
 

PHOTOCATALYTIC DUAL LAYER HOLLOW FIBER MEMBRANE FOR 

COLOUR PIGMENT DEGRADATION OF AEROBICALLY TREATED PALM 

OIL MILL EFFLUENT 

 

 

 

 

 

 

 

MAHESAN NAIDU A/L SUBRAMANIAM 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

SEPTEMBER 2020 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my father, Mr. Subramaniam, who taught me that I am the 

master of my own destiny, and my mother in heaven, Mrs. Kumari, who taught me to 

be kind to the people around me. It is also dedicated to my siblings, Sharmila, 

Prabagaran and Gowri, who supported me through the travails of life in every single 

way. 

  



v 

ACKNOWLEDGEMENT 

I would like to acknowledge Lord God Almighty, who without, I am nothing. 

Importantly, I would like to express my sincere gratitude to my beloved supervisor, 

Assoc. Prof. Ts. Dr Goh Pei Sean, who has guided me is so many ways throughout my 

journey in completing my PhD. Her support, motivation and guidance has been 

godsend. I am also very thankful to my co-supervisors, Assoc. Prof Dr. Lau Woei Jye, 

who provided me with insightful advices for my research work. I am also thankful to 

him for providing me the opportunity to complete an attachment stint in Selcuk 

University, Konya, Turkey, during my PhD. Additionally, I would express my 

gratitude to Prof. Datuk Dr. Ts. Ahmad Fauzi Ismail for giving me the opportunity to 

utilise the magnificent facilities available in Advanced Membrane Technology 

Research Centre (AMTEC), UTM.  

I am also indebted to Universiti Teknologi Malaysia (UTM) for funding my 

PhD study, in particular, for awarding me the UTM ZAMALAH Scholarship in 2017. 

Special mentions to staffs in AMTEC, namely Mr. Ng Be Cheer, Mr. Arif, Mr. Nizam, 

Mr. Hanis, Mr. Naim, Ms. Ayu and Mrs. Ruhaida who greatly assisted me in my 

experimental set-up, sample analysis and administrative documentations.  

My fellow postgraduate student should also be recognised for their support, 

especially Nidzom, Zulhilmi, Sumarni, Fifie, Aishah, Kak Fiqa, Kak Zana and Kar 

Chun. My sincere appreciation also extends to all my colleagues and others who have 

helped at various occasions. Their views and tips are useful indeed. Unfortunately, it 

is not possible to list all of them in this limited space. I am grateful to all my family 

member, especially my siblings who have supported me throughout my PhD journey. 

  



vi 

ABSTRACT 

Large amount of wastewater is produced during the processing of palm oil. The 

final form of effluent is aerobically-treated palm oil mill effluent (AT-POME), an 

odourless and oil-free brown solution. The brown pigments found in AT-POME pose 

high risk to eutrophication and water contamination if they are released into natural 

water bodies without further treatment. Current treatment methods to remove colour 

pigments such as nanofiltration face membrane fouling due to pore blockage. 

Therefore, a more efficient method to remove pigments from AT-POME has to be 

developed. Hence, this study focused on the fabrication of a photocatalytic dual layer 

ultrafiltration hollow fiber membrane for colour removal from AT-POME. Novel 

boron doped titania nanotubes (TNT-B) photocatalyst was incorporated on the outer 

layer of a polyvinylidene fluoride (PVDF) dual layer hollow fiber membrane 

(DLHFM). The molarity of boron doped into TNT was manipulated between the 0.25 

M (TNT-B0.25), 0.5 M (TNT-B0.5) and 1.0 M (TNT-B1.0). TNT-B was prepared via 

a two-step hydrothermal method. The physicochemical properties of prepared TNT-B 

were characterized. The prepared photocatalyst were also tested for their 

photocatalytic activity under visible light irradiation for the photodegradation of lignin 

and tannic acid (TA), which are the two important constituents of AT-POME. TNT-

B0.5 exhibited the best photocatalytic activity, where it was able to degrade lignin and 

