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ABSTRACT 

The Underwater Sensor Networks (USN) are known to be an emerging 
technology due to numerous applications in aqueous environments. The traditional 
routing protocols used in terrestrial sensor networks could not be applied for 
underwater due to the various unique characteristics of USN such as unreliable link, 
inadequate bandwidth, short life span of battery power, high packet drop rate, and 
attenuation. Therefore, routing protocols are specifically designed to conform to the 
characteristics of USN. A multi-layer Opportunistic Routing (OR) approach is an 
example that offers a promising method to overcome those limitations. Research 
indicated three critical problems in relation to designing USN: selecting the next 
reliable energy-efficient forwarding nodes, optimal forwarding path, and 
communication void. Three protocols were proposed to overcome these problems. 
First, in dealing with improper high energy consumption and candidate nodes selection 
problem, an Energy-Efficient Opportunistic Routing (EE-OR) protocol is developed 
aiming to select the next candidate nodes using depth information and energy metrics. 
Second, the EE-OR protocol is enhanced aiming to manage the unnecessary 
forwarding suppression problem using a multi-layer OR approach. The Optimal Path 
Energy-Efficient Routing (OPEE-OR) protocol is designed to reduce the number of 
transmissions and control path selection. Third, Energy-Efficient Void Avoidance 
Opportunistic Routing (EEVA-OR) protocol (a modified version of OPEE-OR) is 
designed aiming to identify void nodes and avoid these nodes during the process of 
forwarding data packets. Further, in order to evaluate the performance of the respective 
developed protocols, several simulations were conducted using AquaSim. Findings 
were compared to Depth Based Routing (DBR), Energy Efficient Depth Based 
Routing (EEDBR), Reliable and Energy Efficient Pressure-Based Routing (RE- PBR), 
Enhanced Void Avoidance Routing (E-VAR), and Void Aware Pressure Routing 
(VAPR). In addition, findings were also compared in terms of network lifetime, total 
energy consumption, packet delivery ratio, total number of data packets forwarded, 
and total number of forwarded void detection packet. Finally, findings also indicated 
that the EE-OR, OPEE-OR and EEVA-OR protocol performed better regarding 
network lifetime, total energy consumption (6-24%, 19-32%, 17-32%), packet 
delivery ratio (3-16.6%, 2-14%, 1.5-13%) and the total number of data packet 
forwarded (4-18%, 18-31%, 5-28%) respectively. In conclusion, the proposed energy 
efficient void avoidance opportunistic routing protocol tends to improve energy 
efficiency and packet delivery ratio; and this leads to the expansion of the corpus of 
knowledge in the area of underwater sensor networks.  
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ABSTRAK 

