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ABSTRACT 

Object detection becomes challenging due to feature unbalancing, less 

contextual information and class imbalance. The feature pyramid has been used to 

learn multiscale representation in modern detectors. However, the current version of 

the feature pyramid failed to integrate useful semantic information across different 

scales. In addition, many negative anchors are generated during training, resulting in 

extreme class imbalance. This study proposed a Multi-Level Refinement Enriched 

Feature Pyramid Network (MREFP-Net) to jointly handle feature-level scale 

imbalance and class imbalance in object detection. Instead of designing a complex 

approach, a simple and effective multi-layered feature enrichment scheme was 

proposed that effectively combines deep, intermediate, and shallow features to obtain 

important semantic and spatial information for small object detection. In addition, a 

chained parallel pooling was proposed to capture rich background contextual 

information. A cascaded anchor refinement scheme was introduced to integrate 

useful multiscale contextual information into Single Shot MultiBox Detector's 

prediction layers to improve the multiscale detection's distinctiveness. The ultimate 

goal of the cascaded anchor refinement scheme was to counteract the class imbalance 

by refining anchors and enriching contextual features to improve regression and 

classification. The performance of MREFP-Net was evaluated using two benchmark 

datasets, MSCOCO and PASCAL VOC 07/ 12. For a 300 ×  300 input on MS-

COCO test-dev, MREFP-Net-ResNet101 achieved a state-of-the-art detection 

accuracy 𝐴𝑃 of 36.6 with single-scale inference strategy and 39.2 ms on RTX 2060 

GPU. For a 512 ×  512 input on MS-COCO test-dev, MREFP-Net obtained an 

absolute gain of 2.5%. In particular, the results of MREFP-Net-VGG were 

benchmarked with 800 ×  800 input on MS COCO test-dev: 49.2 𝐴𝑃 with a 

multiscale inference strategy. For 300 ×  300 input, MREFP-Net achieved 82.5% 

𝑚𝐴𝑃 on VOC07+12+COCO, and for 512 ×  512 input, MREFP-Net obtained 

84.6% 𝑚𝐴𝑃. Finally, feature visualization, object characteristic analysis and false-

positive error analysis were performed to highlight the effectiveness of enriched 

features for small object detection. This study has proven that the proposed MREFP-

Net was capable of detecting small objects and learning sensitive features to deal 

with scale, class imbalances, and appearance complexity across object instances. 

 



 

vii 

ABSTRAK 

Pengesanan objek menjadi mencabar disebabkan oleh ketidakseimbangan 

ciri, kurang maklumat kontekstual dan ketidakseimbangan kelas. Piramid ciri telah 

digunakan untuk mempelajari perwakilan pelbagai skala dalam pengesan moden. 

Walau bagaimanapun, versi semasa piramid ciri gagal untuk menyepadukan 

maklumat semantik yang berguna merentas skala yang berbeza. Di samping itu, 

sejumlah besar sauh negatif dijana semasa latihan menyebabkan ketidakseimbangan 

kelas yang melampau antara latar depan dan latar belakang. Kajian ini 

mencadangkan Rangkaian Piramid Ciri Diperkaya Penapisan Berbilang Tahap 

(MREFP-Net) untuk pengendalian bersama ketidakseimbangan skala tahap ciri dan 

ketidakseimbangan kelas dalam pengesanan objek. Daripada mereka bentuk 

pendekatan yang kompleks, skim pengayaan ciri berbilang lapisan yang mudah dan 

berkesan telah dicadangkan yang menggabungkan ciri dalam, pertengahan dan cetek 

secara berkesan untuk mendapatkan maklumat semantik dan ruang yang penting 

untuk pengesanan objek kecil. Di samping itu pengumpulan selari berantai telah 

dicadangkan untuk menangkap maklumat kontekstual latar belakang yang kaya. 

