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ABSTRACT 

In this study, silicon thin films had been successfully produced by using Very 

High Frequency-Plasma Enhanced Chemical Vapour Deposition (VHF-PECVD) 

technique. The phase transition from amorphous to crystalline silicon along with 

crystallite types remains unknown, especially at VHF region up to 200 MHz. In this 

work, very high frequencies ranging from 35 MHz until 200 MHz were investigated. 

The deposition time were fixed for 3 minutes and 15 minutes, while Radio Frequency 

(RF) power were fixed at 20 W and 30 W. For comparison purpose, RF-Magnetron 

Sputtering technique was used to deposit silicon thin films with the same RF power at 

20 W and 30 W. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-

FTIR) spectroscopy and Raman spectroscopy were used to determine the phase 

transition of film structure from amorphous to crystal, while X-Ray Diffraction (XRD) 

technique was used to determine the crystallites in the samples for both deposition 

techniques. Morphology study was carried out using Field Emission Scanning Electron 

Microscope (FESEM) and Atomic Force Microscope (AFM). The transition from 

hydrogenated amorphous silicon (a-Si:H) to hydrogenated crystalline silicon (c-Si:H) 

in the thin film samples was observed as deposition frequency increased from 35 MHz 

to 200 MHz. Typical Si (111) and Si (311) crystalline were formed in VHF-PECVD 

samples while only Si (311) was formed in RF-Magnetron Sputtering. VHF-PECVD 

produced 248 nm and 250 nm film thicknesses compared to RF-Magnetron Sputtering 

at only 34 nm. Rougher films were produced by VHF-PECVD with maximum average 

surface roughness of 3.64 nm compared to RF-Magnetron sputtering at 0.38 nm. 

Therefore, it can be concluded that the transition of silicon film from amorphous to 

crystal occurred at high deposition frequency using VHF-PECVD technique, but were 

hardly seen for RF-Magnetron Sputtering samples as the deposited thin films were too 

thin. 
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ABSTRAK 

Dalam kajian ini, filem tipis silkon telah berjaya dihasilkan melalui teknik 

pemendapan wap kimia peneguhan plasma-berfrekuensi sangat tinggi (VHF-PECVD). 

Perubahan fasa daripada amorf ke hablur silikon dengan jenis kristalit terhasil masih 

tidak diketahui, terutamanya pada frekuensi sangat tinggi sehingga 200 MHz. Dalam 

kerja ini, frekuensi sangat tinggi dalam julat 35 MHz sehingga 200 MHz telah dikaji. 

Tempoh masa pemendapan ditetapkan pada 3 minit dan 15 minit, manakala kuasa 

frekuensi radio (RF) pula ditetapkan pada 20 W dan 30 W. Bagi tujuan perbandingan, 

teknik percikan magnetron berfrekuensi radio diguna pakai untuk memendap filem 

tipis silikon dengan menggunakan kuasa RF yang sama, iaitu pada 20 W dan 30 W. 

Spektroskopi pantulan keseluruhan dikecilkan – infra merah transformasi Fourier 

(ATR-FTIR) dan spektroskopi Raman telah digunakan untuk menentukan perubahan 

fasa struktur filem daripada amorf kepada hablur, manakala teknik pembelauan sinar-

X (XRD) digunakan untuk menentukan kristalit dalam sampel-sampel untuk kedua-

dua teknik pemendapan. Kajian morfologi pula telah dijalankan menggunakan 

mikroskop elektron pengimbasan pancaran medan (FESEM) dan mikroskop daya 

atom (AFM). Transisi daripada amorf silikon berhidrogen (a-Si:H) kepada hablur 

silikon berhidrogen (c-Si:H) dalam sampel filem tipis telah dicerap apabila frekuensi 

pemendapan meningkat dari 35 MHz ke 200 MHz. Kristalit lazim Si (111) dan Si (311) 

telah terbentuk dalam kesemua sampel VHF-PECVD, manakala hanya kristalit Si 

(311) yang terhasil pada filem melalui teknik percikan magnetron berfrekuensi radio. 

VHF-PECVD menghasilkan filem berketebalan 248 nm dan 250 nm berbanding 

dengan teknik percikan magnetron berfrekuensi radio hanya pada 34 nm. Filem yang 

lebih kasar dihasilkan oleh VHF-PECVD dengan purata maksimum kekasaran 

permukaan mencecah 3.64 nm, berbanding percikan magnetron pada 0.38 nm. Oleh 

itu, kajian ini telah menyimpulkan bahawa berlakunya transisi filem silikon daripada 

amorf kepada hablur pada frekuensi pemendapan yang tinggi menggunakan teknik 

VHF-PECVD, namun perkara ini tidak dapat dilihat dengan jelas pada filem yang 

dihasilkan melalui teknik percikan magnetron kerana filem tipis termendap adalah 

terlalu nipis. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Silicon (Si) thin film has been in the semiconductor and solar cell industries 

since decades. Silicon plays an important role in these industries as it has metalloid 

properties, which not all elements have. In addition, silicon really perform effectively 

in its optical properties and electrical properties, making it become one of the famous 

elements to be used in these industries (1–7).  

