
 

MOLECULAR SIMILARITY SEARCHING BASED ON DEEP LEARNING 

FOR FEATURE REDUCTION 

 

 

 

 

 

 

 

 

MAGED MOHAMMED SAEED NASSER 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

School of Computing 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

MAY 2022 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my father, who taught me that the best kind of 

knowledge to have is that which is learned for its own sake. It is also dedicated to my 

mother, who taught me that even the largest task can be accomplished if it is done 

one step at a time. 

  



v 

ACKNOWLEDGEMENT 

First of all, all praise and thanks are due to Allah, and peace and blessings be 

upon His Messenger, Muhammad (Peace Be Upon Him). I would like to thank Allah 

for granting me this opportunity and providing me with the strength to complete this 

thesis successfully. 

I also wish to express my sincere appreciation to my supervisor, Prof.Dr. 

Naomie Salim, for her kind advice, encouragement, and guidance. Her belief that it 

was, indeed, possible to finish kept me going. Without her valuable guidance this study 

could never have reached its completion. I am also very thankful to my brother Prof.Dr. 

Mohamed MS. Nasser for his unlimited support and precious advice.  

Lastly and always, I wish to express my deepest gratitude and love for my 

beloved family members, especially my mother, father, brothers and sisters for their 

utmost support, patience and understanding throughout my PhD study. I also extend 

my heartfelt thanks to Dr. Faisal Saeed, Dr. Hamza Hentabli, Fuad A. Ghaleb, Dr. 

Saeed Hamood Alsamhi and Dr. Waleed Ali for the support and incisive comments in 

making this study a success. My sincere appreciation is also extended to all my 

colleagues. Thanks all for being my inspiration. 

  



vi 

ABSTRACT 

The concept of molecular similarity has been widely used in rational drug 

design, where structurally similar molecules are explored in molecular databases for 

retrieving functionally similar molecules. The most used conventional similarity 

methods are two-dimensional (2D) fingerprints to evaluate the similarity of molecules 

towards a target query. However, these descriptors include redundant and irrelevant 

features that might impact the effectiveness of similarity searching methods. 

Moreover, the majority of existing similarity searching methods often disregard the 

importance of some features over others and assume all features are equally important. 

Thus, this study proposed three approaches for identifying the important features of 

molecules in chemical datasets. The first approach was based on the representation of 

the molecular features using Autoencoder (AE), which removes irrelevant and 

redundant features. The second approach was the feature selection model based on 

Deep Belief Networks (DBN), which are used to select only the important features. In 

this approach, the DBN is used to find subset of features that represent the important 

ones. The third approach was conducted to include descriptors that complement to 

each other. Different important features from many descriptors were filtered through 

DBN and combined to form a new descriptor used for molecular similarity searching. 

The proposed approaches were experimented on the MDL Data Drug Report standard 

dataset (MDDR). Based on the test results, the three proposed approaches overcame 

some of the existing benchmark similarity methods, such as Bayesian Inference 

Networks (BIN), Tanimoto Similarity Method (TAN), Adapted Similarity Measure of 

Text Processing (ASMTP) and Quantum-Based Similarity Method (SQB). The results 

showed that the performance of the three proposed approaches proved to be better in 

term of average recall values, especially with the use of structurally heterogeneous 

datasets that could produce results than other methods used previously to improve 

molecular similarity searching. 
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ABSTRAK 

Konsep keserupaan molekul telah digunakan secara meluas dalam reka bentuk 

ubat rasional, di mana molekul yang serupa secara struktur dicari dalam pangkalan 

data molekul untuk mendapatkan semula molekul yang serupa secara fungsi. Kaedah 

keserupaan konvensional yang paling banyak digunakan ialah cap jari dua dimensi 

(2D) untuk menilai keserupaan molekul dengan molekul sasaran. Walau 

bagaimanapun, pemerihal ini merangkumi ciri berlebihan dan tidak berkaitan yang 

mungkin mempengaruhi keberkesanan kaedah pencarian keserupaan. Selain itu, 

sebilangan besar kaedah pencarian keserupaan yang sedia ada sering mengabaikan 

kepentingan antara ciri berbanding yang lain dan menganggap semua ciri adalah sama 