Skim penghalusan sauh bertingkat telah diperkenalkan untuk menyepadukan 

maklumat kontekstual berbilang skala yang berguna ke dalam lapisan ramalan Single 

Shot MultiBox Detector (SSD) untuk meningkatkan keistimewaan pengesanan 

berbilang skala. Matlamat utama skim penghalusan sauh bertingkat adalah untuk 

mengatasi ketidakseimbangan kelas dengan menapis sauh dan menggunakan ciri 

kontekstual yang diperkaya untuk meningkatkan regrasi dan klasifikasi. Prestasi 

MREFP-Net dinilai menggunakan dua set data penanda aras MS-COCO dan 

PASCAL VOC 07/ 12. Untuk saiz input 300×300 pada MS-COCO test-dev, 

MREFP-Net (Backbone: ResNet101) mencapai state-of- ketepatan pengesanan seni 

AP 36.6 dengan strategi inferens skala tunggal dan 39.2 ms pada GPU RTX 2060. 

Untuk input 512×512 pada MS COCO test-dev, MREFP-Net mendapat keuntungan 

mutlak sebanyak 2.5%. Khususnya, keputusan MREFP-Net-VGG telah ditanda aras 

dengan input 800×800 pada MS COCO test-dev: 49.2 AP dengan strategi inferens 

berbilang skala. Untuk input 300×300, MREFP-Net mencapai 82.5% mAP pada 

VOC07+12+COCO dan untuk input 512×512, MREFP-Net mencapai 84.6% mAP. 

Akhir sekali, visualisasi ciri, analisis ciri objek dan analisis ralat positif palsu telah 

dilakukan untuk menyerlahkan keberkesanan ciri yang diperkaya untuk pengesanan 

objek kecil. Kajian ini telah membuktikan bahawa MREFP-Net yang dicadangkan 

mampu mengesan objek kecil dan mempelajari ciri sensitif untuk menangani skala, 

ketidakseimbangan kelas dan kerumitan penampilan merentas kejadian objek. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview  

Object detection is the simultaneous prediction of categories and accurate 

object localization, that helps to understand the image correctly. It is an fundamental 

issue in computer vision that encompasses many practical applications for instance 

self-driving (autonomous) cars (Dai, 2019; Geiger et al., 2012), surveillance (Fan et 

al., 2016; Fu et al., 2019), medical analysis and decision making (Jaeger et al., 2020; 

Lee et al., 2018) and, other issues in robotics (Du et al., 2021; Hampali et al., 2020; 

He et al., 2020; Peng et al., 2019). 

In the past time, object detection was considered as a machine learning 

problem and relied on handcrafted features and max margin, linear classifier. The 

Deformable Part Model (DPM) (Felzenszwalb et al., 2009) is the best known and 

most successful method of its time (Liu et al., 2020; Oksuz et al., 2020b). As of 

2012, deep neural networks have dominated various computer vision problems after 

the some extremely influential research was conducted. In the current generation of 

object detection methods, deep neural networks are used instead of handcrafted 

features and linear classifiers of early-generation object detection methods. This 

change has led to significant performance improvements in a extensively used object 

detection benchmark dataset (MS COCO and PASCAL VOC) (Everingham et al., 

2015; T.-Y. Lin et al., 2014). The driving force behind the advancement of object 

detection over the past half decade has been in the hands of deep networks (Dai et 

al., 2016a; Girshick et al., 2014; Gkioxari et al., 2015; Law et al., 2018; T.-Y. Lin et 

al., 2017; Liu et al., 2016; Redmon et al., 2016; Ren et al., 2015c). While imbalance 

problem at various levels has received a great deal of attention in object detection 

(Cao et al., 2020; Lin et al., 2017); Ouyang et al. (2016); (Pang et al., 2019; 
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Shrivastava et al., 2016; Singh and Davis, 2018; Singh et al., 2018b). An imbalance 

problem related to an input property arises when distribution of that property directly 

influences the performance of object detector. If this is not corrected in a timely 

manner, an imbalance problem will adversely affect the final detection performance. 

The background-to-foreground class imbalance is most common imbalance problem 

in object recognition, which is an extreme disparity between the number of negative 

instances and the number of positive ones. Although a given picture usually contains 

a few positive instances, millions of negatives instances can be extracted. However, 

this can result in slightly negative-dominated training and extreme imbalance 

between foreground and background classes. Moreover, another substantial problem 

for many detectors is the handling of scale diversity, since object examples vary over 

a wide range. Feature-level scale imbalance cause feature inconsistency across 

different scales and increase risk of overfitting for each scale. These types of 

imbalances restrict the effectiveness of well-deigned models from being fully 

exploited, thus significantly affects the accuracy of the recognition, if not corrected. 