TA up to 96.47% and 96.91%, respectively. High surface area (159.552 m2/g) and 

visible light absorption have contributed to remarkably enhanced photocatalytic 

activity. TNT-B0.5 was then used as the photocatalyst to prepare PVDF DLHFM at a 

loading of 1 wt% the outer layer of membrane. The membranes were spun using a 

triple orifice spinneret, while three important spinning parameters, i.e. bore fluid flow 

rate (BFFR), outer dope solution flow rate (OLFR), air gap (AG) were manipulated to 

study the effect of these parameters on membrane characteristics and filtration 

performance. All membranes were analysed to understand their morphology and 

physicochemical properties. It was deduced that a BFFR of 3 ml/min, OLFR of 3 

ml/min and AG of 10 cm were the optimum spinning conditions to prepare DLHFM 

with high flux and high rejection. The optimised membrane was then loaded with 

different photocatalyst loadings (1 wt%, 2 wt%, 3 wt%) on the outer layer. Then, the 

effect of different loading towards dynamic photocatalytic filtration and antifouling 

properties using synthetic AT-POME as model pollutant in a submerged membrane 

photo reactor (SMPR) was evaluated. With 2 wt% TNT-B0.5, the optimised DLHFM 

exhibited the highest flux of 51.29 L/m2h and rejection of 79.42% when tested with 

synthetic AT-POME. The membrane also exhibited superior antifouling properties in 

which the flux was recovered by 95% after four filtration cycles of synthetic AT-

POME. The optimised membrane was then used to treat real AT-POME for 20 days. 

The results showed that an increase in both flux and rejection over treatment time 

which was due to the synergistic effect of photocatalysis and membrane filtration.  
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ABSTRAK 

Sejumlah besar air sisa dihasilkan semasa pemprosesan minyak kelapa sawit. 

Bentuk terakhir efluen yang dihasilkan ialah efluen kilang minyak kelapa sawit 

dirawat secara aerobik (AT-POME), iaitu larutan berwarna perang tanpa bau dan bebas 

minyak. Pigmen perang yang terdapat dalam AT-POME menimbulkan risiko tinggi 

seperti eutrofikasi dan pencemaran air jika ia dibebaskan ke dalam sumber air semula 

jadi tanpa rawatan lanjut. Kaedah-kaedah rawatan terkini bagi menyingkirkan pigmen 

warna seperti nanofiltrasi mengalami masalah pengotoran membran kerana 

penyumbatan liang. Oleh yang demikian, satu kaedah yang lebih cekap untuk 

menyingkirkan pigmen daripada AT-POME harus dibangunkan. Oleh itu, kajian ini 

memberi tumpuan kepada penghasilan membran ultrafiltrasi pemangkin foto gentian 

rongga dwi lapisan untuk penyingkiran pigmen daripada AT-POME. Pemangkin foto 

titania nanotiub bercampur boron baharu (TNT-B) telah digabungkan pada lapisan luar 

membran gentian rongga dwi lapisan polivinilidin florida (PVDF). Molariti boron 

yang dicampurkan dengan TNT dimanipulasi pada 0.25 M (TNT-B0.25), 0.5 M (TNT-

B0.5) dan 1.0 M (TNT-B1.0). TNT-B telah disediakan melalui kaedah hidrotermal dua 

langkah. Sifat-sifat fizikokimia TNT-B yang disediakan telah dicirikan. Pemangkin 

foto yang disediakan juga telah diuji untuk mengenalpasti aktiviti pemangkinan foto 

di bawah sinaran cahaya bagi merawat lignin dan asid tanik (TA), iaitu dua komponen 

penting dalam AT-POME. TNT-B0.5 mempamerkan aktiviti pemangkinan foto 

terbaik, di mana ia dapat menghapuskan lignin dan TA sehingga 96.47% dan 96.91%. 