Rangkaian Sensor Dalam Air (USN) adalah teknologi yang muncul kerana 
wujud pelbagai aplikasi di dalam lautan. Di dasar laut, protokol penghalaan 
tradisional yang digunakan dalam rangkaian sensor terestrial tidak dapat diterapkan 
kerana ciri unik USN. Terdapat beberapa permasalahan berkaitan pembinaan 
rangkaian sensor dalam air termasuk ketidakstabilan pautan, jalur lebar yang tidak 
mencukupi, jangka hayat kuasa bateri yang pendek, kadar pengguguran paket yang 
tinggi, dan pemerosotan yang tinggi. Oleh itu, protokol penghalaan mesti dirancang 
khusus untuk USN. Penghalaan Oportunistik (OR) berlandaskan kaedah berlapis 
menawarkan kaedah yang boleh mengatasi kekurangan ini. Kajian menunjukkan 
bahawa terdapat tiga masalah kritikal dalam membina USN: pemilihan nod cekap 
tenaga, laluan optimum, dan nod lompang. Tiga protokol dicadangkan untuk 
mengatasi masalah ini.Pertama, untuk mengatasi masalah penggunaan tenaga yang 
tinggi dan pemilihan calon nod yang sesuai, protokol Penghalaan Cekap Tenaga 
Oportunistik (EE-OR) dibangunkan untuk memilih calon nod seterusnya 
menggunakan maklumat kedalaman nod dan metrik tenaga. Kedua, protokol EE-OR 
ditingkatkan dengan menggunakan kaedah berlapis untuk menangani masalah 
penghantaran paket yang tidak diperlukan. Penghalaan Cekap Tenaga Oportunistik 
Laluan Optimum (OPEE-OR) dibangunkan untuk mengurangkan jumlah 
penghantaran dan pemilihan jalur kawalan. Ketiga, protokol Penghalaan Cekap 
Tenaga Oportunistik Penghindaraan Lompang (EEVAOR) adalah (versi OPEE-OR 
yang diubahsuai) yang direka untuk mengenal pasti nod lompang dan mengelakkan 
nod ini semasa proses pengiriman semula paket. Selanjutnya, untuk menilai prestasi 
protokol yang telah dibangunkan, beberapa simulasi dijalankan menngunakan 
AquaSim. Dapatan akan dibandingkan dengan Penghalaan Berasaskan Kedalaman 
(DBR), Penghalaan Cekap Tenaga Berasaskan Kedalaman (EEDBR), Penghalaan 
Cekap Tenaga dan Andal Berasaskan Tekanan (RE-PBR), Penghalaan Penghindaran 
Lompang Dipertingkatkan (E-VAR), and Penghalaan Tekanan Kesedaran Lompang 
(VAPR). Sebagai tambahan, hasil dapatan juga dibandingkan dari segi jangka hayat 
rangkaian, jumlah penggunaan tenaga, nisbah penghantaran paket, jumlah paket data 
yang kirim semula, dan jumlah paket pengesanan lompang yang dikirim semula. 
Akhirnya, hasil menunjukkan bahawa protokol EE-OR, OPEE-OR dan EEVA-OR 
masing-masing menunjukkan prestasi yang lebih baik sepanjang jangka hayat 
rangkaian, jumlah penggunaan tenaga (6-24%, 19-32%, 17-32%), nisbah 
penghantaran paket (3-16.6%, 2-14%, 1.5-13%) dan jumlah keseluruhan paket data 
yang dihantar (4-18%, 18-31%, 5-28%). Kesimpulannya, protokol Penghalaan Cekap 
Tenaga Oportunistik Penghindaran Lompang yang dicadangkan cenderung untuk 
meningkatkan kecekapan tenaga dan nisbah penghantaran paket; dan ini membawa 
kepada pengembangan pengetahuan dalam bidang rangkaian sensor bawah air.
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CHAPTER 1 

 

 

 

INTRODUCTION 

 
 
 
 

1.1 Overview 

 
 

Underwater Sensor Networks (USNs) as a platform for aqueous research 

have gained much attention and a strategy is required for the development of 

different potential applications. Monitoring the aquatic environment and dynamic 

changes of the ocean is not an uncomplicated task. This chapter introduces of the 

problems associated with USN and direction of this research. The second section 

discusses the motivation for conducting this research. Section 1.3 and Section 1.4 

presents the research background and problem statement respectively. Sections 1.5 

until Section 1.6 discusses the goals, questions and objectives of the research. Then, 

Section 1.7 presents the scope of the research. Finally, Section 1.8 covers the thesis 

organisation. 

 
 
 
 

1.2 Motivation 

  
 
 The surface of the earth consists of seventy one percent water. However, 

most of the underwater environment remains unexplored due to its vastness and 

harsh environment. In the last decade, there have been significant interests in 

monitoring the underwater environments for scientific, commercial exploration and 

military operations. With the cost of sensors dropping and the development of smart 

sensors, underwater sensor networks (USN) offer an alternative method to better 

sense and acquire these data (Gupta et al. 2020). Applications that implement USN 
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range from aquaculture monitoring, environmental monitoring, disaster prevention, 

oil extraction monitoring and tactical surveillance (Haque et al., 2020; Daudpota, 

2019; Huang et al., 2009; Pompili and Akyildiz, 2009; Pompili et al., 2006b). 

 
 

Terrestrial sensor networks (TSN) have been well investigated and research 

conducted on the communication protocols have been proposed and reported often. 

However, the characteristics of USN differs to that of the TSN. In USN, several 

autonomous and self-organizing sensors nodes are deployed at different depths to 

collect information and forward them to a destination. A group of sensor nodes are 

anchored to the bottom of the ocean. Other sensor nodes act as a relay to one or 

more sinks nodes by means of wireless links. When deployed in an underwater 

environment, the channels attenuation or loss of signal for electromagnetic waves is 

45 times the square root of the frequency decibels per kilometer (Saini et al., 2017). 