The literature on deep learning-base object detection identifies different types 

of imbalance problems. They are taxonomized into four major groups such as scale 

imbalance, class imbalance, objective imbalance, and spatial imbalance (Oksuz et al., 

2020b). Class imbalance arises when there is large disparity between the number of 

instances related to various classes such as an imbalance between foreground and 

background classes, and imbalance between the foreground classes (i.e., positive). 

An imbalance related to scales encounters when objects have varying scales and 

different numbers of instances that refer to various scales. some factors related to 

spatial attributes of bounding boxes cause spatial imbalance such as Intersection over 

Union (IoU), regression penalty, and location. Any imbalance in spatial attributes 

directly influences the detection performance and training. Ultimately, an objective 

imbalance happens when various loss functions have to be penalized, as is frequently 

the case in object detection such as regression and classification losses. 

In general, imbalance problems are prevalent in machine learning, computer 

vision, and pattern recognition. However, class imbalance and scale imbalance 

problem that arises in object detection are the only emphasis of this work. This 



 

3 

dissertation discusses the issue of background-foreground class imbalance and 

feature-level scale imbalance and offers a plan to address these imbalances jointly. 

1.2 Problem Background 

Object detection is a fascinating and active topic of computer vision research, 

which seek to identify instances of semantic objects belonging to a specific  class in 

videos and digital images (Felzenszwalb et al., 2009). Which objects are where? Is 

the foundation of object detection framework’s functional premise. 

Conventional object detection models consist of three steps: selecting an 

information region, extracting features, and classifying selected region based on the 

extracted features (Z.-Q. Zhao et al., 2019). Top-down and bottom-up are the two 

main approaches to object detection. Despite the fact that both strategies were well-

known in the early era of object detection, top-down approaches predominate in 

current object detection methodologies while bottom-up approaches have only lately 

been developed. The primary distinction between two approaches is that, the top-

down approach generates and process holistic object hypothesis, such as anchors, 

region of interest (RoIs) /proposals, early in detection pipeline. However, in bottom-

up approach, holistic objects emerge by grouping sub-object entities like parts or 

key-points, later in processing pipeline. 

Top-down based methods are categorized into two groups: one-stage 

detection methods and two-stage detection methods. Two-stage methods (Dai et al., 

2016a; Girshick, 2015b; Girshick et al., 2014; Ren et al., 2015a) are less sensitive to 

class imbalance. It aims to reduce the large number of negative examples generating 

from predefined dense sliding  window (i.e., anchors) to a manageable size by using 

proposal mechanism (Ren et al., 2015a; Uijlings et al., 2013; Zitnick et al., 2014) that  

determines the region where the objects most likely appear, known as Region of 

Interest (RoIs). In two-stage methods, these proposals (RoIs) are generated by a 

separate network using anchors, hence it is called a two-stage detector. In addition, 

these RoIs are further processed to generate bounding boxes and class scores of 
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detecting objects. Finally, duplicate or highly overlapping results are eliminated 

using the non-maxima suppression (NMS) method. So far, it is a universal step used 

in all modern detectors for post processing.  

One-stage methods predict the object directly from anchor using feature 

extracted from input image without any proposal elimination stage. Some well-

known approaches that belong to  top-down one-stage methods are Single Shot 

Detector (SSD) variants (Fu et al., 2017; Liu et al., 2016), You Look Only Once 

(YOLO) variants (Bochkovskiy et al., 2020; Redmon et al., 2016; Redmon and 

Farhadi, 2017, 2018), and RetinaNet (T.-Y. Lin et al., 2017). To detect small object, 

a large number of anchors are generated per image, compared to detecting large 

objects. Only anchors with high Intersection over Union (IoU) to the ground truth are 

considered as positive examples. Since most anchors have low or no overlap with 

ground truth bounding boxes, they are considered as negative examples. When 

densely generated anchors are matched with sparsely located real objects in the 

images, very small fraction of positive examples are found, resulting in a high-class 

imbalance. 