Kawasan dengan permukaan tinggi (159.552 m2/g) serta penyerapan cahaya yang lebih 

baik telah mempertingkatkan aktiviti pemangkinan foto TNT-B0.5. TNT-B0.5 

kemudiannya digunakan sebagai pemangkin foto untuk penyediaan PVDF DLHFM 

pada pemuatan 1 wt% pada lapisan luar membran. Membran telah dihasilkan 

menggunakan pemutar tiga orifis. Tiga parameter proses putaran penting, iaitu kadar 

aliran cecair penebuk (BFFR), kadar campuran polimer lapisan luar (OLFR) dan sela 

udara (AG) telah dimanipulasi untuk mengkaji kesan parameter terhadap ciri-ciri 

membran dan prestasi penolakan. Semua membran dianalisa untuk memahami sifat 

morfologi dan fizikokimia. BFFR 3 ml/min, OLFR 3 ml/min dan AG 10 cm 

merupakan keperluan proses putaran optimum untuk penyediaan DLHFM dengan 

fluks dan kadar penolakan yang tinggi. Membran yang dioptimumkan kemudian 

dimasukkan dengan kandungan pemangkin foto yang berbeza (1 wt%, 2 wt%, 3 wt%) 

pada lapisan luar membran dwi lapisan. Kemudian, kesan pemuatan yang berbeza 

terhadap penapisan pemangkinan foto dinamik dan sifat anticemar menggunakan AT-

POME sintetik sebagai bahan cemar dalam reaktor foto membran tenggelam (SMPR) 

telah dinilai. DLHFM dengan 2 wt% TNT-B0.5, DLHFM menunjukkan aliran 

tertinggi sebanyak 51.29 L/m2h dan penolakan sebanyak 79.42% apabila diuji dengan 

AT-POME sintetik. Membran juga mempamerkan sifat-sifat anti-pengotoran yang 

unggul di mana pemulihan aliran sebanyak 95% selepas empat kitaran penapisan AT-

POME sintetik. Membran yang dioptimumkan kemudiannya digunakan untuk 

merawat AT-POME sebenar selama 20 hari. Hasilnya menunjukkan peningkatan 

dalam kedua-dua aliran dan penolakan dengan masa rawatan yang disebabkan oleh 

kesan sinergistik pemangkin foto dan penapisan membran.   
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CHAPTER 1  
 

 

 

INTRODUCTION 

1.1 Problem Background 

Water has been the most important resource for mankind livelihood, with water 

being involved in many facets of daily routine of humans. Malaysia has been blessed 

with an abundance of fresh water which can be readily used for our daily routine and 

for the many industries while many countries such as United Arab Emirates, Oman, 

Japan and Australia are heavily relying on expensive processes such as desalination to 

procure clean water (Dawoud and Mulla, 2012). One prominent industry in South East 

Asia, especially in Malaysia and Indonesia which rely on fresh water for its processes 

is the palm oil industry. After Indonesia, Malaysia is the second largest producers and 

exporters of palm oil in the world with production volume of up to 17,500 metric 

tonnes (Otieno et al., 2016). Furthermore, it has been expected that the production of 

global palm oil is to increase up to 140% (Otieno et al., 2016). With the projected 

increase in palm oil production, the consumption of freshwater to sustain the higher 

volume of production is expected to increase too.  

Findings have shown that approximately 1.75 × 1010 L of fresh water is used 

per year for the production of every tonne of palm oil in Malaysia (Shankar et al., 

2013). With this large water footprint, the palm oil production industry produces large 

amount of effluents known as palm oil mill effluent (POME). POME is characterised 

as an acidic, brownish and oily by-product of the palm oil industry (Poh et al., 2010). 