Even though optical waves do not suffer from high attenuation, the problems of 

scattering still affect them (Stojanovic and Preisig, 2009). Therefore, in contrast with 

terrestrial wireless sensor networks, USN uses acoustic communication, where the 

attenuation is directly proportional to frequency and distance, and the scattering loss 

is considerably lower compared to electromagnetic and optical waves (Quazi and 

Konrad, 1982). The characteristics of acoustic communication leads to challenges in 

deploying fully functional and operational USNs (Hu and Fei, 2010; Huang et al., 

2009). First, the acoustic communication channel is severely impaired, especially due 

to multipath and fading. Second, acoustic communication operates below 30 kHz, 

thus the available bandwidth is limited depending on both range and frequency due 

to absorption. Third, acoustic communication experiences high bit error rate and 

temporary losses of connectivity. Forth, unlike electromagnetic communication, the 

propagation delay is five times magnitude higher than radio frequency in TSN. Fifth, 

an underwater sensor networks require 100 times more power when transmitting 

data, as compared to the power required when receiving it (Partan et al., 2007). 

Consequently, USN nodes needs to reserve energy consumption to prolong the 

network lifetime. Lastly, USN must contend with mobile nodes either due to their 

dynamical capability or due to random motion caused by ocean currents (Pompili 

and Akyildiz, 2009; Pompili et al., 2006a; Kinsler et al., 1999). 
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Protocols developed for TSN are based on radio signals’ characteristics. 

Therefore, these protocols are deemed unsuitable for implementation in USN. Efforts 

to overcome the inefficient communication protocol have been made by researchers 

alike, while considering the characteristics of USNs. Research in this topic focuses 

on three main areas namely, data-link layer, network layer, and physical layer. In the 

data link layer, research on two code-division spread-spectrum access techniques 

were compared by Freitag et al. (2001). While Kalofonos et al. (2003) combined 

multi carrier transmission with the direct sequence spread spectrum (DSSS) and code 

division multiple access (CDMA). As for the network layer, energy efficient routing 

protocol were proposed by Rahman et al. (2017), Rani (2017), Solayappan et al. 

(2017); and Walayat et al. (2017). Localization techniques were investigated by Han 

et al. (2012), Wahid and Kim (2012) and Chandrasekhar et al. (2006). While 

Ghoreyshi et al. (2016a), Shah et al. (2016) and Yu et al. (2015) focused on 

cooperative routing protocols. Research focusing on the physical layer were 

conducted by Jeon et al. (2011), Hovem (2007), Wills et al. (2006), and Stojanovic et 

al. (1994). Although several researches have been performed to deal with routing 

problem in USNs, each one has its own advantage and disadvantages. Hence, USN 

remains as a delay tolerant network, thus still requiring specialised routing protocols 

that can achieve the less energy consumption and high packet delivery ratio. 

 
 
 
  

1.3 Research Background 

 
 

An underwater sensor network consists of many autonomous and individual 

sensor nodes that perform forwarding, storing and collecting data. The main issues 

involved is deploying USN are limited bandwidth, high propagation delay, 3D 

topology, media access control, routing, resource utilization, and power constraints. 

The routing protocol of USNs design is more difficult and restricted than terrestrial 

wireless sensor networks. Therefore, the underwater routing protocol should have the 

ability to build highly reliable and effective communication links for the network in 

harsh underwater environments (Li et al., 2016). Underwater routing protocols 

should be scalable to accommodate dynamic topology changes and stability in the 
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network to cope with various emergencies. The routing protocols usually choose the 

path to transmit data information from the underwater source nodes to the surface 

destination nodes. Various protocols have been designed to satisfy the different 

requirements of the acoustic communications such as delay efficiency, bandwidth 

efficiency, reliability, cost efficiency, delivery ratio. But the major requirement that 

has been highlighted is energy efficiency. Energy efficiency depends on many 

metrics which should be considered while designing the protocol. 

 
 

The main energy source of USN are batteries, and since the placement of the 

sensors are in harsh underwater conditions, the process becomes challenging and 

expensive (Solayappan et al., 2017; Menon, 2016). Over time, the number of sensor 

nodes that expire due to energy loss increases, which in turn decreases the USN 

coverage area. Therefore, prolonging their lifetime is crucial. To increase the 

underwater sensor networks lifetime, proper energy efficient routing protocol should 

be designed to minimise energy consumption.  

