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ABSTRACT 

The number of fluoroscopy-guided interventional (FGI) procedures has 
significantly increased recently. The radiology department staff such as the 
interventional radiologists (IR), medical officers (MO), radiographers and nurses who 
are involved in FGI procedures are usually working in a controlled area and receive 
doses primarily from scattered radiation off the patient. This was a one-year 
observation study conducted at the Radiology Department, Institut Kanser Negara 
(IKN), Putrajaya. Each interventional radiology staff member was given two optically-
stimulated luminescence (OSL) dosimeters, used to measure the dose of radiation they 
received. In this study, two types of OSL dosimeter (OSLD) were used: InLight® XA 
dosimeter and nanoDot® dosimeter. The effective doses received by the interventional 
radiology staff after performing 230 FGI procedures were estimated using single and 
double dosimetry algorithms. Assessment on the interchangeability of the effective 
dose algorithms shows that both Niklason and Boetticher algorithms strongly 
supported the absence of  statistical significance in the estimated effective doses using 
the Bland-Altman analysis. The effective dose received by the IRs, MOs, 
radiographers and nurses with double OSLDs were 9.82, 7.91, 6.42 and 6.02 mSv, 
respectively. The estimated annual eye dose for IR was 18.32 mSv y−1 and is below 
the recommended dose limit (20 mSv y−1). Due to the IR’s position on the left side of 
the patient, the right eye shows a lower dose than the left one. Radiation scattered 
throughout the FGI room shows the left anterior oblique 90 tube angulation has the 
highest single peak distribution (28.65 mSv h−1). The single peak distributions for the 
standard anteroposterior, left anterior oblique 45 and right anterior oblique 45 
imaging were 13.32, 22.99 and 17.40 mSv h−1, respectively. Knowledge pertaining to 
radiation exposure levels is integral in order to avoid adverse risks, particularly 
amongst staff. It is highly recommended that interventional radiology staff use double 
OSLDs during FGI procedures in order to determine the occupational dose accurately. 
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ABSTRAK 

Bilangan prosedur intervensional berpandu fluoroskopi (FGI) telah meningkat 
dengan ketara baru-baru ini. Staf jabatan radiologi seperti pakar radiologi 
intervensional (IR), pegawai perubatan (MO), jururadiografi dan jururawat yang 
terlibat dalam prosedur FGI biasanya bekerja dalam kawasan kawalan dan menerima 
dos terutamanya dari sinaran terserak daripada pesakit. Ini adalah cerapan kajian 
selama satu tahun yang dijalankan di Jabatan Radiologi, Institut Kanser Negara (IKN), 
Putrajaya. Setiap staf radiologi intervensional dibekalkan dengan dua dosimeter 
perdarkilau terangsang secara optik (OSL) digunakan untuk mengukur dos sinaran 
yang diterima oleh mereka. Dalam kajian ini, dua jenis dosimeter OSL (OSLD) telah 
digunakan: dosimeter InLight® XA dan dosimeter nanoDot®. Dos efektif yang diterima 
oleh kakitangan radiologi intervensional selepas melakukan 230 prosedur FGI 
dianggarkan dengan menggunakan algoritma dosimeter tunggal dan berganda. 
Penaksiran kesalingbolehtukaran antara algoritma dos efektif menunjukkan bahawa 
algoritma Niklason dan Boetticher sangat menyokong ketiadaan keertian statistik  di 
dalam kedua-dua anggaran dos efektif  dengan menggunakan analisis Bland-Altman. 
Dos efektif yang diterima oleh IR, MO, jururadiografi dan jururawat dengan memakai 
OSLD berganda masing-masing adalah 9.82, 7.91, 6.42 dan 6.02 mSv. Anggaran dos 
mata tahunan bagi IR ialah 18.32 mSv y-1 dan adalah di bawah had dos yang disyorkan 
(20 mSv y-1). Disebabkan oleh posisi IR pada sebelah kiri pesakit, mata kanan 
menunjukkan dos yang lebih rendah daripada mata kiri. Sinaran terserak di seluruh 
bilik FGI menunjukkan tiub angulasi anterior kiri serong 90 mempunyai taburan 
puncak tunggal tertinggi (28.65 mSv h -1). Taburan puncak tunggal untuk pengimejan 
anteroposterior piawai, anterior kiri serong 45 dan anterior kanan serong 45 
menunjukkan 13.32, 22.99 dan 17.40 mSv h -1. Ilmu yang berkaitan dengan tahap 
dedahan sinaran adalah penting untuk mengelakkan risiko mudarat, terutamanya di 
kalangan staf. Staf radiologi intervensional adalah sangat disarankan untuk 
menggunakan OSLD berganda semasa prosedur FGI bagi menentukan dos pekerjaan 
yang tepat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the study 

