they formulated the problem as a multiobjective minimization 

model, called 𝑀𝑂𝐸𝐴/𝐷 _ 𝑁𝑒𝑡 (multiobjective evolutionary algorithm with 

decomposition). After that, Gong et al. (2014) reformulated 𝑀𝑂𝐸𝐴/𝐷_𝑁𝑒𝑡 model into 

an effective model termed 𝑀𝑂𝐷𝑃𝑆𝑂 (multiobjective discrete particle swarm 

optimization based on decomposition), by changing the first objective from 𝑁𝑅𝐴 into 

the Kernel K-Means (𝐾𝐾𝑀), while 𝑅𝐶 remained as a second objective. Although the 

proposed models by Gong et al. (2012) and (2014) explicitly emphasized the impact 

of neighborhood relations in terms of intra- and inter- community connections, but 

their models did not able to detect the ideal community structure that describing main 

characteristics of all networks and their relationships in the best way. To effectively 

address the issue of community structure definition, this study has proposed a new 

multiobjective model based on cooperative between graphlet-based measures (in terms 

of nodes signature and nodes signature similarity) and neighborhood relations (in 

terms of intra- and inter- community connections). 
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On the other hand, in biological network, community or cluster structure 

definition has also been formulated by considering the topological objectives based on 

neighborhood relations only, which impacted on the developed methods' performance 

and restricted them from detecting a more accurate structure of complex biological 

community. Cao et al. (2015) proposed a new clustering algorithm termed 𝑀𝑂𝐸𝑃𝐺𝐴 

(MultiObjective Evolutionary Programming Genetic Algorithm). In 𝑀𝑂𝐸𝑃𝐺𝐴, 

several topological properties of the network, i.e. size, 𝐶𝑃𝐿 (characteristic path length) 

and density have been integrated to detect meaningful protein complexes and 

conducting a systematic analysis to the problem with regards identifying complexes of 

protein in the benchmark PPI networks. Bandyopadhyay et al. (2015) introduced a 

multiobjective formulation to address the problem by optimizing three distinct criteria 

in a maximization language. The framework included two topological features of PPI 

networks that were formulated into two different quality functions which are the 

contribution of a node to cluster and closeness centrality of a node to cluster. 

Moreover, the semantic similarity of GO (Gene Ontology) was used as a third 

objective function. Ray et al. (2016) developed a method called 𝑀𝑂𝐷𝐴𝑃𝑅𝑂𝐶 (Multi-

Objective Disease-Associated Protein Complex) based on a modified framework of 

𝑁𝑆𝐺𝐴 − 𝐼𝐼. Three objective functions, namely, disease association, complex density, 

and outward interaction, were optimized in MODAPROC to discover and find disease-

specific gene complexes. A parallel optimization-based multiobjective method called 

𝐷𝐶𝑅𝑆 was proposed by Sharma and Bhattacharyya (2018). The aim of developing 

𝐷𝐶𝑅𝑆 was to detect protein complexes and identify their quality using the 𝑁𝑆𝐺𝐴 − 𝐼𝐼 

framework. The method's name, 𝐷𝐶𝑅𝑆, was derived from the four objective functions 

used in the system, which are density, contribution, reachability contribution, and 

semantic similarity.   

Recently, several methods have been proposed to address community detection 

problem in complex networks effectively by employing the objective functions of 

either Pizzuti (2012), Shi et al. (2012), Gong et al. (2012), or Gong et al. (2014); and 

developing a local search operator to enhance the detection accuracy. Sani et al. (2018) 

introduced a new method named 𝑀𝑂𝐴𝐶𝑂 (Multi-Objective Ant Colony Optimization) 

to address the problem by applying Pareto theory (i.e., Pareto dominance and Pareto 

Archive) and Pearson Correlation measure as heuristic information along with the two 
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objectives of Pizzuti (2012) (community score and community fitness). Rahimi et al. 