Atomic arrangement of Si thin film has always been part of the main course of 

the research. This is due to the fact that difference in atomic arrangement may possess 

different characteristics and therefore can be used for different applications. For 

example, in heterojunction type solar cell, thin film of hydrogenated amorphous silicon 

(a-Si:H) has been used due to increase the efficiency of solar cell, while for Micro-

Electro Mechanical System (MEMS), its best application is its crystalline structure (c-

Si:H) as crystal can withstand more pressure and better strength distribution (3,8,9). In 

term of surface morphology study, rougher film is needed for solar cell fabrication, 

which will increase the efficiency as the capabilities of rougher film to trap the incident 

light (10). The morphology condition also has been developed and doped with other 

materials to improve the capabilities of light trapping mechanism in related with the 

morphology condition of the film (11).  

There are many ways to deposit silicon thin film, such as by using Radio 

Frequency (RF) Magnetron Sputtering, Plasma Enhanced Chemical Vapour 

Deposition (PECVD), spin coating and others (12). All these techniques have their 

own advantages and drawbacks. Typically, in conventional PECVD, silane (SiH4) and 

hydrogen (H2) gases are used as precursor while argon gas (Ar) is used as plasma 

source. These gases will produce the deposition of hydrogenated silicon (Si:H) thin 
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film (13). In contrast, sputtering technique uses a solid target as main source of Si film 

since sputtering is a type of Physical Vapour Deposition (PVD), with only Ar is 

involved for plasma generation process.  

The transition from a-Si:H to c-Si:H thin film depends on several PECVD 

parameters such as temperature, working pressure, power density and plasma 

excitation frequency. In 2004, C. Das et al. have shown in their studies that the 

transition from amorphous to crystal occurred along with the increment of crystal size 

as the temperature of substrate increased from 180oC to 370oC (1). For sputtering, 

usually post annealing is needed to provide the transition from amorphous to 

crystalline if the film deposited at low temperature with low RF power, otherwise, 

higher temperature is needed during deposition compare to PECVD (14–16). Apart of 

temperature, pressure also plays important role. Different working pressure can 

provide significant change to the sample. W. Li et al. (2009), found that the working 

pressure of PECVD above 300 Pa with hydrogen to silane flow rate ratio, or also 

known as hydrogen dilution ratio, R, ranging from 300 to 500 led to better crystallinity 

of the silicon thin film compared to below 300 Pa, with no trace of silicon crystal in 

the analysis (17). It has also been shown in a study by G. Lihui et al. (1998), at 13.56 

MHz, deposition rate improved from 0 Torr until 4 Torr, then decreased when the 

pressure set increased to 8 Torr (18). Meanwhile, for Magnetron Sputtering, deposition 

pressure also affects the film deposition rate, as chamber pressure will affect the mean 

free path of adatoms. According to S. B. Hashim et al., (2012), Si film deposited by 

RF sputtering shown decrement of deposition rate as the deposition pressure increased 

from 5 mTorr to 8 mTorr (19). 

In correlation of RF power and crystallinity of the sample, P. Pratim et al. 

(2002) have shown that the transition of hydrogenated Si (Si:H) thin film from a-Si:H 

to c-Si:H exists as RF power up to 285 mW/cm2 in PECVD (20). Furthermore, S. Q. 

Xiao et al. (2010) also shown the same transition of Si by varying the power densities 

from 16.7 mW/cm3 to 20.8 mW/cm3 (21). This also provide similarities with the results 

from Magnetron Sputtering deposition technique. According to Y. Bouizem et al. 

(2013), the transition can be seen into crystalline silicon film when RF power increased 

from 180 W to 200 W (22). 
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On the other hand, excitation frequency for both PECVD and Magnetron 

Sputtering may affect the atomic structure Si thin film. H. Haijie et al. (2014) stated 

that the driving frequency may affect the state of Si film in Magnetron Sputtering. In 

their study, 2 MHz and 60 MHz excitation frequency set caused increased in crystal 

compared to conventional RF excitation frequency (23). Meanwhile in PECVD, 

according to M. Fukawa et al. (2001), frequency does affect the atomic structure of the 

thin film. The frequencies used were ranging from 13.56 MHz to 40 MHz. The results 

shown that the crystallinity increased as the excitation frequency increased to 40 MHz 

(24). In 2001, J. Takuya Matsui et al. did study the performance of solar cell in 

polycrystalline Si thin film, which grown by PECVD at 100 MHz. From the results, it 

clearly shown that polycrystal can be existing at that particular frequency (6). 

Correlation of the deposition of thin film using Very High Frequency (VHF) PECVD 

and crystallinity of the thin film can be shown in these previous studies (1,7,25–28). 

This strengthen the theory that higher frequency can affect the structure of the thin 

film. Typical Si crystallites grown at VHF frequencies are Si (111), Si (220) and Si 

(311) (1,26,28). 

Conventionally, the RF excitation frequency in PECVD is around 13.56 MHz. 

