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ABSTRACT

In bubbly-liquid flow, a transient phenomenon is happened due to the dynamics 
of the bubble, pressure, or temperature at any location in the flow. It is well known 
that shock wave propagation in liquid media is strongly affected by the presence 
of bubbles that interact with the shock wave, and the effects of the gas bubbles. 
The presence of interfacial interactions between the bubble and the liquid, bubbles 
interaction and compressibility of the viscoelastic liquid flow inevitably make the 
problem a difficult one. Due to these factors that a mathematical model of bubbly- 
liquid flow becomes more complex than the transient flow encountered in single
phase flow. The mathematical model of a transient pseudo-compressible two-phase 
gas bubble in viscoelastic liquid flow and heat transfer is discussed. Specific models 
are derived to describe the shock wave propagation behaviour of the bubbly-liquid flow. 
The gas behaviour inside a spherical bubble under the shock wave is analysed using the 
polytropic models. The modified Rayleigh-Plesset equation that described the bubble 
dynamics in a pseudo-compressible viscoelastic liquid is derived using the idea of 
conservation of kinetic energy equation, incorporating the effect of a bubble to bubble 
interaction. Kelvin-Voigt (linear viscoelastic) liquid and second grade (nonlinear 
viscoelastic) liquid are the two specific liquids considered. The governing equations 
are approximately solved using reduction perturbation method, and then Korteweg- 
de-Vries-Burger (KdVB) equations are derived. Adomian decomposition method is 
applied to solve the equations numerically. The result shows that the combination 
of acoustic, thermal, and viscous damping effect causes rapid damping in the wave 
propagation in the bubbly viscoelastic liquid flow. For Kelvin-Voigt liquid, the size of 
the bubble radius has no influence on the amplitude of the shock wave from zero up 
to 40s, while for second-grade liquid, the bigger the bubble, the larger the amplitude 
of the wave propagation at t  =  8 s. For the thermal variation, for both Kelvin-Voigt 
and second grade liquids, it is observed that a higher polytropic index gives rise to 
the lower amplitude of the shock wave. This implies that an isothermal process will 
give rise to a shock with the highest amplitude and dissipate faster. A highly viscous 
Kelvin-Voigt liquid dissipates faster, while for second-grade liquid, the result indicates 
no effect in either the amplitude or the steepness on the shock wave. It is observed 
in the case of Kelvin-Voigt liquid, that there is a significant effect of the modulus of 
elasticity on the shock wave, and no difference in the amplitude of the shock wave 
as a result of variation of relaxation parameter for second-grade liquid. For both 
Kelvin-Voigt and second-grade liquids, the variation in the number of bubbles and 
cluster size has relatively no effect on the shock propagation in the parameter values 
under consideration. Global and local stability analysis of the KdVB equations are 
carried out, and many novel wave solutions to the equations are derived. This study 
is useful for the performance analyses of bubbly viscoelastic liquid flow in predicting 
shock propagation in the liquid, and provides useful information for the effects of heat 
transfer phenomenon and applied pressure on transient pseudo-compressible bubbly- 
liquid flow.
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ABSTRAK