(2018) developed the 𝑀𝑂𝑃𝑆𝑂 − 𝑁𝑒𝑡 method (Multi-Objective Particle Swarm 

Optimization) based upon a modified version of PSO that revolved around changing 

the particles' movement in the swarm. The technique used two competing objectives 

of Gong et al. (2014) (𝐾𝐾𝑀 𝑎𝑛𝑑 𝑅𝐶). Ji et al. (2019) proposed a multiobjective 

community detection method termed 𝑀𝑂𝐶𝐷 − 𝐴𝐶𝑂 that combined the MultiObjective 

Evolutionary Algorithm based-Decomposition (𝑀𝑂𝐸𝐴/𝐷) along with the local 

heuristic operator of 𝐴𝐶𝑂 (Ant Colony Optimization). In the 𝑀𝑂𝐶𝐷 − 𝐴𝐶𝑂, two 

fitness functions of Gong et al. (2012) (𝑁𝑅𝐴 𝑎𝑛𝑑 𝑅𝐶) were simultaneously optimized. 

Besides, the search range was expanded by integrating a local search operator named 

weighted simulated annealing into the framework. As a result, the combined technique 

improved the search process by avoiding premature convergence during the 

optimization process and achieved better performance than other competent 

algorithms. Zou et al. (2019) proposed 𝐷𝐼𝑀𝑀𝑂𝐸𝐴/𝐷 (Discrete Inverse Modelling-

based Multi-Objective Evolutionary Algorithm with Decomposition), a new algorithm 

to detect the embedded community structure in real and benchmark complex networks. 

By using the network topology properties, an inverse modelling strategy was applied 

to sample the area of objective space and produce a new offspring; and to measure the 

fitness quality of each generated solution, the authors used two conflicting criteria of 

Gong et al. (2012) (𝑁𝑅𝐴 𝑎𝑛𝑑 𝑅𝐶). Mu et al. (2019) developed 𝑀𝑂𝐴𝐶𝑂/𝐷 − 𝑁𝑒𝑡 

(Multi Objective Ant Colony Optimization algorithm based on Decomposition) to 

address main difficulties in the 𝐴𝐶𝑂 algorithm based community detection problem. 

𝑀𝑂𝐴𝐶𝑂/𝐷 − 𝑁𝑒𝑡 solved the problem by simultaneously minimizing two objectives 

of Gong et al. (2012) (𝑅𝐶 𝑎𝑛𝑑 𝑁𝑅𝐴) in the optimization process. New solutions were 

constructing by the ants using the new proposed transition probability model. Then, an 

improvement operation was performed to enhance each solution based on the strong 

communities' concept.  

Despite the increasing interest in developing effective local search operators 

based on general neighborhood relations, most of the developed methods are still 

suffering from the resolution limit problem and restricting the solution from going 

deep into the network structure to find accurate clusters. To address resolution limit 
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problem effectively, this study proposed a new heuristic mutation operator based on 

cooperation between nodes signature similarity and neighborhood relations.  

It is worth to note that all the above explored studies have mainly interested on 

addressing community detection problem in either: social complex networks with 

known ground-truth and real-complex networks with unknown ground-truth, or in PPI 

networks with known generic complexes. This means that there is a need to develop a 

new method addresses the heterogeneity issue of real-world networks to detect more 

accurate topological and biological community structure in complex networks derived 

from various domains. 

To this end, the research aims to propose 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method to improve the 

predictive power of the evolutionary-based community detection algorithm. By 

addressing community detection challenges (which is community structure definition 

issue, resolution limit problem, and heterogeneity issue of real-world networks) and 

transcend the limitations in the earlier studies through exploiting neighborhood 

relations along with strong-theoretically grounded topological properties derived from 

a network (i.e., graphlet-based measures) in two main components of the adopted 

optimization method which are the objective functions and mutation operator. 

1.3 Problem Statement  

Community detection in complex networks is an ill-defined problem as there 

are no typical accepted protocols on the fundamental ingredients such as defining 

community itself (Fortunato and Hric, 2016; Javed et al., 2018). The broad issue for 

the community detection problem in complex networks is the community structure 

definition. What this means in the context of an evolutionary algorithm is the 

development of a meaningful mathematical formula (objective functions) that 

effectively defines the topological structure of the hidden community in the complex 

networks. Many ideas have emerged to define the community structure, which in turn 

led to different definitions of single objective or multiobjective optimization functions. 