A typical detection pipeline of one-stage object detector is shown in Figure 

1.1(a). The process begins with feature extraction when the input image being fed to 

feature extraction block i.e., deep network. Then, in bounding box matching, 

labelling, and sampling phase, a compact set of object hypotheses (i.e., anchors) is 

generated, that are further labelled and sampled using ground-truth bounding boxes 

(i.e., Back GT, Blue GT). At last, these labelled anchors or bounding boxes (BB), 

whose features are generated from feature extraction network, are used for training in 

classification and regression networks. In addition, as indicated in Figure 1.1(b) 

various imbalance problems arises at various stages of training pipeline. Whereas, at 

which phase an imbalance occurs is specified by background color. Scale imbalance 

arises at feature extraction stage, while class imbalance occurs at bounding box 

matching and labelling stage. 

On the contrary, bottom-up object detection approaches (Duan et al., 2019; 

Law et al., 2018; Zhou et al., 2019a) first predict the contextual key-elements (e.g., 
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corners, centres, etc.) on objects and then cluster them to form a complete object 

using an assemblage method such as brute force search (Zhou et al., 2019a) and 

associative embedding (Newell et al., 2017). 

In general, one-stage top-down methods have advantage that they are more 

computationally efficient compared to two-stage methods. Contrastingly, two-stage 

methods (J. Huang et al., 2017) are more accurate but compromise on efficiency. The 

scope of this work is restricted to investigate the imbalance problem of generic object 

detection in top-down one-stage method. 

 

(a) 

 

(b) 

Figure 1.1 (a) Generic object detection training pipeline. (b) Define the types of 

imbalance problems for object detection through training pipeline. (Oksuz et al., 

2020b). 
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Scale imbalance is a central and challenging issue for both object detection 

methods (Lin et al., 2017). The size of object instances varies widely, which hinders 

the detectors to performed well, in particular gigantic or miniature ones. The multi-

scale image pyramid is one of solution to cope with the large scale variation 

(Adelson et al., 1984), that is most likely used in both traditional methods based on 

handcrafted features (Dalal et al., 2005; Lowe, 2004), and current deep learning 

based methods. Previous studies (J. Huang et al., 2017; Liu et al., 2018) show that 

multi-scale training and testing were beneficial for deep detectors (Dai et al., 2016a; 

Ren et al., 2016). SNIP (Singh and Davis, 2018; Singh et al., 2018b) proposes a 

normalization method for scaling that selectively trains the appropriately sized 

objects at each image scale to avoid training with extreme scales such as big/small 

objects in larger/ smaller scales. Despite the performance gain, Image pyramid 

methods are less suitable for everyday applications in real time due to increase of 

inference time and high memory requirements (Li et al., 2019). Due to memory 

constraints, another drawback of image pyramid is that detectors are trained at 

smaller scales but tested on larger scales, leading to inconsistency between training 

and testing time inference. A large amount of information would be lost if the 

detector were trained on specific scale, while multiscale training on single detector 

would induce scale imbalance by preserving data variance. 

The feature pyramid (Lin et al., 2017; Liu et al., 2016) is another approach 

that is used in the network to provide approximately the same performance as an 

image pyramid with less computational effort and to require significantly less 

additional memory, that enable the deployment of such network during both the 

training and test phase in real-time network. In addition, the feature pyramid module 

can be easily revised and built into modern detectors based on deep neural networks. 

In (Dollár et al., 2014), a fast feature pyramid for object recognition is constructed by 

incorporating some feature channels from adjacent scale levels. Whereas in SSD (Liu 

et al., 2016) multi-scale feature maps from different backbone layers are exploited to 

detect objects of various scales on each feature layer. Feature pyramid contains 

multi-level features, whereby the feature uniformity is sacrificed across different 

scales. This reduces effective training data and increases the risk of overfitting for 

each scale. Feature pyramid network (FPN) (Lin et al., 2017) integrate the robust 

semantic information in deep features using lateral connections and top-down 
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pathway to compensate for the lack of semantics in shallow features. However, 

contextual features are extracted from objects of different scales from various levels 

of FPN backbone. Major drawback of FPN is feature unbalancing due to direct 

integration from backbone network and lose of translation invariance (Li et al., 

2019). Therefore, the focus of deep learning designers over the past decade has been 

to find a more realistic technique to create a more effective and descriptive multi-

scale feature in order to resolve the scale variance problem for object detection. 