 
 

An underwater sensor node consumes more energy when transmitting a 

packet compared to when it is receiving one (Casari and Zorzi, 2011). In order to 

reduce the energy consumption, the number of unnecessary transmissions needs to be 

reduced. Apart from reducing energy consumption, another method of prolonging the 

lifetime of a sensor node is by applying energy load ranking techniques among 

sensor nodes (Wahid et al., 2011). The amount of energy consumed during 

transmission should be balanced amongst the nodes from the source towards the 

destination.  

 
 

Energy efficient routing protocols developed for terrestrial sensor networks 

(TSN) (Banerjee and Misra, 2002; Shah and Rabaey, 2002; Chang and Tassiulas, 

2000) cannot be applied directly to underwater sensor networks. One possible 

solution to overcome the problems associated with underwater sensor networks is by 

implementing appropriate routing protocols adapted to underwater environments. 

Thus, the design of routing protocols in USNs should consider energy efficiency, 
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consequently improving the network lifetime whilst without sacrificing system 

performance (Menon, 2016; Wu and Sun, 2015; Wahid and Kim, 2012; Ayaz et al., 

2011; Yan et al., 2008).  

 
 

Routing protocols in underwater sensor networks can be classified into 

different categories mainly energy-based routing, geographical data information 

routing, opportunistic routing and data-based routing. Energy-based routing 

protocols considers the energy usage of the sensor nodes to extend the lifetime of 

the network. An advantage of this protocol is balance energy consumption and 

prolonging the lifetime of the network.  However, implementing energy-based 

protocols leads to void holes and high packet overhead. As for geographical 

protocol the geographic information of the sensor nodes to simplify the topology of 

the network is considered. By implementing this protocol, the network lifetime can 

be prolonged but at the cost of data delay transmissions. In data-based routing, the 

data information transmission from the source node to the destination node to 

guarantee the integrity of the data packets in the whole transmission process is 

considered. A disadvantage of implementing the data-based routing protocol is 

higher energy consumption compared to the other routing protocol.  Tt is almost 

impossible to conclude that any particular routing strategy can cost‐effectively solve 

issues associated with underwater applications because each of them has certain 

strengths and weaknesses and is only applicable to specific situations. 

 
 

Opportunistic routing (OR) has been proposed as an alternative routing 

protocol in underwater environments as it is able to handle certain issues 

associated within USN (Coutinho et al., 2016; Vieira, 2012). By implementing OR a 

higher data rate can be guaranteed (Menon and Prathap, 2016). Opportunistic 

Routing (OR) employs the broadcast nature of wireless sensor nodes to increase the 

number of probable forwarding candidate nodes in the network. Thus, packet delivery 

is increased while the number of collision decreases. The disadvantage when 

employing OR are higher end-to-end delay of data packets, network traffic, and 

energy consumption (Kheirabadi and Mohamad, 2013; Lee et al., 2010; Schaefer, 

Ingelrest, and Vetterli, 2009; Biswas and Morris, 2005). This is due to the nodes’ 
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transmission coordination process. By carefully designing an OR routing protocol 

addressing the transmission coordination process, these issues can be eliminated or 

improved. 

 
 

Opportunistic routing protocol can be classified into two main categories; 

location based opportunistic routing protocol or location free opportunistic routing 

protocols. Additionally, location free protocols are further sub-divided into two 

subcategories: beacon-based routing protocol or pressure-based routing protocols. 

Opportunistic routing protocols based on location suffer from low data rate and 

constraint bandwidth. Existing location-based OR protocols (Nicolaou et al., 2007; 

Xie, Cui, and Lao, 2006) experience rapid energy drainage and void communication 

holes. Energy constraints maybe due to the fact that these protocols are dependent on 

the position information of the nodes. Since USN nodes lack a Global Positioning 

System (GPS) system, location nodes increase the complexity of the routing protocol 

(Ayaz et al., 2011). This in turn also affects the energy consumption. Unlike, 

location based OR protocol, location free OR protocols are not dependent on 

position. Instead, for beacon-based protocols, the network topology information is 

needed for the forwarding candidate selection process. While pressure-based 

protocols require only the depth measurement information to identify the forwarding 

candidate. In terms of energy efficiency, pressure based OR protocols are more 

promising to be employed in underwater environments. Pressure based routing does 

not impose extra overhead or high energy consumption for the forward candidate 

selection. Ahmed et al. (2017) stated that the design of a scalable, robust and reliable 

routing protocol is needed and must be location free. Location free OR requires less 

energy as it does not have to compute the location of the node each time data is to 

be transmitted. Therefore, this research adopts the pressure based OR approach when 

designing an energy efficient routing protocol. 