A fluoroscopy-guided interventional (FGI) procedure is a process to guide 

small tools, such as catheters, using ionising radiation, through blood vessels or other 

paths in the body. FGI represents a significant advantage over invasive surgical 

procedures due to the minimal incisions required, the substantially reduced risk of 

infection, and shorter recovery time compared to surgical procedures. These 

interventions are used by a growing number of health workers in a wide range of 

medical fields. However, most of these experts have only moderate training in 

radiation disciplines or protective measures. 

Borrego et al. (2019) reported that interventional radiologists performing FGI 

procedures have among the highest exposure levels to ionising radiation compared to 

other workers in the medical field. Although their occupational dose is within  the 

United States’ regulatory limit, they still require accurate and persistent dose 

monitoring. The finding shows that the improper placement of badges is one of the 

significant problems affecting the gathering of  precise information from one-badge 

and two-badge monitoring protocols. The current eye dose limit recommended by the 

International Commission on Radiological Protection (ICRP) is being considered, due 

to the increase in cataract formation incidents related to radiation exposure.  

Even though they are under dose monitoring, 15% of the workers performing 

FGI received a dose exceeding the annual eye dose limit (20 mSv), and their median 

for the annual eye dose was higher than the estimated mean dose among medical 

radiation workers in the United States (Borrego et al., 2019). Due to these findings, the 

dose received by interventional radiology staff who perform FGI procedures should 
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be monitored continuously to evaluate short- and long-term ionising radiation 

exposure. 

There are two main objectives of using ionising radiation in medicine: 

i) diagnostic and ii) therapeutic. Diagnosis is related to identifying the patient's disease 

or illness, whereas therapeutic is relating to the treatment of disease or illness. 

Regarding the ionising radiation fields in diagnostic radiology and radiation therapy, 

there are two main differences: photon energy and tissue dose. Diagnostic radiology 

uses X-ray beams with typical energies < 140 keV, whereas radiation therapy uses 

typical energy in the MeV range in the case of photon and electron beams. The primary 

purpose of diagnostic radiology is to produce a good quality image for clear 

understanding by the radiologist. Increasing the image quality increases the dose to the 

patient. This is of primary concern because the principle of using ionising radiation is 

to keep the patient’s dose as low as possible without affecting image quality.  

The increasing use and complexity of FGI procedures implemented by public 

health bodies causes concern regarding the results of increased radiation exposure to 

interventional radiology staff and patients. Increased numbers of people have reported 

severe skin injuries. A significant increase in delayed effects such as lens injuries and 

cataracts, and possibly cancer, necessitates more information on radiation risks and on 

plans to control radiation exposure to patients and interventional radiology staff.  

 

Figure 1.1 Energetic causes of cancer (Cantley et al., 2012) 
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Several risk factors closely associated with cancer risk are possible to avoid, 

but others are more difficult to escape; one of which is ionising radiation, said to 

energise cancer. Both natural and man-made sources emit ionising radiation, as shown 

in Figure 1.1. Annual exposure in the United States to ionising radiation composed of 

natural background radiation was 82%, and the remaining 18% comes from man-made 

sources. From the non-made radiation, 2% of cases of cancer are caused by an 

occupational dose. If awareness of risk continues to be low, this number will increase, 

even though its contribution to the total is minimal. 