Dalam aliran cecair berbuih, fenomena fana terjadi disebabkan dinamik gelembung, 
tekanan atau suhu di sebarang lokasi dalam aliran. Telah diketahui bahawa perambatan 
gelombang kejutan dalam medium cecair sangat terkesan dengan kehadiran gelembung 
yang berinteraksi dengan gelombang kejutan, dan kesan daripada gelembung gas tersebut. 
Kehadiran interaksi antara muka antara gelembung dan cecair, interaksi gelembung 
dan kebolehmampatan aliran cecair viskoelastik pasti menjadikan masalah sangat sukar. 
Disebabkan oleh faktor-faktor ini, model matematik aliran cecair berbuih menjadi lebih rumit 
berbanding aliran fana yang ditemui dalam aliran fasa tunggal. Model matematik bolehmampat 
pseudo fana gelembung gas fasa-dua dalam aliran cecair viskoelastik dan pemindahan haba 
dibincangkan. Model khusus diterbitkan untuk menerangkan kelakuan perambatan gelombang 
kejutan dalam aliran cecair berbuih. Kelakuan gas di dalam satu gelembung sfera semasa 
gelombang kejutan dianalisa menggunakan model politropik. Persamaan Rayleigh-Plesset 
terubahsuai yang menerangkan dinamik gelembung dalam cecair viskoelastik bolehmampat 
pseudo diterbit menggunakan idea persamaan keabadian tenaga kinetik berserta kesan interaksi 
gelembung dengan gelembung. Cecair Kelvin-Voigt (viskoelastik linear) dan cecair gred kedua 
(viskoelastik tak linear) adalah dua cecair khusus yang dipertimbangkan. Persamaan menakluk 
diselesai secara hampir menggunakan kaedah usikan terturun dan seterusnya persamaan 
Korteweg-de-Vries-Burger (KdVB) diterbitkan. Kaedah penguraian Adomian digunakan 
untuk menyelesaikan persamaan tersebut secara berangka. Keputusan menunjukkan bahawa 
gabungan akustik, terma, dan kesan redaman likat menyebabkan redaman cepat semasa 
perambatan gelombang di dalam aliran cecair viskoelastik berbuih. Bagi cecair Kelvin-Voigt, 
saiz jejari gelembung tidak mempengaruhi amplitud gelombang kejutan dari sifar sehingga 
40s, manakala bagi cecair gred kedua, semakin besar gelembung, makin besarlah amplitud 
perambatan gelombang berlaku apabila t  =  8 s. Bagi variasi terma, kedua-dua cecair Kelvin- 
Voigt dan gred kedua, diperhatikan bahawa indeks politropik yang lebih tinggi menimbulkan 
amplitud gelombang kejutan yang lebih rendah. Ini mengimplikasikan bahawa proses isoterma 
akan menimbulkan gelombang kejutan dengan amplitud tertinggi dan lesap dengan lebih cepat. 
Cecair Kelvin-Voigt likat yang tinggi lesap lebih cepat, manakala bagi cecair gred kedua, 
keputusan menunjukkan tiada kesan sama ada terhadap amplitud ataupun kecuraman pada 
gelombang kejutan. Diperhatikan dalam kes cecair Kelvin-Voigt terdapat kesan ketara terhadap 
modul keanjalan pada gelombang kejutan, dan tiada perbezaan pada amplitud gelombang 
kejutan sepertimana hasil daripada keputusan variasi pengenduran parameter bagi cecair gred 
kedua. Bagi kedua-dua cecair Kelvin-Voigt dan gred kedua, variasi bilangan gelembung dan 
saiz kluster secara relatifnya tidak memberi kesan terhadap perambatan gelombang kejutan 
bagi nilai parameter yang dipertimbangkan. Analisis kestabilan global dan tempatan bagi 
persamaan KdVB dilakukan dan banyak penyelesaian gelombang tersohor persamaan ini 
diterbitkan. Kajian ini berguna untuk menganalisa keupayaan aliran cecair viskoelastik berbuih 
dalam meramalkan perambatan gelombang kejutan dalam cecair dan menyediakan maklumat 
berguna bagi kesan fenomena pemindahan haba dan mengenakan tekanan ke atas aliran cecair 
berbuih bolehmampat pseudo fana.
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CHAPTER 1

INTRODUCTION

This thesis is concerned with modified Rayleigh-Plesset equation (bubble 

dynamics equation) and the perturbation method to investigate the shock wave 

propagation in a bubbly pseudo-compressible viscoelastic liquid flow, incorporating 

the effect of bubble to bubble interaction. In this study, it is assumed that the population 

of bubbles is initially present in the viscoelastic liquid. These bubbles are normally 

spherical in shape and may interact with other. Therefore, the analysis of wave 

propagation in pseudo-compressible viscoelastic liquid with bubbles, together with 

inter bubble interaction, present the main aspect of this research.

In this chapter, the general overview of this thesis regarding the Rayleigh- 

Plesset equation and shock wave propagation in bubbly pseudo-compressible 

viscoelastic liquid flow will be discussed. Background of the research is presented 

in Section 1.1, while the problem statement is given in Section 1.2. The objectives 

of the research and scope of the study are highlighted in Section 1.3 and Section 1.4 

respectively. The significance of the study is presented in Section 1.5, whereas the 

research methodology is given in Section 1.6. Finally, the thesis outline is given in 

Section 1.7.

1.1 Research Background

Many systems in both physical and biological sciences do not involve only 

single phase, such as gas, liquid or solid, but exist as a mixture of two or more

1



Class Typical
regimes

Geom etry Configuration Examples

Separated
flows

Film  flow ■m Liquid film in gas 
Gas film in liquid

F ilm  condensation 
F ilm  boiling

Annular
flow II

Liquid core and 
gas film 
Gas core and 
liquid film

Film  boiling 
Boilers

Jet flow

l|' ; /
Liquid je t in gas 
Gas je t in liquid

Atomization 
Jet condenser

M ixed or 
Transitional 

flows

Cap, Slug 
or Churm- 
turbulent 

flow II
Gas pocket in 
liquid

Sodium boiling in 
forced convection

Bubbly
annular

flow II
Gas bubbles in 
liquid film with 
gas core

Evaporators with 
wall nucleation

D roplet
annular

flow II
Gas core with 
droplets and liquid 
film

Steam generator

Bubbly
droplet
annular

flow II
Gas core with 
droplets and liquid 
film w ith gas 
bubbles

Boiling nuclear 
reactor channel

Dispersed
flows

Bubbly
flow 131

Gas bubbles in 
liquid

Chemical reactors

Droplet
flow ill

Liquid droplets in 
gas

Spray cooling

Particulate
flow II

Solid particulate 
gas or liquid

Transportation  of 
powder

Figure 1.1 Two-phase flow inter-facial classification (Ishii and Hibiki, 2010)