Therefore, many studies had been carried out at this frequency. However, until now, 

there are still lacking in studies related with structural and morphology properties in 

frequency range until 200 MHz. Hence, phase change analysis from amorphous to 

crystalline in VHF deposition technique will be fundamental for this research with the 

effect of the phase change towards film structure and morphology. In this research, 

conventional RF-Magnetron Sputtering also will be included and discussed together 

with VHF-PECVD in Chapter 4.  
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1.2 Problem Statement 

As mentioned earlier, there are many possible parameters that can be altered to 

obtain crystalline Si deposition. Even in conventional RF frequency, crystalline Si still 

can be produced at higher substrate temperature, which is higher than 100oC and 

above; high hydrogen dilution ratio, optimum deposition pressure and deposition 

power (2,29–31). However, the crystallinity remain unknown if the deposition 

frequency is increased up to 200 MHz. Perhaps, VHF can produce higher Si 

crystallinity, at much lower temperature. Meanwhile, RF-Magnetron Sputtering 

usually needs either higher than 200oC or post annealing process to produce crystalline 

Si with chamber pressure more than 4 Torr. Therefore, the deposition of Si film by 

RF-Magnetron Sputtering with similar temperature and deposition pressure as VHF-

PECVD will provide information in term of film crystallinity along with phase change 

from amorphous to crystalline state (32)(33).  

On the other hand, another significant consequence that can relate is hydrogen 

content, CH. According to the previous studies, crystallinity of the Si film will affect 

the amount of CH in the film (1,34,35). The reduction of CH in the film may give high 

purity of Si film. Consequently, this study may give a knowledge regarding the effect 

of VHF toward CH in the Si thin film. 

Typical polycrystalline usually produced in Si film are Si (220), Si (111) and 

Si (311). Among of these three crystallites, the possibilities and transition from one 

crystallite to another still remain unclear. There were several studies shown that 

disappearing certain XRD peaks as the substrate temperature increased at VHF-

PECVD deposition (1,29). Therefore, this study is an opportunity to investigate the 

effect of VHF plasma excitation towards the crystallite types in the Si film. For RF-

Magnetron Sputtering, type of crystallite form at low temperature remained unknown, 

as majority of previous study need high temperature. This eventually can support 

information with related to crystallinity regarding types of crystallite which can be 

formed at low temperature.  
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The unknown film morphology condition and deposition rate at VHF plasma 

excitation ranging to 200 MHz may rise questions. These two things are significantly 

important especially in the solar cell performance (10,36,37). C. Das et al. stated that, 

the surface roughness is related with the crystallinity in the sample. Nevertheless, it 

will reduce as the deposition temperature increase (1). Regardless with the statement, 

it is an opportunity to determine the effect of VHF plasma excitation toward surface 

roughness. On the other hand, deposition rate and morphology condition for film 

grown by RF-Magnetron Sputtering without involvement of high temperature could 

be known.   
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1.3 Objectives 

The objectives of the research are: 

(a) To determine the effect of VHF plasma excitation in PECVD to the transition 

of a-Si:H to c-Si:H, and the amount of hydrogen content in the Si film by using 

Raman spectroscopy and ATR.  

(b) To analyse the crystallite types of silicon thin film deposited using VHF-

PECVD and RF-Magnetron Sputtering, using XRD. 

(c) To characterise the surface morphology of the Si thin film deposited using 

VHF-PECVD and Magnetron Sputtering by using AFM and FESEM. 

1.4 Scope of the Study 

In this study, only two types of film deposition techniques were used; VHF-

PECVD and RF-Magnetron Sputtering. The deposition temperature was set to 180oC 

in order to have minimal defect densities at the samples (2,38). The frequencies were 

varied and increased gradually from 35 MHz to 200 MHz for VHF-PECVD, while for 

RF-Magnetron Sputtering, fixed at 13.56 MHz. All samples were deposited on Si (100) 

wafer, doped with boron. This is to provide a study that can be benefits to MEMS and 

solar cell application whereby film usually deposited on Si substrate or another Si film 

(16,39).  For characterisation, XRD, Raman spectroscopy and FTIR were used to 

determine the transition of film structure from a-Si:H to c-Si:H along with the CH for 

selected PECVD films. While for deposition rate and morphology study, FESEM and 

AFM analysis had been done. All data then were compared with RF-Magnetron 

Sputtering samples. 



 

7 

1.5 Significant of the Study 

To date, there is still no study related with crystallite types and Raman 

crystallinity, Xc of VHF-PECVD deposition of silicon thin film carried out at higher 

frequency up to 200 MHz. As a consequence, the results can be used as reference for 

other researcher to grow specific crystal orientation. The amount of hydrogen content, 

CH also significant in this study as researcher may keep updating on the way to produce 

high purity of Si thin film, with less amount of hydrogen bonded silicon. On the other 

hand, fixed at 180oC will give set of results with low defect density. Consequently this 

will beneficial for those researchers who want to study the effect of high frequency 

deposition with low defect densities (38). All the data also will be discussed along with 

RF-Magnetron Sputtering. This definitely will give extra information regarding Si thin 

film fabrication by these two techniques, thus enlightens not only the academia, but 

also the semiconductor and solar cell industries. 
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