POME constitutes to 96-97% water, made up with 0.6-0.7% oil and 4-5% of total solid 

(Azmi et al., 2014). Real POME is highly polluted, with chemical oxygen demand 

(COD) and biochemical oxygen demand (BOD) values as high as 50,000 mg/L and 

25,000 mg/L respectively (Rupani and Singh, 2010). Hence, releasing POME in its 

real form would be detrimental to the environment. Issues such as eutrophication 

(Petrenko et al., 2016), algae bloom and pollution towards fresh water bodies can arise 

with unchecked release of such polluted wastewater. Hence, several treatment methods 



 

2 

have been established by the palm oil industry to reduce these key parameters such as 

COD, BOD, turbidity, total suspended solids (TSS) and acidity. Currently, the 

established methods to treat raw POME includes ponding (Liew et al., 2014), aerobic 

digestion (Tan et al., 2014), physicochemical (Liew et al., 2014) treatment and 

anaerobic digestion (Chou et al., 2016). Among these, the ponding system and aerobic 

digestion methods have been combined and used prevalently by palm oil mills. With 

the current method, a secondary effluent, namely aerobically treated palm oil mill 

effluent (AT-POME) is produced. AT-POME is known to be less polluted compared 

to raw POME, with COD and BOD values amounting to 537 mg/L and 22 mg/L 

respectively and total organic carbon (TOC) values at 724 ppm (Tan et al., 2014).  

Even though these values meet the guidelines set by the Malaysia Department 

of Environmental (DOE), AT-POME exhibits a distinguished and intense brown 

colour. The brown colour can be attributed to the presence of various lignin and tannin 

complexes which has been broken down from the fragments of palm oil fruit itself 

(Poh et al., 2010). Tannins and lignins are natural dyes which imparts brown coloration 

towards plants, especially tree barks (Shankar et al., 2013). They are also found in the 

pulp and paper industry wastewater. With the presence of these natural dyes, the brown 

coloured AT-POME would pose significant harm towards the environment if they are 

discharged into the water bodies without further treatment. The pigments present in 

AT-POME can absorb and hinder light travelling through it, which can become an 

problem if this effluent is released into the environment. AT-POME can also increase 

the turbidity and concentration of pigments in receiving water body, which in turn, 

may hinder the passage of light to the bottom of the water body, such as rivers and 

lakes. The absence of sunlight at the bottom of water bodies may hinder photosynthesis 

carried out by underwater plants, which will subsequently reduce the amount of 

dissolved oxygen in the said water body. This phenomenon will accelerate the collapse 

of existing aquatic system.  

Hence, to overcome this problem, a polishing mechanism is required to 

degrade or remove the natural pigments that are present in AT-POME. This would 

reduce its impact towards surrounding water bodies and allows its reusability, 

subsequently reducing freshwater consumption by the palm oil industry. Membrane 
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technology has emerged as a very versatile technique for wastewater treatment (Yin 

and Deng, 2015). This technology has been extensively utilised to treat textile 

wastewater, which contains synthetic dyes created to colour clothing (Yin et al., 2017). 

Membrane separation can separate synthetic dyes from textile effluent, hence reduce 

its negative impacts towards the environment. However, this creates a secondary 

pollutant as the pollutants are only removed physically from water, but not destroyed. 

An additional treatment step will be required to effectively remove or process this 

pollutant. Hence, the employment of photocatalytic membrane, which offers dual 

functionality of separating pollutants from water and destroy the pollutants 

concurrently via oxidative processes becomes an attractive alternative.  

Photocatalytic membranes are polymeric or ceramic membranes that are 

embedded with photocatalyst. These catalysts are incorporated into the membrane 

matrix to produce strong oxidising species when in contact with water and photon 

sources and simultaneously oxidise and degrade any organic pollutant. Due to the dual 

functionalities, photocatalytic membrane can perform both filtration and organic 

matter degradation simultaneously. The incorporation of photocatalyst into membrane 

matrix can provide a synergistic effect to enhance water permeability and improve 

membrane anti-fouling capabilities. Adhesion of foulant on membrane surface can be 

minimized as the photocatalyst embedded in the membrane are able to degrade 

foulants that are built up on the membrane surface. This is important to maintain 

membrane usability on a long term. In conventional photocatalytic wastewater 

treatment, secondary treatment is required to separate the suspended used 

photocatalyst. Through the development of photocatalytic membranes, the 

immobilized photocatalyst avoids the necessity of secondary treatment and the risk of 

pollution. 