phases. The components of a mixture could be gas-liquid, liquid-solid, liquid-liquid or 

gas-solid. Two-phase flow is very significant in phase-component-materials, which 

takes into account the flow configuration, behaviour as well as the interactions of 

phases. The occurrence of two-phase flow system indicates how significant a broad 

approach is needed in order to understand the flow behaviour. The complexity and 

difficulty of multi-phase flows have attracted a considerable amount of research in 

order to improve the understanding and knowledge regarding two-phase flow. The 

classification of two-phase flow depends on the interfacial structure of the two phases, 

such as dispersed flow, separated flow and transitional flow, which contributed to 

the difficulty in analysing two-phase flow systems. This classification is depicted in 

Figure 1.1 (Ishii and Hibiki, 2010).
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Bubbly-liquid flow is one of the types of two-phase flow. Despite the 

significance of two-phase flows, the understanding of bubbly-liquid flow is quite 

inadequate compared to single-phase flow. Therefore, the need to further understand 

the bubbly-liquid flow characteristics and behaviour represents the main interest of this 

research. Bubbly-liquid flow in three-dimensional case is shown in Figure 1.2.

The study of wave propagation in bubbly viscoelastic liquid is an interesting 

two-phase flow problem. Due to the high compressibility nature of gas in the bubbles, 

it can exhibit strongly nonlinear behaviour. The existence of small number of gas 

bubbles can significantly affect the acoustic properties of the liquid.

Bubbly-liquid occur in several physical, biological, industrial and engineering 

fields. For example, Leighton (2015) explained that due to the air becoming entrained 

in the ocean by activities of the passing ships, bubbles are form near the ocean surface 

area in the form of bubble clusters. The bubbles impact on the aquatic life and marine 

environment, in the middle and surface of the ocean is tremendous. Ichihara et al. 

(2004) analyses the seismic wave-producing bubbles in magma, where bubbles tend 

to be accumulated in the upper layers and topmost part of magma reservoirs, given 

rise to a pressure that can easily cause an abruptly discharging volcanic eruption. 

Kedrinskiy (2006) discovered that bubbles radial and volumetric oscillations result 

in the underwater bubbles explosion. Sonoluminescence (the emission of short bursts 

of light from imploding bubbles in a liquid when excited by sound) is also a broad 

area that has wide applicability of bubbly flows (Puente and Bonetto, 2005; Luo
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et al., 2015). Similarly, Storey and Szeri (2000) considered a case where acoustically 

forced bubbles create high temperatures and pressures during collapse, resulting in 

what is termed Sonochemistry, that enhances the chemical reaction and combination 

of substances within or near the bubbles .

Cunliffe et al. (2013) states that the existence of bubbles close to the surface of 

an ocean poses a lot of benefits that are both biological and environmental, which 

include the release of gas from the ocean and atmosphere. Shklyaev and Straube 

(2010) and Dugue et al. (2013) indicate that bubble screens are used to damp shocks 

produced by underwater bubble cloud explosions. That is because bubbly-liquid 

provides protection from shocks due to the dissipative nature of the bubbles.

Scardina and Edwards (2001) assert that bubbly-liquid occurs commonly in 

industry, whose presence can lead to a deficiency in terms of efficiency, for example, 

in boilers, chemical reactors and hydraulic devices. Scardina and Edwards (2001) 

ascertain that a poor understanding of the bubble-liquid mixture mechanics of a system 

may bring about safety issues that arise in industries that use very complex piping 

configurations, such as nuclear power plants. The benefit of bubbly-liquid flow can 

also be seen in medical ultrasound, such as lithotripsy (Zhong, 2013) and as micro

bubble contrast agents in imaging (Yang et al., 2018). Bubbles in constrain spaces do 

work as an efficient pump. This gives them the potential to be used as a drug delivery 

mechanism (Kooiman et al., 2014).