Deep CNN architecture produces hierarchy feature maps due to sampling and 

pooling operations, resulting different layers of feature maps with different 

abstractions and spatial resolutions that make it unreliable to predict directly from 

individual layer. The shallow layer feature maps are of high resolution and contain 

basic semantic information such as shape, and location, that is used for object 

localization. On the other hand, feature maps extracted from deeper layers contain 

rich semantic information that is beneficial for object recognition. Even though high-

level features are useful for identifying large objects, they may not be sufficient fo 

small object detection. Thus, feature fusion at different depths would have a 

significant positive influence on object detection task. Therefore, these reasons have 

motivated researchers to work on feature fusion strategies and compare them to the 

existing state-of-the-art detection methods that have previously shown to be efficient 

for scale imbalance problem. 

Background-to-foreground class imbalance is an over-representation of 

background and under-representation of foreground classes. This type of problem 

occurs during training and is unavoidable since most boxes are labels as negative 

class (i.e., background) by bounding box labelling and matching module. It does not 

rely on the number of instances per class in the dataset, as they contain no 

background annotations.  Hard sampling is a simple solution for this type of 

imbalance in object detection. It is based on random sampling and is used in R-CNN 

detector family (Girshick et al., 2014; Ren et al., 2016). The study shows that other 

sampling strategies may perform better if the loss value or IoU of input box are taken 

into account (Cao et al., 2020; Pang et al., 2019; Shrivastava et al., 2016). Hard-

example mining methods use the sampled examples instead of random sampling. 
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Training the model more with hard examples leads to better performance, is the 

hypothesis behind this method. The origin of this hypothesis is based on 

bootstrapping, which is used in early research on face detection (Rowley et al., 

1995), human detection (Dalal et al., 2005) and object detection (Felzenszwalb et al., 

2009). Single shot detector was the first deep model that uses the hard examples (i.e., 

high loss examples) for training. Online Hard Example Mining (OHEM) 

(Shrivastava et al., 2016) is another version of hard sampling approach, however it 

requires additional memory and leads to reduction in training speed. 

Some improved mining strategies have been proposed to limit the search 

space and make mining the hard examples easier. Kong et al. (2017), proposed as an 

approach to learn objectness (i.e., how likely a box is to cover an object) early in an 

end-to-end setting to provide direction on where to look for the object. All positive 

instances with higher objectness than threshold is used in training, whereas negative 

instances so be chosen to maintain the balance between negative and positive 

instances. S. Zhang et al. (2018), proposed a module to refine the anchors and 

determine the confidence scores of anchors. A threshold has also been introduced to 

remove the simple negative anchors, known as negative anchor filtering. In (Nie et 

al., 2019a), an SSD-based cascaded-detection scheme were proposed that includes 

the objectness module (i.e., binary classifier) prior to each prediction module. Classic 

objectness methods (Alexe et al., 2010; Cheng et al., 2014) are used to decrease the 

number of proposal windows for quicker detection. Recent state-of-the-art single-

stage detectors use the objectness-like mechanism to address the background-to-

foreground class imbalance, such as objectness module in RON (Kong et al., 2017), 

YOLO with objectness (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018), and 

anchor refinement mechanism  in RefineDet (S. Zhang et al., 2018). However, 

majority of detectors with objectness module still maintain hard example mining or 

sampling heuristics schemes, which thereby creating the opportunities to propose a 

newly emerged approach to jointly tackle class imbalance and scale imbalance 

problems. In the light of the foregoing, this research intends to address the problems 

highlighted in the preceding discussions. 
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1.3 Problem Statement  