Commonly, photocatalytic membranes are placed in a submerged membrane 

photo reactor (SMPR), which is an integrated system consists of light source, 

membrane modules and aeration system (Molinari et al., 2017). Polymers such as 

polyether sulfone (PES) (Argurio et al., 2018) and polyvinylidene fluoride (PVDF) 

(Dzinun et al., 2015) have been successfully used to fabricate polymeric membranes 

with photocatalyst incorporated in them. Commercial titanium dioxide (TiO2) P25 
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Degussa has been widely used and studied as a model photocatalyst due to its excellent 

photodegradation performance, high stability and low toxicity (Shi et al., 2013). 

Recently, titanium nanotube (TNT) which is similar to TiO2 P25 Degussa in terms of 

atomic composition but differ in physical and photocatalytic characteristics has been 

explored (Liu et al., 2014). Owing to the structural properties, TNT exhibits more 

advantageous features compared to TiO2, such as higher effective surface area and 

better photocatalytic degradation performance (Wong et al., 2011). Currently, focus 

has also been placed in improving the photocatalytic performance of TiO2-based 

photocatalysts through various modifications.    

1.2 Problem Statement 

The brown colour present in AT-POME hinders the reusability of the effluent. 

One method which can remove pigments present in AT-POME is via nanofiltration 

(NF) using polymeric membranes. However, the sheer amount of effluent would 

require a large amount of membrane surface area and pressure to force the feed 

through, which is energy intensive. Furthermore, AT-POME is known to be rich in 

organic compounds, which may also contribute towards membrane fouling which may 

reduce membrane usability and long-term performance. To counter this, a different 

approach is required, and this is where photocatalysis can play a significant role. 

Photocatalysis has been touted as a possible solution to degrade the pigments into 

smaller, less harmful particles and reduce the colour intensity of AT-POME. 

Commonly, photocatalysis is coupled with membrane technology in an SMPR. In this 

case, a membrane module is fitted as a separation unit, while photocatalyst is added 

into the effluent to form a slurry for photodegradation of pollutants present.  

However, this method posed two significant issues. Firstly, a large amount of 

photocatalyst is added in the reactor to form the slurry. This requires an additional step 

to reclaim the used photocatalyst, which would make this method tedious. In addition, 

photocatalyst loss during treatment process is also another issue that needs to be 

considered. To overcome these issues, hybrid photocatalytic membranes is developed. 

Hybrid photocatalytic membrane is a class of membrane where photocatalysts are 

incorporated into the matrix of polymeric membrane. Current photocatalytic 

membranes are fabricated by mixing photocatalyst homogeneously into dope solution, 
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which creates membranes with photocatalyst evenly dispersed throughout the 

membrane. With the photocatalyst embedded in the membrane matrix, the additional 

efforts to recycle the suspended photocatalyst employed in conventional (SMPR) can 

be avoided. Using this mechanism, membranes with photocatalyst embedded have 

shown good performance to remove oily wastewater (Ong et. al., 2014), natural 

organic matters (Choo et al., 2008, Yao et al., 2009) and bacteria (Goei and Lim, 

2014).  

The second issue faced by conventional SMPR systems is that photocatalysts 

require constant ultraviolet (UV) light source for activation. Hence, the energy 

consumption may become a hindrance for its practical usage. To counter this issue, 

dopants such as carbon (Raza et al., 2015), nitrogen (Nguyen and Bai, 2014), sulphur 

(Lisovski et al., 2012), nickel (Mohseni-Salehi et al., 2018) iron (Riaz, 2013; Craciun 

et al., 2018) and graphene oxide (GO) (Song et al., 2015) have been incorporated into 

photocatalyst to enhance photocatalytic performance under visible light irradiation. 