The earliest medical groups that were exposed to ionising radiation were 

interventional radiology staff. They represent a large proportion of the occupational 

groups exposed to non-made radiation. Yoshinaga et al. (2004) reported that more 

than 270 000 radiology staff employed before the 1950s, from eight cohorts, showed 

the evaluation of cancer risk continually increased due to high radiation exposure. An 

increased risk of leukaemia related to the duration of work in the early years, showed 

a clear relation to radiation exposure during that period. Nowadays, FGI procedures 

only take a short time due to hi-tech equipment and modern medical practices. Still, it 

is crucial to continue personnel monitoring among the interventional radiology staff.  

The radiation beam in FGI procedures is targeted for a substantial length of 

time at a relatively small patch of skin. Of any portion of the patient’s body, the highest 

radiation dose will be received by the skin area. It is enough to cause a sunburn-like 

injury, hair loss or, in rare cases, skin necrosis (Mettler et al., 2002). Threshold doses 

for potential radiation effects with a related time of onset were shown in Table 1.1.  

Table 1.1 Potential effects of fluoroscopic exposures on the reaction skin and 
lens of the eye (Valentin, 2000) 

Effect Approximate threshold 

dose (Gy) 

Time of onset 

Early transient erythema 2 2 – 24 hours 

Main erythema reaction  6  1.5 weeks 

Temporary epilation 3  3 weeks 

Permanent epilation 7  3 weeks 
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Effect Approximate threshold 

dose (Gy) 

Time of onset 

Dry desquamation 14  4 weeks 

Late erythema 15 8 – 10 weeks 

Dermal necrosis > 12 > 52 weeks 

Skin cancer None known > 15 years 

Lens opacity > 1 – 2  > 5 years 

Lens/cataract > 5 > 5 years 

The procedures most frequently reported for the highest doses are percutaneous 

transluminal coronary angioplasty (PTCA), radiofrequency cardiac ablation (RFA) 

procedures, transjugular intrahepatic portosystemic shunt (TIPS) procedures and 

embolisation procedures in the brain (Koenig et al., 2001). High doses received by the 

patient in the procedure, as mentioned earlier, influence the doses due to scattered 

radiation received by the interventional radiology staff (interventional radiologists, 

medical officers, radiographers and nurses). Most of the research in monitoring 

interventional radiology staff doses uses a thermoluminescence dosimeter (TLD), 

which requires challenging preparation and complex readouts (Reuven, 2001; 

Olko, 2010). 

1.2 Problem statement 

In current decades, for dose limitation determination, ICRP has categorised all 

diverse radiation effects into stochastic effects (with no threshold) or tissue reactions 

(previously called non-stochastic or deterministic effects, which do have a threshold). 

The purpose of effective dose limits is to reduce the risk of stochastic effects (heritable 

effects/cancer). It is based on detriment-adjusted nominal risk coefficients, assuming 

a linear-non-threshold dose response and a dose and dose rate effectiveness factor of  

2. Otherwise, equivalent dose limits aim to avoid tissue reactions and are based on a 

threshold dose. 
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Injury to the skin (deterministic risk) is more likely to occur in adult patients 

during FGI procedures compared to children. The stochastic risk among children is 

more important, as it is four times greater for a child aged 10 years than the same KAP 

received by adults (IAEA, 2010). Interventional radiology staff also face the risk of  

stochastic effects. Nevertheless, skin reactions happen if the radiation personnel's 

hands are regularly in the primary beam.  

The primary purposes of personnel monitoring are to assess whether staff in 

the radiation control area have exceeded the dose limits and, through regular review, 

to assess the effectiveness of strategies being used for optimisation. It must always be 

a reminder that monitoring does not reduce dose, but it will help in reducing personnel 

exposure. In the radiology department, personnel monitoring should be carried out for 

staff, including the interventional radiologists, medical officers, radiographers and 

nurses, who are generally exposed to radiation in the X-ray room. Cardiologists and 

other specialists who perform FGI procedures are also candidates for personnel 

monitoring. Personnel dosimeters are designed to estimate either the effective dose or 

an equivalent dose to an organ. There are many types of individual dosimeters , such 

as optically stimulated luminescence dosimeters (OSLD), TLDs, film badges and a 

variety of electronic devices. 