The important study of nonlinear wave propagation in bubbly-liquid mixture 

was carried out by Wijngaarden (1968), where he described the mixture as a 

continuum, Wijngaarden's derivation of the model was based on intuitive physical 

arguments and derived Boussinesq and Korteweg-de-Vries (KdV) type equations, 

where the incompressible liquid is assumed to have no any damping effects (viscosity, 

thermal, acoustic) and also no surface tension effect. Wijngaarden (1972) included 

the effect of viscosity in a bubbly incompressible liquid to derived weakly nonlinear 

waves evolution equation; the Korteweg-de-Vries and Burgers (KdVB) equation in
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a one-dimensional case. The effect of variations in bubbles velocities on the waves 

propagating in bubbly liquids was studied in Mond (1987), It was shown that waves 

are weakly damped even in a non-dissipative way (in the absence of viscosity). The 

thermal exchange between the bubble and liquid and the condition that provides the 

dominant damping mechanism during bubble oscillations was considered in Watanabe 

and Prosperetti (1994).

Drumheller and Bedford (1979) developed a model in which the liquid and 

the bubbles are treated as separate continua (the bubble and the liquid are moving 

with different velocities) with viscosity and surface tension. Fusco and Oliveri (1989) 

used a variational procedure to obtain the equations of motion to check the validity 

of the model. Oliveri (1989) proposed model equations to a non-diffusive bubbly- 

liquid and used asymptotic analysis to study the nonlinear wave propagation, where the 

gas volume fraction is small. Wave Modulation equations for planar one-dimensional 

bubbly medium with an incompressible carrier phase without surface tension and no 

damping mechanism was derived by Gavrilyuk (1989), and taken into account small 

viscous term and interphase heat exchange in Gumerov (1994).

It is worth mentioning that the nonlinear evolution equations mentioned 

above were derived with the condition that the surrounding liquid is purely viscous 

and incompressible. Nonlinear wave propagation in pseudo-compressible bubbly 

viscoelastic liquid (polymer solution, magma, syrup, suspensions) flows accounting 

for inter bubble interaction has not been investigated, which gave the motivation to 

consider the effect of viscoelasticity in monodisperse bubbly-liquid flow.

1.2 Problem Statement

Bubbly-liquid flow involves some relative motions of the bubble phase with 

respect to the liquid. This bubbly-liquid when flowing are influenced by the rheological
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properties of the bubble and liquid phases, and the interaction of the bubbles as 

well as the volume fraction of each of gas bubble and liquid phases. The existence 

of any amount of gas bubble makes the system a two-phase flow. The effects of 

compressibility of the bubble on the velocity of the wave propagation in bubbly flow 

and on the pressure changes are important to be considered in the analysis of bubbly- 

liquid flow. This is due to the fact that even the smallest amount of gas bubbles in flow 

affect the wave propagation.

This bubbly-liquid flow is a complex two-phase flow due to the compressibility 

nature of the gas phase. Due to the complex nature of the flow, the solution (both 

numerical and analytical) techniques of the bubbly flow is a very difficult task. In 

bubbly-liquid flow, viscoelastic liquids are mostly encountered. The viscoelasticity 

occurs naturally in the liquid properties or as an additive to the liquid which affects or 

causes changes in pressure or temperature at any location in the liquid flow. Bubbly- 

liquid flow is treated as either having inviscid or viscous liquid characteristics. Bubbly- 

liquid flow in real-life application are by their nature not only inviscid or viscous liquid, 

and any point in the bubbly-liquid flow is seen to have alternating high and low gas 

bubble fractions due to the viscoelastic properties of the liquid. These facts indicate 

that an improved bubbly-liquid flow model should be a viscoelastic model, that is, 

it should have both the Newtonian and non-Newtonian properties of the liquid under 

consideration. As bubbly-liquid flows, heat is constantly transferred to bubble from the 

surrounding temperature of the liquid and as a result, the temperatures of the bubbly- 

liquid changes. Therefore, this temperature fluctuation affects the flow behaviour. 

Some researchers on bubbly-liquid flow assumed that temperature is constant in the 

flow, thereby neglecting the energy properties of the system.

Many analytical and semi-analytical solution techniques have been developed 

recently to solve partial differential equations arising from mathematical models of 

bubbly-liquid flow. In most models of bubbly-liquid flow, the construction of solution 

is complex because of the nature of nonlinear, dispersive and dissipative terms. 

These lead to numerous difficulties that result to the use of stretching coordinate
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transformation with a lot of limitations. Hence, in improving computational accuracy 

for the numerical solution in bubbly-liquid flow, Adomian decomposition method has 

been found capable to predict accurately the flow characteristics in transient bubbly- 

liquid flow. This method has mostly been applied in the other areas of sciences. This 

method is yet to be used in a bubbly-liquid flow problem.

The problem statement can be summarised as follows:

• Bubble dynamics equation needs to be modified to account for the effect of liquid 

pseudo-compressibility, viscoelasticity and bubble to bubble interaction. Hence 

the modification of Rayleigh-Plesset(RP) equation.