The challenge is to develop a one-stage object detection network to jointly 

tackle the feature-level scale imbalance and foreground-background class imbalance 

with minimal computational and memory requirements. Two-stage detectors are 

more accurate than one-stage detectors, but not suitable for real time detection 

applications due to high computational cost (Liu et al., 2020). Single Shot Detector 

(SSD) (Liu et al., 2016) is a good option for real time application due to high 

efficiency and accuracy. However, there are some obstacles that prevent the model 

from achieving a significant gain in accuracy. First, it has difficulty in dealing with 

scale variance due to fixed contextual information. Second, it neglects the bounding 

box scale diversity as it uses last two layers of backbone network for prediction. It 

has difficulty in detecting small objects and densely structured complex scenes due 

to feature unbalancing, less contextual information and class imbalance. 

Nature shows that object instances exist at a variety of scales that could 

prevent the detector to perform well, especially for very large or very tiny ones. A 

single feature layer does not contain enough information to detect objects at multiple 

scales. However, existing techniques such as feature pyramid sacrifices the feature 

consistency across different scales by generating multi-level features. This leads to 

the higher rick of overfitting for each scale and decrease in effective training data (Li 

et al., 2019). Although, object detector has shown promising results with feature 

pyramid, but construction of feature pyramid is intrinsic to the backbone pyramid 

architecture, that specifically designed for classification purposes rather than 

detection. This makes the feature map in pyramid less representative for object 

detection task. Although, each feature map in pyramid constructed from single-level 

backbone layers that provide only single-level information to detect an object of 

certain size will yield sub-optimal results. Feature pyramid network has strong 

representational power of deep model but it not addresses multi-scale problem due 

feature-level scale imbalance. In general, low-level features in shallow layers are 

better suited for localization subtask and to describe object with simple appearance, 

whereas high-level features in deep layers are appropriate for classification subtask 

and to characterize object with complex appearance. The literature review also 
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indicates that middle-level feature is not only necessary for shallow features that 

encode the basic visual geometrical information, but also for higher-level features 

that encode category level information. The use of middle-level features in object 

detection is still an open question. Therefore, following research question have been 

formulated: 

1. To what extent will the inclusion of contextual features be effective for small 

object detection?  

2. Does using intermediate features for prediction improve detector 

performance?  

In most cases, both types of detectors rely on an anchoring mechanism to 

cover shape-diversity and objects with different scale, sampling the dense boxes 

evenly over the spatial domain. In spite of that, it always causes extreme foreground-

background imbalance with increase in anchors (e.g., ~100k), which yield a negative 

dominated training. In fact, foreground-background imbalance does not equally 

damage the detection performance in all detectors. In two-stage detectors, such an 

imbalance due to Region Proposal Network (RPN) is mitigated by filtering out most 

of the negatives. In contrast, for imbalance sensitive one-stage detectors, number of 

sampling/ reweighting scheme have been proposed. Despite being effective, these 

schemes require laborious hyper-parameters tuning and are usually heuristic. 

Therefore, following research question has been formulated: 

3. Instead of complicated, heuristic sampling/reweighting schemes, how much 

more practical and simple learning-based approach is effective to address the 

foreground-background class imbalance problem with multi-scale features? 

1.4 Aim and Objectives  

Based on the formulated research questions, this research aims to propose a 

simple learning-based scheme to jointly address the problems of scale imbalance, 

and class imbalance, in order to minimize the hardship of detecting objects with high 
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shape diversity and scale-variant. This scheme is expected to improve the detection 

accuracy of modern detectors with less computational cost.  

The main objectives of this thesis are: 

1. To design a one-stage detector for small object detection that jointly tackle 

scale imbalance and class imbalance problems. 

2. To develop multi layered feature enrichment scheme to tackle feature level 

scale imbalance and optimized with integration of contextual features using 

Chained Parallel Pooling (CPP). 

3. To develop cascaded anchor refinement scheme to minimize the foreground-

background class imbalance by filtering out negative anchors. 

4. To benchmark the proposed MREFP-Net in terms of detection performance 

and efficiency. 