A basic radiation monitor worn at the collar level and above the radioprotective 

attire provides a reasonable estimate of eye dose. Unprotected eyes receive 

approximately the dose indicated by such a monitor. The use of high-quality 

radioprotective glasses will decrease the eye dose to nearly 1/3 of the monitor reading. 

This is less than the nominal reduction of the radioprotective lenses. This is because 

radiation can be received by the eyes through spread around the glasses and scatter 

within the radiation personnel's head. Cardiologists, interventional radiologists and 

other medical doctors using fluoroscopy in the operating room are the individuals who 

remain near to the patient during the procedure. These individuals might be within a 

high scatter X-ray radiation area for certain hours every day during procedures.  

For radiation protection of staff in FGI procedures, personnel dosimetry is one 

of the ten rules of radiation protection of staff in fluoroscopy that must be taken into 
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consideration. During FGI procedures, interventional radiology staff have been 

recommended to use at least two dosimeters, with one inside the protective apron at 

chest level and the other outside the protective apron at neck level. Contrary to this 

recommendation, radiology staff in hospitals such as Institut Kanser Negara  (IKN), 

Putrajaya, wear only one dosimeter placed inside the protective apron, which may not 

fully represent the personnel effective dose. Ideally, the effective dose should represent 

the stochastic health risk to the whole body, which is the probability of cancer 

induction and genetic effects resulting from low dose ionising radiation. At the same 

time, the dose report of interventional radiology staff provided by the Atomic Energy 

Licensing Board (AELB) only comprises the shallow dose or Hp(0.07) and deep dose 

or Hp(10).  

Due to unsuitable protective equipment and improper operational 

measurement, the risk for eye lens injuries is increased. Current studies have 

recognised the correlation between eye lens dose and patient dose in terms of dose area 

product (DAP). This correlation has a factor for estimating eye lens dose without 

measurements. DAP may be useful as a replacement measure of eye lens dose to the 

operator if the eye lens dosimeter is unavailable. Typically, 1 Gycm2 to the patient 

resulted in an average of 10 μSv to the unprotected eyes of the primary radiation 

personnel, or 1 μSv when a protective, ceiling-suspended screen (without glass 

eyewear) is used. 

The eye lens dose limit has already been reduced from 150 mSv y−1 to 

20 mSv y−1 based on new regulations (ICRP, 2011). But for interventional radiology 

staff in the Institut Kanser Negara, Putrajaya, especially the radiologists, there exists 

no documented report regarding the eye lens dose. Hence, to prevent the risk of eye 

injuries during FGI procedures in IKN, it is imperative to design a mechanism that 

allows routine monitoring of eye lens dose, since there is no established protocol.  
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1.3 Aim and Objectives of the Study 

This study aims to assess personnel monitoring during FGI procedures at 

Institut Kanser Negara, Putrajaya, using an optically stimulated luminescence (OSL) 

dosimetry system provided by Universiti Teknologi Malaysia (UTM). The objectives 

of this study are as follows:  

i. To investigate the dosimetric characteristics of the OSL dosimetry system for 

personnel monitoring purposes, including sensitivity, dose-response and 

linearity, energy dependence and angular dependence for the energy range 40 

to 150 kV for doses ranging from 1 to 10 mGy. 

ii. To assess the interchangeability of the effective dose algorithms for 

interventional radiology staff during FGI procedures.  

iii. To estimate the personnel effective dose for interventional radiology staff 

(interventional radiologists (IR), medical off icers (MO), radiographers and 

nurses) during FGI procedures using single and double dosimetry. 

iv. To determine the eye dose of the IR with and without protective lead glasses 

during FGI procedures. 

v. To determine the actual radiation levels and the effects of scatter radiation on 

the FGI room, under various typical conditions of f luoroscopic imaging.  