• pseudo-compressibility, bubbly viscoelasticity and bubble-bubble interaction are 

encountered in liquid flow, hence the need to investigate their effect on shock 

wave propagation of the mixture.

• Some analytical method for solving shock wave models give limited solutions, 

hence the need for improvement.

1.3 Research Objectives

Based on the problems stated above, this study focuses to propose a theoretical 

model that considers the bubbles interaction, pseudo-compressible viscoelastic liquid 

with bubbles with the following specific objectives :

1. To propose a modified Rayleigh-Plesset equation that describes the bubble 

dynamics in a pseudo-compressible, viscoelastic liquid together with 

bubble-bubble interaction.

2. To adopt the perturbation method in investigating the effects of pseudo- 

compressible bubbly viscoelastic liquid flow with bubble-bubble interaction 

on the shock wave propagation.
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3. To check the existence of shock wave solutions and improve some analytical 

methods for solving shock wave model equations.

1.4 Scope of the Study

A modified Rayleigh-Plesset equation for bubbly pseudo-compressible 

viscoelastic (both linear and nonlinear) liquid flow that accounts for inter bubble 

interactions, with polytropic and heat transfer is considered in this research. A 

homogeneous model is used for the bubbly viscoelastic liquid flow. Two different 

viscoelastic liquids, linear (Kelvin-Voigt) and nonlinear (second-grade) are considered 

for pressure, velocity and bubble radius perturbations of the bubbly-liquid flow. The 

flow models are formulated with the assumption that bubbles and liquid are coupled 

together as a continuum and there is interphase interaction between liquid and bubbles. 

There is no mass transfer between the liquid and bubble, the buoyancy effect is 

neglected. The model equations are reduced to a single PDE using the perturbation 

method. The existence of shock wave solution, local and global stabilities for the 

single PDE are analysed. Methods of obtaining both the real and complex travelling 

wave solutions are improved using modified tanh-coth method combined with Riccati 

equation, and also problems with forcing terms.

1.5 Significance of Findings

In this thesis, the shock wave propagation in bubbly pseudo-compressible 

viscoelastic liquids flow, accounting for bubble-bubble interaction in both the 

polytropic and heat transfer cases are studied. The model equations are reduced 

to a nonlinear evolution equation whose solutions are derived and analysed. The 

significance of this research is due to the fact that incompressible viscoelastic liquid 

flow does not quite describe the wave propagation in bubbly viscoelastic liquid flow
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and therefore has not been quite successful in describing the wave propagation in 

bubbly-liquid flow. This difficulty has now been resolved by a pseudo-compressible 

viscoelastic liquid assumption. The rheological concept of compressible liquid is 

of special importance due to its application in many engineering and industrial 

applications.

This study will be beneficial to many industrial applications. In view of the flow 

transportation system, an accurate understanding of volume fractions, bubbly-liquid 

pressure fluctuation and heat transfer coefficient which are considered as significant 

parameters for economical design and operation will be explained. This research will 

give an important understanding of the flow phenomenon in the bubbly viscoelastic 

liquid systems, since the bubble nonlinear dynamics is known to greatly influence the 

bubbly viscoelastic liquid flow, that leads to a change in physical characteristics of the 

flow patterns, and eventually alters the magnitudes of the velocity and pressure wave 

propagation.

Generally, since it’s now possible for bubbles to interact without breakage or 

formation, which more often occur in bubbly flow scenario, this research will give 

a vital understanding of the flow phenomenon in the bubbly system, that is known 

to substantially influence the bubble-liquid flow, which leads to a change in physical 

properties of the flow patterns.

1.6 Research Methodology

The research methodology adopted to achieve the outlined objectives of this 

study of modified Rayleigh-Plesset equation, and shock wave propagation in bubbly 

pseudo-compressible viscoelastic liquid using perturbation method, is given in broad 

terms in Fig 1.3, while the overall research design is depicted in Fig 1.4.
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MODEL FORMULATION

1.6.1 Pseudo-Compressibility

The mathematical characteristic of governing flow equation used for 

incompressible liquids is changed from elliptic dominated to hyperbolic dominated, 

by applying artificial compressibility concept. Resorting to the pseudo-compressibility 

concept, the continuity constraint is perturbed by the time derivative of density. 

This approach introduces a variable in the Rayleigh-Plesset equation for bubble 

dynamics—pseudo-pressure, allowing one to use the slightly or weakly compressible 

liquid.

