
PHOSPHORESCENT TRINUCLEAR GOLD(I) PYRAZOLATE COMPLEX 

BEARING PHOTOCHROMIC AZOBENZENE SIDE-CHAINS 

 

 

 

 

 

 

 

 

 

GOH CHEOW KAT 

 

 

 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Philosophy  

 

 

 

 

 

 

 

 

 

  

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

 

 

 

DECEMBER 2019 



v 

ACKNOWLEDGEMENT 

 

 

 

 

 Upon completing this thesis, a lot of people and researchers have came along 

in my journey to complete this Master’s Degree. I would like to express my gratitude 

to my main supervisor, Assoc. Prof. Dr. Lee Siew Ling, for the encouragement, 

motivation, and guidance. I would also like to express my appreciation to my 

external co-supervisors, Dr. Hendrik Oktendy Lintang and Dr. Leny Yuliati. Dr. 

Hendrik have contributed a lot especially in the direction of this research should be 

heading and keep this research on its right track. Dr. Leny have provided me 

numerous encouragement and motivation when I am slowing down in my progress. 

Without their wholehearted-contribution, I would not be able to complete this 

research and thesis by myself. 

 

 

 Besides, I would like to give credit to PTPTN for supporting my tuition fees 

during my Master’s Degree. A special thanks to the science officers at CSNano for 

their assistance in supplying technical supports. My fellow postgraduate seniors also 

recognized for their motivation, in particularly, Miss Nurul Husna for her guidance 

and always came out with useful advices when I am facing difficulties. I would like 

to extend my appreciation to my friend, Mr. Teo Hao Ting for his advices and 

supports in my experimentation, relevant literatures, and motivation. I would like to 

thank my family members for supporting me throughout my high education. For all 

other colleagues and people that I did not listed in this limited space, but have helped 

me in this long journey, I am very grateful and truly appreciate for the help. 

  



vi 

ABSTRACT 

 

 

 

 

Photochromic soft materials have received particular attention for inducing 

excellent properties in many fields such as displays, sensor, energy, catalysts, 

molecular electronics, and memory. In particular, organometallic compounds such as 

Group 11 azolate complexes with luminescent properties reveal promising 

characteristics from supramolecular self-assembly of columnar nanostructures upon 

ultraviolet and visible light treatments. Although self-assembled nanostructures with 

azobenzene moieties have been used to study photochromic cis-trans isomerization 

towards light irradiation, there is no example for the utilization at the side-chains of 

the metal complexes. Herein, this study reports the first successful synthesis of 

phosphorescent trinuclear gold(I) pyrazolate complex bearing hydrophobic 

azobenzene side-chains. The gold complex (7) was synthesized via seven stepwise 

reactions and named as tris[(E)-3,5-dimethyl-4-(4-((4-propoxyphenyl)diazenyl) 

benzyl)-1H-pyrazolato-N,N’]trigold(I) (7, 28%). Compound 7 showed cis-trans 

isomerization upon UV and visible light irradiation at 365 nm and 535 nm, 

respectively. Interestingly, metal-metal interaction was not affected by the cis-trans 

photoisomerization. Compound 7 showed emission of a combination of 423, 472 and 

537 nm with excitation wavelength of 271 nm, large stoke shift of 266 nm suggested 

the emission to be phosphorescence. Compound 7 was able to show white 

phosphorescence in dried solid state, which was resulted from the region of blue, 

green and red emission. Compound 7 was non-emissive in CHCl3, but able to regain 

emission upon addition of water which decreased the solubility of compound 7 in 

CHCl3. Successful formation of metal-metal interaction directly related to the 

phosphorescence of compound 7, which can be utilized as aggregation-induced 

emissive (AIE) material with photochromic properties. 
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ABSTRAK 

 

 

 

 

 Bahan lembut fotokromik telah menerima perhatian khusus untuk mengaruh 

sifat yang sangat baik dalam pelbagai bidang contohnya paparan, pengesan, tenaga, 

mangkin, elektronik molekul, dan memori. Khususnya, sebatian-sebatian 

organologam contohnya kompleks azolat kumpulan 11 dengan sifat pendarcahaya, 

mendedahkan ciri-ciri yang menjanjikan disebabkan oleh penswahimpunan 

supramolekul struktur nano berturus apabila dirawat dengan cahaya ultra ungu dan 

cahaya nampak. Walau struktur nano terswahimpun dengan moeiti azobenzena telah 

digunakan untuk mengkaji pengisomeran cis-trans fotokromik ke arah penyinaran 

cahaya, tiada contoh penggunaannya pada rantai sisi kompleks logam. Kajian ini 

melaporkan sintesis pertama yang berjaya bagi kompleks pirazolat aurum(I) 

trinukleus pendarfosfor yang mempunyai rantai sisi azobenzena fotokromik. 