 
 

Designing opportunistic routing protocols comprises of two main process 

candidate set selection and candidate set coordination. The candidate set selection 

approach is responsible for selecting a subset of the neighbouring nodes to continue 

forwarding the packet. Ranking metrics is used to determine the suitability of each 
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neighbour as a forwarding candidate. For both location-based and beacon-based 

routing, parameters obtain from position and topology information are used as the 

ranking metrics respectively. In pressure-based routing, the ranking metrics are 

varied. Depth or hop count information is used as ranking metrics to reduce the 

number of hops and decrease the energy consumption in protocols as proposed by 

Coutinho, Vieira, and Loureiro (2013) and Yan et al. (2008). Routing protocols 

proposed by Ashrafuddin et al. (2013), Bouk et al. (2017), and Guangzhong and 

Zhibin (2010), both depth and residual energy are incorporated as their ranking 

metric. The protocol developed by Wahid et al. (2011), also adopts both residual 

energy and depth as the ranking metrics to balance the energy consumption in the 

network. However, the implementation of the ranking algorithm differs between the 

existing protocols mentioned above even though the metrics used are similar. It can 

be concluded that the design and implementation of a ranking algorithm depends on 

the needs of the application itself. 

 
 

During candidate set coordination, the coordination of the next-hop 

forwarding packets operations is processed together with a supressing algorithm for 

low-priority nodes (Wahid and Dongkyun, 2010; Nicolaou et al., 2007). This 

approach is timer based as well as controlled based. Timer based coordination is the 

preferred method used in current OR USN. By implementing candidate set 

coordination the average number of transmissions required to deliver a packet is 

reduced. By coordinating high-priority and low-priority node candidates to forward 

only when the higher-priority nodes fail to do so, energy consumption becomes 

lower and unnecessary transmission of redundant packets are avoided. When both 

candidates set selection and coordination are employed concurrently, OR protocols 

become simpler and scalable. Furthermore, there are no complex computations for 

candidate set selection as it adopts the basic transit and receive procedure. A 

disadvantage of using this combination of OR procedure is an increase in the 

occurrence of duplicated packets. When there is an increase in duplicated packets, 

packet collisions rate increases, and unnecessary energy expenditure occur. Instead 

of a timer-based approach, depth selection, position based, and normalised packet 

advancement are applied during candidate coordination (Coutinho et al., 2019). 

Although significant research on OR design in USNs has been explored, there are 
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several directions that still require further exploration. Gaps still exist in developing 

a ranking algorithm that reduces energy consumption while providing reasonable 

packet delivery ratio. 

 
 

Optimum forwarding hop is the second problem that has a direct impact on 

increasing the number of retransmissions, increasing energy consumption and 

reducing the network lifetime. Unnecessary forwarding can be defined as the useless 

transmissions that occur during the forwarding process. Selecting the node that has 

less depth than sender in transmission range is commonly used for handling the 

problem of reducing the number of transmissions and the number of nodes that are 

selected to forward the data packet (Ghoreyshi et al., 2016). The main disadvantage 

of this approach is that it totally depends on the distance between sender and receiver 

node without considering different metrics. In location-based routing algorithms, the 

sending area has been layered and the shortest path is chosen based on location 

information that is provided by GPS, shapes and link quality (Shin et al., 2012; 

Chitre et al., 2008; Hwang and Kim, 2008). Moreover, in location-free routing 

algorithms, selecting the optimal shortest path is one of the main problems due to 

lack of GPS information to reduce the transmission area. In addition, opportunistic 

pressure-based routing algorithm suffers from a lack of efficient shortest path 

selection algorithm, which leads to reducing the network lifetime and the 

consumption of high amounts of energy (Jouhari et al., 2016; Noh et al., 2013; 

Wahid et al., 2012; Yan et al., 2008; Nicolaou et al., 2007). Among the existing 

opportunistic pressure-based routing algorithms, Depth Based Routing (DBR) (Yan 

et al., 2008) employs poor shortest path algorithm for handling the problem of nodes 

reduction and constraints, which is not efficient due to the use of depth information 

only, which leads to consuming high energy for the selected node due to the lowest 

depth selection. HydroCast (Lee et al., 2010) and Void Aware Pressure Routing 

(VAPR) (Noh et al., 2013) employ modifying forwarding set reduction algorithm by 

ranking the neighbour nodes using 2-hop neighbouring based on physical distance 

within transmission range. However, the main disadvantage of this algorithm is that 

it used 2-hop neighbour information, whereas finding this information in USNs is 

costly due to the use of beacon messages that are provided by sinks, which requires 

high energy consumption. As a result, it is necessary to enhance the path selection 
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algorithm in opportunistic pressure-based routing algorithm without using full 

location information and partial information which helps in reducing the total 

number of data packet forwarding, suppressing the unnecessary forwarding and 

reducing the energy consumption. 