1.6.2 Mathematical Formulation

The mathematical formulation, using the mass and momentum conservation 

equations of the governing equation for the problem outlined in the objectives of 

this study is derived. They are coupled with the equation for the mixture density, 

that is the sum of the liquid and gas bubble densities. A modified general bubble
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dynamics (Rayleigh-Plesset) equation for compressible viscoelastic liquid with bubble 

interaction is derived using the energy conservation equation (Prosperetti, 1987; 

Doinikov, 2005). Equation of state for gases is coupled to the equation for the bubble 

dynamics. Two types of viscoelastic liquids will be considered in the governing 

equation, which are the Kelvin-Voigt and second grade liquids. A three-dimension flow 

is considered in the model formulation. The model equations are linearised to obtain 

the non-dispersive wave equations and the speed of wave in the bubbly-liquid. Using 

non-dimensional variables, each equation is written in a non-dimensional form. Both 

the dispersive equation and dispersion relation are obtained in terms of the linearised 

non-dimensional governing equations.

1.6.3 Derivation and Solutions of Nonlinear Wave Equations

Reduction perturbation method (techniques) is adopted to the general nonlinear 

version of the non-dimensional governing equations, using the stretched coordinates 

of the space and time variables. Asymptotic expansions on the field quantities 

(pressure, velocity and radius perturbation of the bubble) will be used to reduce 

the system to a single three dimensional nonlinear wave equation ((3+1)-KdVB 

equation). This is done by equating the corresponding powers of the perturbation 

parameter (e) and solving the resulting equation. Adomian decomposition will be 

used to derived semi-analytical solutions to the equation. Qualitative analysis of the 

KdVB equation is carried out, where both the local and global stability analysis are 

conducted. The local and global stability at both finite and infinite equilibrium points 

are investigated using the Poincare transformation and the global phase portrait. A 

modified analytical solutions (real and complex) are derived for the (3+1)-KdV and 

(3+1)-KdVB equations.
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1.6.4 Asymptotic Expansion

This branch of mathematics has a reasonably long history (Johnson, 2006). 

First we require a little bit of notations

f  (x) =  o(g(x)), f  (x) =  0 (g(x)), f  (x) ~  g(x) (1.1)

as x — x0, if
!• f(x)
lim -7 ^g(x)

is zero, finite non-zero or unity respectively (Johnson, 2006). These are usually read 

as ’little oh’, ’big oh’ and ’varies as’ (or ’asymptotically equal to’), respectively; the 

function f  (x) is the given function under discussion, and g(x) is a suitable gauge 

function. This description of a function (in a limit) is now extended: we write

N -1
f  (x) -  g(x) ~  gN(x) as x — x0 , (1.2)

n=0

for every N  > 1, where f  (x) ~  g0(x) as x ^  x0. It is then usual (and convenient) to 

express this property in the form

f(x) -  gn(x) as x —y x0 , (1.3)
n=0

where N  has been taken to infinity here; this ’series’ is called an asymptotic expansion 

of f  (x), as x — x0. Asymptotic expansions are rarely taken beyond a few terms, but 

it is be possible to find them all.

1.6.5 Perturbation Method

This part introduces the basic perturbation method. The theory involves 

mathematical methods for finding series expansion approximations for perturbed 

systems. Perturbation theory can be applied to algebraic equations, boundary value
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problems, difference equations, Hamiltonian systems, ODEs and PDEs. The main 

idea begins with the assumption that the solution to the perturbed can be expressed as 

an asymptotic expansion, that is perturbation method is a method of constructing an 

asymptotic expansion.

The most straightforward type of non-uniformity, arises when the asymptotic 

expansion that has been obtained breaks down and thereby leads to the introduction of 

a new scaled variables. This situation is typical of some wave propagation problems, 

for which an asymptotic expansion valid near the initial data becomes non-uniform for 

later times/large distances (Johnson, 2006). From the solution of linear non-dispersive 

wave, the right-going wave will be followed (by selecting any k ■ x-w  t =  constant) 

then, as t increases indefinitely, we will encounter a breakdown when e t =  O(1). 

This will lead to introduction of new variables (scaled variables) (£, Z, t ). Thus, we 

transform from (x, y, z, t) variables (the near-field) to £, £, Z, t  variables (the far-field).

The method of transformation from near-field to far-field variables of a higher 

dimensional system is introduced and applied in Washimi and Taniuti (1966), Kako 

and Rowlands (1976) and Kudryashov and Sinelshchikov (2012). Using change 

of coordinates via chain rule, various derivatives will be obtained which is then 

substituted in to the continuity, momentum equations in component forms and also 

into the simplified modified Rayleigh-Plesset equation. The asymptotic expansion 

of the field variables will then be derived using the scaled variables. Solution to the 

scaled model equations will be sought in the form of the asymptotic series expansions 

in terms of asymptotic parameter e. The resulting equations are collected according to 

the degree of e, and then simplify to obtain a nonlinear evolution equation.