Kompleks aurum (7) telah disintesis melalui tujuh tindak balas peringkat demi 

peringkat dan dinamakan sebagai tris[(E)-3,5-dimetil-4-(4-((4-propoksifenil)diazenil) 

benzil)-1H-pirazolato-N,N’]triAurum(I) (7, 28%). Sebatian 7 menunjukkan 

pengisomeran cis-trans apabila disinar dengan cahaya UV dan cahaya nampak 

masing-masing pada 365 nm dan 535 nm. Apa yang menarik, interaksi logam-logam 

tidak terjejas oleh proses pemfotoisomeran cis-trans. Sebatian 7 menunjukkan 

pancaran pada gabungan 423, 472 and 537 nm dengan panjang gelombang pengujaan 

271 nm, anjakan Stoke yang besar sebanyak 266 nm mencadangkan pancaran 

tersebut adalah pendarfosfor. Sebatian 7 mampu mempamerkan pendarfosfor putih 

dalam keadaan pepejal terhasil daripada pancaran dalam kawasan biru, hijau dan 

merah. Sebatian 7 tidak menghasilkan pancaran di dalam CHCl3, tetapi mampu 

menghasilkan pancaran selepas ditambah air yang menurunkan keterlarutan sebatian 

7 di dalam CHCl3. Kejayaan pembentukan interaksi logam-logam adalah berkaitan 

secara langsung dengan pendarfosfor sebatian 7, yang boleh digunakan sebagai 

bahan pancaran pengagregatan teraruh (AIE) yang bersifat fotokromik. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Photochromic materials are known for their flexibility in structural 

arrangement upon the light irradiation of different but specific wavelength. Energy 

absorbed by the chromophore is stabilized and this process requires the adjustment of 

geometrical structure. For example, azobenzene changes from trans-form to cis-form 

after being irradiated by ultraviolet light at 300-400 nm and reversed back from 

cis-form to trans-form after being irradiated by visible light at 435-500 nm [1]. 

Furthermore, the fact that light as a free, clean, renewable and sustainable energy 

source has made photochromic materials unavoidable building part in developing 

smart materials. 

 

 

Azobenzene has been used to fabricate various smart materials in different fields 

over the past decades. In surface and coating, the reworkable adhesive was fabricated 

using multiazobenzene sugar-alcohol derivatives [2]. Besides, mesoporous 

nanocontainer with azobenzene switches was fabricated for the purpose of continuous 

self-healing anticorrosion coating [3]. Furthermore, light-responsive bio-materials 

were also pursued mechanical purpose such as actuation properties. For example, a 

benzene-1,3,5-tricarboxamide containing azobenzene (BTA-3AZO) was synthesized 

and tested for the application of rewritable films and remote-controlled 

three-dimensional (3D) actuation [4]. A light-responsive film was also facricated 

using a thin film coated with a mixture of liquid crystal elastomer (LCE) and 

azobenzene as the photochromic motif. The photochromic LCE film was used to 

mimic the gripping action as the Venus flytrap [5] and the actuating mechanics were 

able to be applied as smart microrobots. Besides, these azobenzene-containing LCE 

was also fabricated into strip form and into belt form to mimic caterpillar locomotion 

[6] and rolling motion [7], respectively. In addition, a light-driven swimmer with 



 

2 

griper was also fabricated successfully by utilizing photoisomerization of azobenzene 

in the material used [8]. With many successful examples of light-responsive actuators, 

azobenzene-containing materials were also found useful in fabricating artificial cilia 

[9] that have great potential in producing flow, enabling ‘lab-on-a-chip’ and even used 

to create artificial organs such as esophagus and intestine. Therefore, photochromic 

materials have shown great potential as the smart material that can be controlled easily 

and remotely by using light as the sustainable and renewable energy source. 