Among the dopants that have been explored, boron has shown great promise (Kamal 

et al., 2019; Su et al., 2019). Boron is a semi metal element, similar to semiconductors 

such as silicon and germanium which can vastly improve photocatalyst performance 

(Wang et al., 2016; Zhang et al., 2017).  

The major concern during the fabrication of photocatalytic membrane is the 

difficulty to control the distribution of photocatalyst within the membrane matrix. 

Photocatalyst that are embedded within the inner parts of membrane matrix may not 

be activated due to the inability of photons to penetrate through the membrane matrix. 

Consequently, the photocatalytic efficiency is greatly reduced. The development of 

dual layer hollow fiber membranes (DLHFM) can potentially address this issue. 

DLHFM fabricated using a three-orifice spinneret form membrane structure that 

consists of two distinguished layers.  Research conducted using dual layer membranes 

has shown good performance for forward osmosis (Setiawan et al., 2012), gas 

separation (Amaral et al., 2015) and photocatalytic degradation of endocrine 

disruption compounds (EDC) (Dzinun et al., 2015). DLHFM allow greater control 

towards the physical and chemical properties of selective layer. By having two 

different functional layers, photocatalyst can be loaded on the outer layer, serving as a 
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host for the photocatalyst and a selective layer, while the inner layer serves as a porous 

support to provide strength and allow quick permeation through the membrane. The 

ability to distribute photocatalyst only on the membrane surface allows more catalyst 

to be activated, hence enhancing photocatalytic efficiency.  

Based on current literature, there is a dearth in studies regarding the 

development of photocatalytic DLHFM. There is also no study conducted on the effect 

of key spinning parameters towards membrane physical properties and the resultant 

permeation and rejection performance. Therefore, the main objective of this study is 

to fabricate a photocatalytic dual layer hollow fiber membrane which is embedded 

with a visible light responsive boron-doped TNT photocatalyst (TNT-B). TNT-B was 

synthesized via two-step hydrothermal method at different boron doping molarity, 

followed with characterisation. Doping at different molarity was performed to 

investigate its effect towards catalyst characteristics and photocatalytic activity. The 

photocatalyst was then incorporated into the outer layer dope solution at different 

loading for the fabrication of dual layer hollow fiber membrane with PVDF as the 

polymeric material. The dual layer hollow fiber membrane was produced by extruding 

the dope solutions prepared via a specially designed triple orifice spinneret using 

conventional dry/wet spinning technique, with water used as both internal and external 

polymer coagulant. For this, key spinning parameters, such as bore fluid flow rate 

(BFFR), outer layer dope solution flow rate (OLFR), air gap (AG) and photocatalyst 

loading were manipulated for optimisation purpose. Next, the membrane which 

exhibited superior filtration performance was installed into a SMPR to determine its 

efficiency to treat AT-POME. The membrane permeation, separation, anti-fouling 

attributes, and membrane recyclability were also evaluated.  

1.3 Research Objective 

The aim of this study is to develop photocatalytic DLHFM embedded with high 

performance photocatalyst which can be activated using visible light for AT-POME 

colour removal. Hence, this study embarked on the following objectives: 
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1. To create and characterize TNT-B photocatalyst which can perform 

photocatalytic activities under visible light activation.  

2. To develop a series of TNT-B photocatalyst incorporated DLHFM by varying 

the three hollow fiber spinning parameters. 

3. To examine the flux, colour removal efficiency and anti-fouling properties of 

the resultant PVDF/TNT-B photocatalytic DLHFM using AT-POME as model 

pollutant. 

 

 

 

 

1.4 Scope of Study 

To achieve the above-mentioned objectives, the following scopes of studies 

have been outlined: 

1. Synthesis of TNT via hydrothermal method with a reaction temperature of 180 

ºC, reaction time of 24 h and 10M NaOH used as alkali medium for synthesis  

2. Doping of TNT with boron via hydrothermal method at different boric acid 

molarity, i.e. 0.25, 0.5, 1.0 M at 120 ºC for 6 h. 