1.4 Scope of the Study 

The current study was designed to assess personnel monitoring during FGI 

procedures among the staff involved in radiology at Institut Kanser Negara, Putrajaya. 

The use of the OSL dosimetry system supplied by Landauer Inc. , provided by UTM, 

was to ensure the credibility of the system to give an accurate dose to improve 

awareness of risk among the interventional radiology staff.  
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The scope of the study is detailed as follows: 

The InLight® XA and nanoDot® dosimeter is evaluated with different 

dosimetric characterisations, including sensitivity, dose-response and linearity, energy 

dependence and angular dependence for the energy range 40 to 150 kV, and different 

doses ranging from 1 to 10 mGy. The OSL dosimeters were irradiated to different 

energies under radiation qualities in radiography (RQR) conducted at the Secondary 

Standard Dosimetry Laboratory (SSDL), Agensi Nuklear Malaysia, and UTM.  

The purpose of estimating the personnel effective dose using OSL dosimetry 

was to ensure the dose received by interventional radiology staff during FGI 

procedures does not exceed the annual limit for radiation workers i.e. 20 mSv in one 

year. This study also aims to gain more knowledge on the purpose of using single or 

double dosimetry during FGI procedures.  

Malaysia’s guidelines for occupational radiation protection uses the effective 

dose algorithm proposed by NCRP (Ministry of Health Malaysia, 2016b). Many 

researchers have created new effective dose algorithms based on FGI procedures for 

medical staff who work closely with the X-ray source. Assessment of the 

interchangeability of the algorithms that have strong mutual correlations to evaluate 

the effective dose of interventional radiology staff. 

Most radiologists are not really concerned about the use of protective lead 

glasses during FGI procedures. The use of low dose radiation during FGI procedures 

may result in adverse effects on the eyes following continuous use and increased 

workload. The adverse long-term effect on unprotected eyes causes the interventional 

radiologist (IR) to develop cataracts (Rehani et al., 2011). 

There are limitations to this study that could be addressed in future research. 

First, this study can be regarded as a pilot study focussing more on the general aspects 

of FGI procedures. All types of FGI procedures performed in IKN were taken as 

samples for calculation of dose workers. Priority in this study is on the number of 

dosimeters and not the procedure itself. Secondly, in the study presented here, the 
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double dosimetry algorithm only involving the wearing of a thyroid collar is used for 

the estimation of the effective dose. This is due to all IKN staff being required to use 

a thyroid collar while performing FGI procedures. 

1.5 Thesis Outline 

This thesis is intended to give an extensive overview of personnel monitoring 

using the OSL dosimetry system during FGI procedures. The steps taken for realising 

the objectives were exclusively experimental, which involved the basic techniques of 

personnel monitoring and the OSL dosimetry system. 

The thesis is sectioned into chapters, with Chapter 2 describing the use of OSL 

dosimetry in personnel monitoring during FGI procedures, as well as their previous 

and current status. Chapter 3 outlines the materials involved in carrying out this 

research and describes the methods used.  

Chapter 4 is made up of the results and a discussion of the outlined objectives: 

(i) investigating the dosimetric characteristics of the OSL dosimetry system for 

personnel monitoring, (ii) estimating the personnel effective dose for interventional 

radiology staff during FGI procedures using single and double dosimetry, (iii)  

assessing the interchangeability of the effective dose algorithms for interventional 

radiology staff, (iv) determining the eye dose of the IR with and without protective 

lead glasses during FGI procedures, and (v) quantifying the actual radiation levels and 

the effects of scatter radiation on the FGI room, under various typical conditions of 

fluoroscopic imaging. 

Chapter 5 consists of conclusions based on the results obtained. This chapter 

suggests some recommendations that might improve future studies involving 

personnel monitoring using OSL dosimetry systems with different modalities and 

procedures. It improves personnel awareness of medical radiation exposure results to 

keep the patient and personnel radiation dose as low as reasonably achievable 

(ALARA). 
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