1.5 Scope of this Study  

The scope of the thesis is limited to the following areas: 

1. This thesis focuses solely on the deep learning based one-stage detector for 

generic object detection. The research considers a Single Shot Detector (SSD) 

incorporating reformulated feature pyramid network and anchor refinement to 

evaluate the performance of proposed method. 

2. The literature review focuses only on solving the feature-level scale 

imbalance and background-to-foreground class imbalance in object 

recognition task.  

3. The proposed model (single-stage detector) is tested on two benchmark 

datasets, such as MS COCO and PASCAL Visual Object Classes (VOC) 

07/12. 
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I. COCO has 1.5 million object instances for 80 object categories. 

COCO stores annotations in a JSON file. The MS COCO dataset is 

published by Microsoft Machine Learning and Computer Vision 

engineers. It is a large object detection, captioning and segmentation 

dataset, but the COCO object detection dataset is used for this 

research. 

II. The PASCAL VOC dataset contains 20 object categories including 

vehicles, household, animals, and other: aeroplane, bicycle, boat, bus, 

car, motorbike, train, bottle, chair, dining table, potted plant, sofa, 

TV/monitor, bird, cat, cow, dog, horse, sheep, and person. Pascal 

VOC is an XML file, unlike COCO which has a JSON file 

4. The performance of the proposed method is compared with State-of-the-art 

object detectors. 

5. Consequently, the Tensorflow platform is used to implement the scheme in 

Python language.  

1.6 Research Significance  

Imbalance problem will adversely affect final detection performance if not 

managed effectively. Scale variation across object instances prevent the detector 

from performing well, especially for very large or very small ones. Whereas class 

imbalance causes negative dominating training. Despite of effective, previous 

schemes require laborious hyper-parameters tuning and are usually heuristic. Instead 

of designing complicated, heuristic sampling/ reweighting schemes, it is required to 

find a feasible and simple learning-based approach to address imbalance problem. 

The network proposed in this thesis can be used to jointly tackle the scale imbalance 

and class imbalance problem. It generates more descriptive feature pyramid to handle 

scale imbalance. In fact, more contextual information is added to improve the 

detection precision. While using negative anchor filtering mechanism to lessen the 
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search space and minimize the class imbalances.  The proposed network aims to be 

an effective means of tackling both imbalance problems together.  

1.7 Thesis Organization  

This thesis is organized into six chapters. Chapter 1 encompasses an 

overview, background of the research problem, problem statement, research 

objectives, the scope and significance of study. The content of the residual chapters 

is outlined as follows.  

Chapter 2 presents a strategic literature review that covers various aspects of 

the imbalance problems found in generic object detection. It begins with the basic 

concepts the object detection, their types, details of backbone networks and 

benchmark datasets used for generic object detection. This is followed by reviews of 

detection challenges. Afterward, a comprehensive overview of imbalance problem 

more specifically class imbalance and scale imbalance, their types and proposed 

solutions is presented.  

Chapter 3 explains the methodology employed to accomplish the thesis 

objectives. It also presents the research framework, which outlines the various stages 

and activities that led to the actualization of the thesis objectives. 

In chapter 4, the architecture of the different components which constitute the 

proposed MREFP-Net (Multi-level Refinement Enriched Feature Pyramid Network) 

under study are described. This is followed by a brief description of relevant literature. 

Subsequently, the development of the proposed MREFP-Net for addressing scale 

imbalance and class imbalance is accomplished using a Single Shot Detector (SSD), then 

came the formulation of the multi-layered feature enrichment scheme and cascaded 

anchor refinement scheme. Lastly, the objective loss function is discussed. 

Chapter 5 commences with the introduction of the system implementation 

details and comparison with other modern models on standard benchmark datasets. The 
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ablation studies and model analysis are discussed in the next section. The variants of 

Multi-level Enriched Feature module are presented. Consequently, the results of object 

detection using multi-layered feature enrichment scheme and cascaded anchor 

refinement scheme are presented. In the last section object detection results using 

benchmark datasets are presented.  

Chapter 6 summarizes the conclusion of the dissertation and highlights the 

contribution of the proposed work. In addition, possible areas for future research are 

highlighted.  
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