penting. Oleh itu, kajian ini mencadangkan tiga pendekatan untuk mengenal pasti ciri 

penting molekul dalam set data kimia. Pendekatan pertama adalah berdasarkan 

perwakilan ciri molekul menggunakan Auto-Pengekod (AE) yang menyingkirkan ciri-

ciri yang tidak relevan dan berlebihan. Pendekatan kedua adalah model pemilihan ciri 

berdasarkan Rangkaian Kepercayaan Mendalam (DBN) yang digunakan untuk 

memilih ciriciri penting sahaja. Dalam pendekatan ini, DBN digunakan sebagai 

pengenalpastian ciri subset yang mewakili ciri-ciri yang penting. Akhirnya, 

pendekatan ketiga telah dijalankan untuk memastikan pemerihal yang saling 

melengkapi. Ciri penting yang berbeza dari setiap pemerihal kemudiannya ditapis 

melalui DBN dan digabungkan untuk membentuk pemerihal baharu yang digunakan 

untuk pencarian keserupaan molekul. Pendekatan yang dicadangkan telah diuji pada 

set data piawaian Laporan Data Ubat MDL (MDDR). Berdasarkan keputusan ujian, 

tiga pendekatan yang dicadangkan mengatasi beberapa kaedah keserupaan penanda 

aras sedia ada seperti Rangkaian Inferens Bayesian (BIN), Kaedah Keserupaan 

Tanimoto (TAN), Pengukuran Keserupaan Terhadap Pemprosesan Teks (ASMTP) 

dan Kaedah Keserupaan Berasaskan Kuantum (SQB). Hasil kajian menunjukkan 

bahawa prestasi ketiga-tiga pendekatan yang dicadangkan terbukti lebih baik dari segi 

dapatan semula terutamanya dengan penggunaan set data yang mempunyai struktur 

pelbagai dapat menghasilkan keputusan yang lebih baik berbanding kaedah lain yang 

digunakan sebelum ini untuk meningkatkan pencarian keserupaan molekul. 
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INTRODUCTION 

1.1 Introduction 

Over the years, computers have been utilized in chemical and pharmaceutical 

research with the aim to reduce the cost of drug discovery. There are various types of 

computer techniques and methods that have been employed throughout chemical, 

biomedical, and other medical fields especially data mining and information retrieval. 

The actual laboratory drug discovery experimentation is bound to take between 

12 to 15 years with an estimated cost of over one billion dollars (Hughes et al., 2011). 

Because of that, extensive work has been conducted in this research area. Many 

researchers try to resolve the time-consuming drug discovery and its high-cost issues. 

Over the last decade, chemoinformatics has been known as one of the richest scientific 

areas where it offers a multi-disciplinary area that incorporates various disciplines 

which includes computational chemistry, chemometrics, and Quantitative Structure 

Activity Relationship (QSAR). 

Chemoinformatics is also known as Chemical Informatics and Chemical 

Information. It combines the computer science and chemistry discipline to retrieve 

information of chemical compounds (Begam and Kumar, 2012; Engel, 2006). The first 

definition of chemoinformatics was pioneered by Brown in the Annual Reports of 

Medicinal Chemistry which deliberated on the role and impact of Chemoinformatics 

in Drug Discovery. Chemoinformatics definition was presented by Brown (Brown, 

1998) as the following: 

“Chemoinformatics is the combination of those information resources to 

transform data into information and information into knowledge with the aim to offer 
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a prompt and better decision in the area of drug leads to identification and 

organization”. 

The definition varied among other researchers. According to Paris (1999): 

“Chemoinformatics is a generic word which integrates design, creation, organization, 

storage, management, retrieval, analysis, dissemination, visualization and chemical 

information application based on its unique terms and as a surrogate or index for other 

data and knowledge”. 

The use of computational screening methods advances as it becomes one of the 

most significant techniques available for drug discovery. Besides, it is also believed to 

be a substitute for high-throughput biochemical compound screening (HTS). The HTS 

is formerly known to be the fundamental approach and most important method for 

developing drug candidates. However, virtual screening with the variations techniques 

and search methods offered better reliability for drug discovery. 