Most of the studies, if not all, defined the community structure in a complex network 
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by solely considering the general neighborhood relations of the complex network and 

lacked complete reflection of inherent topological properties (i.e., graphlet-based 

measures in terms of nodes' signature and nodes' signature similarity) that can address 

the issue of a community structure definition effectively. Another limitation is that 

most of the studies aspired to the traditional or randomize explorative property only. 

They lacked to design any other heuristic evolutionary operator based on strong, 

systematic topological properties (i.e., graphlet-based measures in terms of nodes' 

signature and nodes' signature similarity) to avoid resolution limit problem that restrict 

solutions from going deep into the network structure to find the precise complexes and 

accurately representing the domain knowledge. The growth of real-world networks 

from different domains (i.e., social and biological) is inevitable. But these real 

networks are characterized by topological heterogeneity and differed in some 

networked characteristics (volume and cardinality) depending on their domains, and 

this considered another discrete issue for the CD algorithm.  

In summary, in this study, three main issues and challenges facing the 

community detection problem in complex networks have been considered, namely 

community structure definition issue, resolution limit problem, and heterogeneity issue 

of real-world networks. In view of that, this research has been guided by the following 

main research question: 

How to design a multiobjective evolutionary algorithm based on cooperation 

between graphlet-based measure and neighborhood relations (MOEA_CGN) for 

detection of complex topological and biological community structure accurately? 

This question will be fulfilled by answering detailed questions: 

1. How a 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method with two new objective functions can be designed 

to define complex topological community structure? 

2. How to improve 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method by making it more likely to converge to 

more accurate solutions? In other words, how to enhance 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method 

with a new heuristic mutation operator to avoid resolution limit problem? 
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3. How to make the 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method regarded a reliable and dependable 

method in detecting complex biological communities accurately?  

These questions can be answered by designing a CD method that invests the 

robust topological properties of networks and enhances the search properties in terms 

of intensification and diversification, as these properties considered essential to 

improve the ability of the adopted searching algorithm and detecting a more accurate 

community structure. 

1.4 Research Goal 

The goal of the study is to propose a new method termed 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 

(MultiObjective Evolutionary Algorithm based on Cooperation between Graphlet-

based measure and Neighborhood relations) to detect topological and biological 

community structure in complex networks. 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method takes into account 

addressing three main issues, namely, community structure definition issue, resolution 

limit problem, and heterogeneity issue of real-world networks, to improve the quality 

of community detection in terms of accuracy and velocity. 

1.5 Research Objectives 

The following are the objectives of the proposed study to detect topological 

and biological community structure in complex networks derived from different 

domains:- 

1. To propose 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method with two new objective functions based on 

cooperation between neighborhood relations and strong, systematic 

topological measures (i.e., graphlet-based measures) to address the issue of 

community structure definition. 
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2. To enhance 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method with a new mutation operator based on a new 

qualitative definition of the topological similarity measure to address 

resolution limit issue.  

3. To improve the proposed mutation operator based on the distance between the 

nodes' signature to make 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 dependable method in detecting 

complex biological communities accurately. 

1.6 Research Scope  

The scope of the research is listed as below: 

i. This study has focused on detection topological and biological communities in 

complex networks derived from different domains.  

ii. The datasets used in this study are: 

 Synthetic-benchmark networks: five networks of GN: Girvan Newman, 

(2002) and sixteen networks of LFR: Lancichinetti-Fortunato-Radicchi, 

(2008) have been used.  

 Real-complex networks with known ground-truth: four standard real-

complex networks of various sizes have been used. 

 Real-complex networks with unknown ground-truth: eight standard real-

complex networks of various sizes have been used 

 Biological networks with known ground-truth: two Protein-Protein 

Interaction networks (PPI) have been used. 

iii. This study has proposed MOEA_CGN method based on MOEA/D 

(multiobjective evolutionary algorithm based on decomposition) framework of 

Zhang and Li (2007). MOEA/D is considered a powerful search and 

optimization mechanism as it providing an effective method to solve several 

NP-hard optimization problems. At the meanwhile, it never needs a high level 

of mathematical knowledge, and its computational complexity is low, 
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compared to other methods (Gong et al., 2012; Cheng et al., 2018; Zhang and 

Li, 2007; Zou et al., 2019, Ying et al., 2019). These features have made 

MOEA/D framework appropriate for solving the CD problem when a 

multiobjective evolutionary algorithm is needed. 