 
 

Void communication occurs when a forwarding node cannot find any 

suitable candidate nodes within its path leading towards the destination. These 

packets may be dropped even though an alternative path exists between the sender 

and receiver. When an alternate path to the destination cannot be discovered because 

void notes are present, data packets may drop, thus wasting the network resources 

mainly the energy and bandwidth. Factors that contribute to the void communication 

problems include sparse topology, temporary obstacles, and unreliable nodes or links 

(Basagni et al., 2015; Chen and Varshney, 2007). The presence of void area in the 

routing path can dramatically decrease the performance of the network. High packet 

loss and wasting resources are the immediate consequence of not including an 

appropriate void-handling technique in the routing protocol. To improve routing 

efficiency, different techniques and recovery methods have been proposed to handle 

the void problem. Void handling techniques are categorised into two main groups: 

location based, and depth based. In the location-based category, the void node is 

determined based on the geographical advancement of the neighbouring nodes. In the 

depth-based category, a node is considered a void node if it cannot find any 

neighbouring node with the lower depth than itself. In this case, a packet cannot 

make any upward progress toward the surface. To overcome the void problem, the 

most promising technique would be to avoid the void node. This technique 

minimises the possibility of encountering the void area during packet forwarding. 

There are different approaches to achieve this objective like Energy Efficient Depth-

based Opportunistic Routing with Void Avoidance (EEDOR-VA) (Mhemed et al., 

2021), Enhanced void avoidance routing (E-VAR) (Nazareth and Chandavarkar, 

2019), Opportunistic void avoidance routing (OVAR) (Ghoreyshi et al., 2016) and 

Void Aware Pressure Routing (VAPR) (Noh et al., 2013). However, these routing 

protocols still imposes communication overhead when exchanging beacons between 

the nodes. Therefore, in order to obtain the maximum efficiency, the environmental 

characteristics, intended application, and unique characteristics of the routing 
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protocol should be considered when designing a new void-handling technique or 

selecting an existing one. 

 
 
 
 
1.4 Problem Statement 

 
 
The lifetime of an USN is dependent on effectively managing the energy 

source. Energy consumption of the sensor networks are largely consumed during the 

transmission phase. Therefore, several opportunistic routing protocols have been 

proposed to reduce energy consumption while providing satisfactory packet delivery 

ratio. Energy efficiency in USNs can be managed effectively and implementing 

ranking method during candidate set selection (Noh et al., 2013; Wahid and Kim, 

2012; Yan et al., 2008). Balancing the energy consumption when ranking the nodes 

in advancement area, results in lower energy consumption and higher packet delivery 

ratio. In order to reduce the energy consumption and provide the satisfactory packet 

delivery ratio, it is necessary to design and develop an algorithm that can rank the 

nodes in advancement area based on energy metrics. However, existing energy 

efficient OR protocol ignore this fact. By implementing inefficient ranking methods, 

energy consumption increases and packet delivery ratio decreases. 

 
 

Chakchouk (2015) and Raina et al. (2016) states that existing OR protocols 

do not implement shortest path algorithm during forwarding data. An advantage of 

implementing shortest path algorithm is suppression of unnecessary forwarding of 

data during transmission. Issues associated with unnecessary forwarding of data 

include high energy consumption, increase in the number of hops and an increase in 

the total number of data packets forwarded. Existing protocols that do implement 

shortest path algorithm use location information based on GPS or beacon messages, 

thus an increase in the amount of energy consumed in order to collect these 

information (Coutinho et al., 2016; Kheirabadi and Mohamad, 2013). Therefore, 

there is a need to introduce an optimal shortest path algorithm to suppress 
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unnecessary transmissions in order to reduce the total energy consumption, reduce 

the number of hops and to decrease the total number of data packets forwarded. 