 

 

Great attention has been given by the researchers on this photochromic 

material. The azobenzene units were incorporated as photochromic motif into the 

metal complexes, ranging from iron, zinc, nickel, copper, palladium, platinum and 

gold, thus producing photochromic metal complexes. The first attempt was carried out 

back to 1969 by Murray [10] to synthesize azobenzene-conjugated platinum(II) 

terpyridine complexes. As in 2007, gold(I) alkynyl phosphine complex containing 

azobenzene was documented [11]. In 2010, nickel(II) and palladium(II) complexes 

using azobenzene-containing ligands were synthesized [12]. While in 2011, Yeap and 

colleagues [13] synthesized copper(II) and nickel(II) complexes with ligands derived 

from azobenzene-cored Schiff base. In 2012, palladium(II) complexes with 

azobenzene-containing ligands were synthesized [14]. In 2013, Savel and colleagues 

[15] synthesized platinum(II) complex with ethylene-linked azobenzene ligands. 

Besides, palladium(II) complexes with azobenzene-containing ligands were reported 

[16]. On the other hand, metal complexes from zinc(II), copper(II), iron(II) and other 

transition metals with azobenzene-functionalized imine-based ligands were 

synthesized [17], whereas Deibel and colleagues [18] came out with platinum(II) 

complexes from azobenzene and zwitterionic quinonoid ligands. Most recently in 

2019. rhenium(I) complexes were prepared using azobenzene iminopyridine 

ligands[19].  

 

 

Notably, the study on gold complex incorporated with azobenzene is rarely 

seen in past decades. This is especially true for gold species which has an oxidation 

number of +1 and high stability. Gold is special for its aurophilic interaction via 

configuration complexation. There is a scarce amount of studies carried out on gold(I) 

metal complex incorporated with photochromic motif such as azobenzene. Alkynyl 
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phosphine ligands are one of the reported examples. However, there is another 

emerging family for the gold(I) complex with pyrazole ligands. Back to 1998, Kim 

and colleagues [20] reported on hexagonal columnar gold(I) pyrazolate complex 

bearing three alkyl side chains. In 2001, Aida and colleagues [21] synthesized 

trinuclear gold(I) pyrazolate complex with dendritic side chains to form 

phosphorescent fibers. Besides, in 2004, Kishimura and colleagues [22] reported a 

trinuclear gold(I) pyrazolate bearing long alkyl side chains to form metallogel in 

hexane. The metallogel was able to be altered upon heating-cooling treatment and 

doping-dedoping of silver ions on its phosphorescent color-tuning in the range of 

red-green-blue (RGB). 

 

 

However, the potential of gold(I) pyrazolate complexes incorporated with 

photochromic motif such as azobenzene has yet to be explored. This study presents the 

synthesis of novel gold(I) pyrazolate complex incorporated with azobenzene and 

investigation of the photophysical properties of the complex.  

 

 

 

 

1.2 Statements of Problem 

 

 

As the member in the family of gold complexes that used pyrazole derivatives 

as ligands, studies on gold(I) pyrazolate complexes have always been inconsistent 

throughout the century. Recently, huge numbers of photochromic metal complexes 

emerged, however gold(I) pyrazolate complex for its photochromic properties is still 

under studied. This study synthesized the novel gold(I) pyrazolate complex with 

photochromic properties. 

 

 

Besides, the information on the relation between photochromic switching of 

the azobenzene side-chains and the phosphorescence from metal-metal interactions of 

gold(I) pyrazolate complex is lacking. Together with the continuous interest on 

exploring gold(I) pyrazolate complex, this study was carried out to investigate on the 

effect of photochromic azobenzene side-chains onto the physical and chemical 

properties for the gold(I) pyrazolate complex. 



 

4 

 

1.3 Objectives of the Study 

 

 

The objectives of this study were: 

 

 

i) To synthesize pyrazole ligand incorporated with azobenzene, 

(E)-3,5-dimethyl-4-(4-((4-propoxyphenyl)diazenyl)benzyl)-1H-pyrazole (6) 

via six consecutive steps. 

 

 

ii) To synthesize the photochromic gold(I) pyrazolate complex, 

tris[(E)-3,5-dimethyl-4-(4-((4-propoxyphenyl)diazenyl)benzyl)-1H-pyrazolat

o-N,N’]-tri-gold(I) (7) via the Schlenk technique using compound 6. 

 

 

iii) To study the photophysical and phosphorescent properties of complex (7). 