1.6.6 Adomian Decomposition Method

Adomian (1991) developed the Adomian decomposition method which has
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receiving much attention in recent years in applied mathematics. The method proved 

to be powerful, effective, and can easily handle a wide class of ordinary and partial 

differential equations. The method demonstrates fast convergence of the solution 

which provides significant advantages. The method will be successfully used to handle 

the partial differential equations that will be derived in this research. The method 

solves a problem without using linearisation, perturbation or any other restrictive 

assumption that may change the behaviour of the model under consideration. More 

detail explanations of the method can be found in Adomian (1991), Wazwaz (2001), 

Wazwaz (2006) and the references therein.

Below is the description of the Adomian decomposition method to be adopted 

in this thesis. Consider the differential equation of the form

where Lv is the highest order derivative which is assumed to be easily invertible, Rv is 

a linear differential operator of order less than Lv, Nv represents the nonlinear terms, 

and g is the source term. Applying the inverse operator L- 1 to both sides of (1.4), and 

using the given conditions, then

where the function f  represents the terms arising from integrating the source term g 

and from using the given conditions, all are assumed to be prescribed. The standard 

Adomian decomposition method defines solution by the series

Lv +  Rv +  Nv =  g, (1.4)

v =  f  -  L- 1(Rv) -  L- 1(Nv), (1.5)

(1.6)
n=0

where the components v0, v1, v2, ■ ■ ■ are usually determined recursively by

v0 =  f,

vk+1 =  —L 1(Rvk) — L 1(Nvk k > 0 .
(1.7)
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The decomposition method suggests that the zeroth component v0 usually defined by 

the function f  described above. After determining the components v0 , v1, v2, ■ ■ ■ , the 

solution v in a series form defined in (1.6 ) follows immediately.

The Adomian scheme for calculating nonlinear terms will be introduced here. 

However, the nonlinear term Nv, such as v2, v3, v4, sin v, ev, vvx, v2x, can be expressed 

by an infinite series of the so-called Adomian polynomials Bn given in the form

where the so-called Adomian polynomials Bn can be evaluated for all forms of 

nonlinearity. Several schemes have been introduced in the literature by researchers 

to calculate Adomian polynomials.

The Adomian polynomials Bn for the nonlinear term F(v) can be evaluated by 

using the following expression

The general formula (1.9) can be simplified as follows. if the nonlinear function is 

F(v), then by using (1.9), Adomian polynomials are given as (Wazwaz, 2010a)

(1.8)
n=0

i =  0 , 1 , 2 , ■ (1.9)

B0 =  F  (v0),

B 1 =  v1F'(v0),

B2 =  v2F'(v0) +  2 - v j F  (v0),

B3 =  v3F'(v0) +  v1v2 F"(v0) +  3- v3F ( v 0),

B4 =  v4F'(v0) +  f 2!v2 +  v1v ^  F"(v0) +  2-v ^ F '" ( v 0) +  1  v4F (4)(v0).

(1.10)

Other polynomials can be generated in a similar manner.
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1.6.7 Graphical Results and Discussions

The graphical representation of results are very important because they not only 

explain the physical properties of the problem but also verifies the solutions. Having 

this motivation, the solution in each problem is displayed graphically. The properties 

and effects of the most important parameters on the shock wave propagation will be 

investigated. Maple software will be used to plot the graphs.

1.6.8 Tanh-Coth Method with Riccati Equation

Here, a brief description of tanh-coth method combined with Riccati equation

to solve the would-be derived partial differential equation would be given. The

would-be derived nonlinear evolution equation will be reduced to an ODE via a wave 

coordinate transformation $  =  fc(£ +  5 +  Z — c t ). The ODE can be solved using 

tanh-coth method combined with Riccati equation (Wazzan, 2009), which admits the 

use of finite expansion
M M

v(Y) =  ^  aiY i +  ^  biY- i , (1.11)
i=0 i=1

with the Riccati equation

Y' =  P  +  QY +  R Y 2. (1.12)

By changing of variable

d $  =  (p  + q y  + r y  2) -dY,
d$$ /  A A2 \  (1.13)d 2 ( ) d ( ) d 2

d$ 2 =  (P  + QY + RY  2) (  (Q + 2R Y ) dY + (P  + QY + RY  2) - ^ )  •

where P , Q and R  are real numbers to be given, while ai and bi are constants 

to be determined later. The positive integer M  can be determined by considering 

the homogeneous balance (Rady et al., 2010) between the highest order derivatives 

and the most nonlinear terms appearing in the ODE. If M  is not an integer, then a 

transformation formula should be used to overcome the difficulty. Substituting (1.11)
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into the ODE and making use of (1.12) and (1.13) yield an equation in terms of Yi. 