 

 

Communication void leads to packet loss and reduces the packet delivery 

ratio, especially in underwater sensor networks. Several existing opportunistic 

routing protocols pay attention to communication void in USNs (Javaid et al., 2018; 

Ghoreyshi et al., 2017b). The existing solutions employ the location information and 

topology information to handle this issue. However, such protocols are not energy 

efficient because finding this information in USNs with dynamic topology causes the 

energy of nodes to be wasted. For these reasons, it is essential to introduce a void 

avoidance algorithm that can detect the void nodes without the use of location 

information and topology information and avoid these nodes in packet forwarding 

process to improve the packet delivery ratio, especially in sparse networks. 

 
 
 
 

1.5 Research Goal 

 
 

The main goal of this research is to propose a multi-layer approach in energy-

efficient opportunistic routing protocol for USNs to deal with the issue of ranking of 

nodes during candidate set selection, optimising the forward path selection, and 

communication void while reducing the energy consumption of nodes and 

maintaining the packet delivery ratio at a satisfactory level. 
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1.6 Research Questions 

 
 

The general research question addressed in this study is: 

 
 

How to reduce the energy consumption and eliminate the void problem in 

underwater sensor networks; at the same time provide the satisfactory packet 

delivery ratio by enhancing the opportunistic routing protocol? 

 

In order to answer this question, research questions are provided as 

follows: 

 

i. How to select the best candidate node to reduce the energy 

consumption and improve packet delivery ratio? 

 

ii. How to select the route for packet forwarding with the optimal path 

while reducing the energy consumption of the whole network and 

eliminate duplicate packet transmission? 

 

iii. How to identify direct and avoid void nodes and indirect void nodes 

using the appropriate void handling techniques to optimise packet 

delivery ratio? 

 
 
 

1.7 Research Objectives 

 
 

In order to achieve the research goal, several research objectives have been 

identified as follows: 

 

i. To extend the lifetime of the USN while providing satisfactory packet 

delivery ratio by enhancing energy metrics based on node energy 

consumption ratio and depth to rank candidate set selection.  
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ii. To extend the lifetime and decrease unnecessary network traffic due to 

duplicate packet forwarding in sparse USN by adopting a multi-layer 

approach to configure an optimal shortest path routing protocol based 

on distance and energy metrics.   

 

iii. To identify void nodes in the packet forwarding process and extending 

the lifetime of the network in sparse USN while providing satisfactory 

packet delivery ratio by adopting a multi-layer approach to configure a 

void avoidance energy efficient routing protocol.  

 
 
 
 

1.8 Research Scope 

 
 

The following constraints are considered in this research: 

 
 

i. In the research, acoustic signals intercepted by sea creatures other than 

the intended recipient, which alter the transmitted acoustic signal, are 

not considered. 

 

ii. Underwater nodes send private information and data packets to other 

underwater nodes in a friendly environment without any security issue 

between nodes. 

 
iii. All underwater nodes are homogeneous in terms of sensing, 

communication range, initial energy, memory size, and energy 

consumption in transmission and receiving per bit. 

 
iv. Since the salinity, temperature, and depth have negligible impact on 

sound speed in the underwater environment, the effects of these 

parameters on the speed of sound are ignored in this study. 
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v. The performance of the proposed protocols is evaluated and validated 

using the AquaSim package, which is an independent component of the 

underwater sensor network simulator, NS2. 

 

vi. All simulation scenarios are designed in a 3D architecture.  

 
vii. Literature review is limited to research based on location free 

opportunistic routing protocols between 2008 until 2020 and at least 

attempted in solving two of the issues associated with USNs (energy 

efficiency, optimal path, and void avoidance).  

 
 
 
 

1.9 Thesis Organisation 

 
 

The remaining chapters of this study are arranged as follows. In Chapter 2, a 

comprehensive literature review related to research goal and objectives is done in 

order to formulate the research problem. The research methodology, which is 

conducted in this research, is provided in Chapter 3. Chapter 4 introduces the design 

and development of the proposed protocols, Energy-Efficient Opportunistic Routing, 

Optimal Path Energy-Efficient Opportunistic Routing and Energy-Efficient Void 

Avoidance Opportunistic Routing. The results and discussion of the proposed 

protocols is discussed in Chapter 5. Finally, Chapter 6 concludes the thesis, 

expresses the research contributions, and then presents the recommendations for 

future studies. 
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