 

 

 

 

1.4 Scope of the Study 

 

 

In the preparation of azobenzene, p-aminoethyl benzoate and phenol were used 

in the coupling reaction to synthesize (E)-ethyl 4-((4-hydroxyphenyl)diazenyl) 

benzoate (1). For step two Williamson ether synthesis, compound 1 and 

1-bromopropane (C3H7Br) were used to synthesize (E)-ethyl 4-((4-propoxy 

phenyl)diazenyl) benzoate (2). For step three reduction, compound 2 was stirred with 

lithium aluminium hydride (LiAlH4) and dried tetrahydrofuran (THF) to synthesize 

(E)-(4-((4-propoxyphenyl)diazenyl) phenyl)methanol (3). For step four Appel 

bromination, compound 3 and tetrabromomethane (CBr4) were used in the presence of 

triphenylphosphine (PPh3) to synthesize (E)-1-(4-(bromomethyl)phenyl)-2-(4- 

propoxyphenyl)diazene (4). For step five diketo-alkylation, compound 4 and 

acetylacetone were stirred under reflux to synthesize (E)-3-(4-((4-propoxy 

phenyl)diazenyl)benzyl) pentane-2,4-dione (5). For step six Knorr pyrazole synthesis, 

compound 5 and hydrazine were used to synthesize (E)-3,5-dimethyl-4-(4-((4- 

propoxyphenyl)diazenyl)benzyl)-1H-pyrazole (6). In the last step, compound 6 and 
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chloro(dimethyl sulfide)gold(I) salt in the presence of potassium hydroxide (KOH) 

using Schlenk technique to synthesize tris[(E)-3,5-dimethyl-4-(4-((4-propoxy 

phenyl)diazenyl)benzyl)-1H-pyrazolato-N,N’]trigold(I) (7). There were various 

instruments used in order to characterize the synthesized compounds. Throughout the 

synthetic route to synthesize compound 6, the Proton-1 Nuclear Magnetic Resonance 

(
1
H-NMR), Carbon-13 Nuclear Magnetic Resonance (

13
C-NMR), and 

Fourier-Transform Infrared Spectrometer (FTIR) were used for the characterization. 

As for the synthesis of compound 7, Matrix-Assisted Laser Desorption/Ionization 

Mass Spectrometer (MALDI-TOF MS) and FTIR were used, chemical resources for 

re-synthesis and instrumentation usage. As for the analysis of photophysical properties 

of 7, UV-Vis spectrophotometer used not only to measure the presence of n-π* and 

π-π* transition which accordance to the presence of azobenzene moiety in compound 7. 

This also allowed the real-time monitoring on the photoisomerization occurred in 

compound 7 by using 365 nm hand-held UV lamp and 535 nm visible-light LED torch 

as the light sources. Besides, the maxima absorption was used in spectrofluorometer 

measurement as excitation wavelength in order to excite compound 7. Both the 

recorded excitation and emission wavelengths were interpreted and analyzed as the 

luminescent profile of compound 7. Lastly, all photographic images were taken using 

SM-G950FD. 

 

 

 

 

1.5 Significance of the Study 

 

 

In this study, the novel pyrazole ligand using azobenzene moiety, compound 6 

was successfully synthesized and further synthesis was carried out to obtain the 

resulting metal complex, compound 7. Compound 7 illustrated very interesting 

behavioral changes upon light irradiation using a hand-held UV lamp at a wavelength 

of 365 nm and visible light LED torch at a wavelength of 535 nm. At the same time, 

the solvation test carried out have showed that compound 7 able to exhibit 

phosphorescent in dried solid state as compared to solvated liquid state. The 

aggregation behavior was believed to have affected the formation of aurophilic 

interaction and thus, led to the alteration of phosphorescence for compound 7. This 

study served as the herald for other future studies and discoveries such as using 
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different photochromic groups or by other modifications.The current research findings 

would contribute to the development of smart materials which illustrate 

aggregation-induced emission (AIE). 

 

 

 

 

1.6 Flowchart of the Study 

 

 

Flowchart of the study is shown in Figure 1.1. The figure illustrates the 

stagewise studies carried out, starting from synthesis of the pyrazole ligand (6), 

followed by the synthesis of the gold(I) pyrazolate complex (7), characterization using 

spectroscopic techniques such as 
1
H- and 

13
C-NMR, FTIR, UV-Vis spectrophotometer, 

and spectrofluorometer, as well as the study of photophysical and phosphorescent 

properties for the compound 7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Flowchart of the study. 
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