3. Study the properties of TNT-B such as morphology, particle size and charge, 

functional group changes, crystallinity, band gap, wavelength absorption and 

surface area using transmission electron microscopy (TEM), particle size 

analyzer (PSA), Fourier-transform infrared spectroscopy (FTIR), glancing 

angle x-ray diffraction (GA-XRD), ultraviolet–visible spectroscopy near 

infrared (UV-Vis NIR), photoluminescence (PL), brunauer–emmett–teller 

(BET) respectively. 

4. Study the adsorption and photocatalytic activity of TNT-B under visible light 

irradiation using synthetic AT-POME as pollutant at different pH conditions 

of 4, 7, 10 and different initial concentration of 100 ppm, 200 ppm, 300 ppm, 

400 ppm. 

5. Preparation of inner dope solutions that consists of PVDF at 18 wt%, PVP at 5 

wt% and NMP solvent at 77 wt%. Outer layer dope solutions were prepared 

with 15 wt% PVDF, 1wt% PVP, 85 wt% NMP and TNT-B loaded at different 

photocatalyst percentage i.e. 1 wt%, 2 wt% and 3 wt%. 
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6. Fabrication of photocatalytic DLHFM using a triple orifice spinneret, with 

water used as its internal and external coagulant at different parameters BFFR 

at 1 ml/min, 1.5 ml/min, 3 ml/min; outer layer dope flow rate at 3 ml/min, 4.5 

ml/min and 6 ml/min; different AG at 5 cm, 10 cm, 15 cm and different 

photocatalyst loading on outer layer dope solution, at 1 wt%, 2 wt% and 3 wt%. 

Inner dope solution flow rate (DSFR) was maintained at 3 ml/min for all 

fabrication parameters.  

7. Study of membrane properties such as surface and cross section morphology 

using scanning electron microscopy (SEM), particle distribution using energy-

dispersive X-ray (EDX), surface roughness using atomic force microscopy 

(AFM), contact angle using contact angle goniometer, porosity, water uptake 

and membrane functional group analysis using Fourier-transform infrared 

spectroscopy (FTIR) 

8. Evaluation of the intrinsic filtration properties of the photocatalytic DLHFM 

in terms of permeability and rejection using water, BSA, 1000 ppm lignin and 

TA as model solutions, respectively.  

9. Study of the photocatalytic degradation of synthetic AT-POME using 

fabricated membranes in a SMPR under visible light conditions and different 

photocatalyst loading was evaluated.  

10. Study of membrane fouling and membrane long term reusability for 20 days 

using real AT-POME effluent and evaluate the changes in membrane cross 

section and morphology using scanning electron microscope (SEM). 

 

1.5 Significance of Study 

Titania based photocatalyst, such as TiO2 and TNT are very prominent in the 

field of photocatalysis due to their superior catalytic activity. Hence, most catalytic 

modification works have been done using such it as the model photocatalyst. Among 

the dopants used to enhance the photocatalytic activity of TNT, boron is one of the 

least studied upon dopant. Research using other dopants have shown that different 

doping concentration/molarity can significantly alter physical, chemical and 
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photocatalytic properties of the developed photocatalyst. Doping TNT with different 

boron molarity would provide significant knowledge on the influence it has on the 

developed photocatalyst. 

The second part of this work focuses on the development of a DLHFM where 

three key spinning parameters, which are BFFR, outer layer DSFR and AG were 

manipulated. Based on current literature, there is no detailed work conducted on the 

influence of different spinning parameters towards membrane physical characteristics 

and their performance in terms of permeation and rejection. Literature has shown that 

manipulation of key spinning parameters can significantly alter membrane 

characteristics, which influences their permeation and rejection capabilities. Hence, 

the study on these spinning parameters would shed light on the significance of such 

spinning parameters on the development of a DLHFM.  
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