iv. The performance is measured according to detection velocity (with regards to 

the maximum number of generations required to get the optimal solution), and 

detection reliability (with regards to the average of the best value of the 

following measures: Modularity (𝑄),  Normalized Mutual Information (𝑁𝑀𝐼), 

Weighted Normalized Mutual Information (𝑊𝑁𝑀𝐼), Recall, Precision, and F-

measure).  

v. The proposed method is simulated using Matlab R2016b. The experiments 

over small networks have been performed on a PC with an IntelR CoreTM i7-

7700HQ CPU, 16 GB RAM under Windows 10 x64. While the experiments 

over large networks have been performed on a High Performance Computers 

(HPC) with 32-core 2.6GHz Intel Xeon E7-8895 server. 

1.7 Research Significance  

Community detection mainly aims at discovering the inherent structure of 

community within network or providing useful information on the organization of a 

network. Community detection allows us to focus on the areas having some degree of 

independence within a graph. It helps in the classification of the vertices according to 

their role in the communities to which they belong. For instance, it may be possible to 

distinguish entities fully embedded within groups from those on the boundary of the 

group that may act as an intermediary between units. Such boundary nodes can play 

an essential role in installing the units together and in the procedures of deploying the 

processes over the network (Chakraborty et al., 2017; Fortunato and Hric, 2016). The 

growing demand for developing effective frameworks to discover such community 

structure in complex networks comes from its contribution to many significant vital 

applications. In social networks, for instance, organizations or individuals are bonded 

through several social contacts, profiles, or familial. Thus, it can be said that social 
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modularity represented detection a group of individuals linked with dense social ties. 

Detecting social modularity is useful in social network analysis, network 

summarization and privacy, i.e. member grouping and group segmentation (Karataş 

and Şahin, 2018, Javed et al., 2018). In general, the presence of community structure 

in complex networks made available an assortment of applications for example 

targeted marketing, grouping social media subscribers for good advertising in addition 

to facilitating recommendations for readers, discovering fraudulent sites, discovering 

fraudulent communication networks activities, designing network protocols in delay 

tolerant networks, link prediction, refactoring software packages, dimensional 

reduction in pattern recognition, recommendation systems, skills acquisition in 

robotics (Karataş and Şahin, 2018; Rahimi et al., 2018) and tracking bitcoin users 

(Remy et al., 2017). With the increasing demand for these and many other real-world 

applications, the community structure seeks to model the basic features of these 

complex networked-systems by determining sub-structures and their topological 

features.  

In biological networks, cell activity in PPI networks can be comprehended by 

analyzing those proteins that are organized as separate and interactable units. Hence, 

the PPI modularity refers to detection a set of proteins that physically or functionally 

interact to achieve a specific function. Additionally, detection of protein complexes in 

PPI networks can help in many significant therapeutic purposes, describing the 

evolutionary orthology signal (Jancura et al., 2012), detecting cancer, and predicting 

the biological functions of yet unrecognized proteins (Pizzuti, 2014). On the other 

hand, a change in the pattern of proteins interaction is associated with many diseases 

and identification of such interactions through detecting protein complexes can aid in 

disease diagnosis (Lei et al., 2018; Bandyopadhyay et al., 2015). In fact, the network 

can be better understood by knowing the organization of the objects; due to it will 

provide better information which may be missed by considering the network as a 

whole. 
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1.8 Thesis Organization  

This thesis is organized into 7 chapters. Chapter 2 reviews some basic concepts, 

the related works of this study and discusses the gaps that led to formulating the 

research problem. Chapter 3 presents the methodology that this research followed as 

well as exploring and discussing the details of the framework components and the 

datasets being used. The experimental results of the proposed MOEA_CGN method 

based on general MOEA/D framework are presented in Chapter 4. Chapter 5 presents 

the experimental results of the proposed 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 method with a new heuristic 

mutation operator. In Chapter 6, the experimental results of the proposed 𝑀𝑂𝐸𝐴_𝐶𝐺𝑁 

method with an improved heuristic mutation operator are presented in order to detect 

complex biological communities accurately. Finally, Chapter 7 concludes the research, 

future works and some suggestions are provided in this chapter. 
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