Equating the coefficients of all the powers of Yi to zero, we obtain a set of algebraic 

equations for P , Q, R , ai , bi , c and k. From the aforementioned steps, expansion 

(1.13) reduces to the standard tanh-coth method. In this work, we shall use the 

following solutions of the Riccati equation (1.12) :

P  =  Q = 1  and R  =  0, then Y' =  1 +  Y and solving to obtain

Y =  exp($) — 1. (1.14)

P  =  2, Q =  0, R  =  — 1, then Y' =  2 (1 — Y2), solving this

f  =  1  ( 1 — Y2) , d$ 2 v '

dY V1 Y 2 2
1 Y 2 (1.15)

tanh 1 Y =  - $ ,
2 ’

f  1 sinh $  cosh $  — 1 n  ̂ n ^Y =  tanh - $  = ---------------= ---------------=  co th$  — csch$.
\  2 )  cosh $  +  1 sinh $

Other solutions of (1.12), such as Y =  coth $  +  csch $  and Y =  tanh $  ±  i sech $  

can be found in Wazzan (2009).

1.6.9 Secant Hyperbolic Method with Riccati Equation

In this thesis, the secant hyperbolic ansatz (an assumption about the form of 

an unknown function which is made in order to facilitate solution of an equation or 

other problem) will be improved and used to derive many complex solutions to the 

(3+1)-KdV and (3+1)-KdVB equations. The first step is the transformation of the 

nonlinear PDE to a nonlinear ODE via coordinate transformation. Introducing the 

secant hyperbolic ansatz

v ($) =  g ($) +  h ($) sech($) , $  =  k (£ +  5 +  Z — c t ) (1.16)
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where g ($) and h ($) are functions to be determined later. The derivatives of (1.16) 

are

v' ($) =  g +  (h' — h ta n h ($ ) j sech ($) ,
„ f  , \ (1.17)

v ' ($) =  g +  f h ' +  2 h tanh2 ($) — 2 h' tanh ($) — h j sech ($ ).

Therefore, equations (1.16) and (1.17) will be substituted into the nonlinear ODE, the

resulting ODE will be solve using tanh-coth method with Riccati equation discussed 

in the above section.

1.7 Thesis Organization

This thesis contains seven chapters. It is mainly concerned with the modified 

Rayleigh-Plesset equation and shock wave propagation in bubbly pseudo-compressible 

viscoelastic liquid flow, incorporating the effect of bubble to bubble interaction with 

polytropic and heat transfer. The first chapter serves as an introduction to the whole 

thesis. Chapter 1 introduces the background of the study, which gives a general 

introduction, followed by the statement of the problem, objectives and scope of the 

research. Significance of the study and methodology adopted in achieving the outlined 

objectives of the present research are all covered in the first chapter.

In Chapter 2, a literature review of this research regarding to the problem 

outlined in the objectives of this research are given. More precisely, the literature on 

bubble dynamics in viscous and viscoelastic liquids, thermodynamics of gas bubble, 

bubble-bubble interaction, shock wave propagation in bubbly-liquid flow dynamics 

etcetera. Various works by different researchers regarding these topics are cited.

Chapter 3 concerns with the derivation of governing equations describing 

bubbly pseudo-compressible viscoelastic liquid flow. This includes the derivation of 

a modified Rayleigh-Plesset equation in compressible viscoelastic liquid using the

19



method of Kinetic energy, and with bubble-bubble interaction with two different heats 

scenario.

Chapter 4 discusses the transient bubbly Kelvin-Voigt liquid flow in an 

unbounded space, where the bubble dynamics in Kelvin-Voigt liquid is derived 

and incorporated into the equation of bubbly-liquid mixture, the equations are non- 

dimensionalised. A dispersive and non-dispersive linear wave equations are obtained. 

A perturbation method and asymptotic expansion are used to derive a nonlinear wave 

equation. Adomian decomposition method is used to obtained a semi-analytical 

solution. Graphical solutions and discussion of results are also given.

Chapter 5 contains the transient bubbly second-grade liquid flow in an 

unbounded space, where the bubble dynamics in a second-grade liquid is derived 

and incorporated into the equations of bubbly-liquid mixture. A dispersive and non- 

dispersive linear wave equations are obtained. Asymptotic expansion is used to derive 

a nonlinear wave equation. Semi-analytical solution using Adomian decomposition 

method are derived. Graphical representation and discussion of the solutions are given.

Chapter 6 deals with the existence of solution via qualitative analysis of 

the local and global equilibrium points of the derived (3+1)-KdV and (3+1)-KdVB 

equations. Also, abundant real and complex exact solutions to the derived nonlinear 

evolution equations are obtained, using the modified tanh-coth and modified secant 

hyperbolic methods, combined with Riccati equations.

In Chapter 7, conclusions and recommendations for future research are 

highlighted.
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