Virtual Screening (VS) is one of the most widely used computational methods 

for searching small molecules libraries in drug discovery. The VS is frequently used 

in protein to identify structures that are most likely to bind to a drug target (Rollinger 

et al., 2008b). Unlike high-throughput screening (HTS), which requires that a 

compound exist physically, the main advantage of virtual screening is that, it was 

carried out using computational techniques that allowed researchers to screen and 

search extremely large parts of the chemical space and massive number of molecules 

in a short period of time with minimal risk and cost. 

There are two approaches known in virtual screening which are ligand-based 

virtual screening (LBVS) and structure-based virtual screening (SBVS) methods. One 

of LBVS approaches is similarity searching, which aims to search and scan chemical 

databases for molecules that are most identical to a user-defined reference structure by 

implementing a quantitative measurement of intermolecular structural similarity. 

LBVS methods search for those compounds that are similar to the ligand and requires 

a known active input. The second approach, SBVS searches for compounds that fits 
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the target binding site and it requires the structure of the target protein (Gonczarek et 

al., 2016). 

Although significant improvements in ligand-based virtual screening could be 

made, further effort is necessary to promote a rapid drug discovery process and address 

several of the main issues as well as challenges to manage the exponentially growing 

amount of molecular data (Cereto-Massagué et al., 2015; Muegge and Mukherjee, 

2016). The main aim of this proposed study is to identify whether the concepts of deep 

learning approaches based on new sources of knowledge can improve the performance 

of molecular similarity searching.  

This chapter proceeds as follows: Section 1.2 reviews the problem background; 

Section 1.3 explains the problem statements. Section 1.4 presents the research 

questions of the study; Section 1.5 describes on the objectives of the study. Section 1.6 

mentions the scope of the study; Section 1.7 explains the Significance of this Study 

and lastly Section 1.8 shows the organization of the thesis. 

1.2 Problem Background 

As mentioned earlier in this chapter, the average cost to bring a drug to market 

is more than USD 1 billion and the average time taken from the initial phase of drug 

discovery until the drug can reach the market is between 12-15 years. With the use of 

chemoinformatics, researchers aim to provide a better solution to making the drug 

development process less risky and costly (DiMasi et al., 2016; Wang et al., 2016).  

Computer aided drug design has been used to aid in the process of drug 

discovery. It optimizes and reduces the time and cost of discovering and developing 

new drugs. In a computer-aided drug discovery program, virtual screening methods 

have been used to select compounds for testing or to design combinatorial libraries (Li 

et al., 2016). 
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The use of HTS screening has proven to help perform millions of chemicals, 

pharmacological, or genetic tests over a short period of time with the help of computer 

that is able to execute millions of processes within seconds. Despite significant 

advances in the field of computational drug discovery and ligand prediction (Chen et 

al., 2016; De Vivo et al., 2016), the most extensively employed approach is yet far 

from ideal, and greater effort is needed in meeting chemists expectations. There are 

two main objectives in drug discovery which are addressing issues of long-time 

processing and the high cost of manufacturing for the discovery of new chemical 

entities. With virtual screening, researchers aim to identify alternative approaches to 

discover new active compounds and deliver these compounds to market in a timely 

manner. 

It is a hassle for chemists to deal with the problem of selecting chemical 

structures to synthesize from a vast variety of compounds. But this only deal with a 

small percentage number of molecules that could be synthesized. Hence, chemical 

search techniques are known as virtual screening that covers various computational 

techniques which are developed to evaluate a huge number of compounds 

using computers rather than experiences (Bajorath, 2013; Muegge and Mukherjee, 

2016). These computational approaches can be applied to search for chemical libraries 

and remove out those of unnecessary chemical compounds. 

In cheminformatics, various similarity measures have been used for virtual 

screening which helped to improve the screening results. There are several similarity 

measures that have been developed and derived from current similarity measures 

which have proven to be effective in other domains but have yet to be used in virtual 

screening. Text information retrieval algorithms can be applied to chemical 

information retrieval (Obaid et al., 2017). Bayesian Inference Network is one of the 

techniques that have been applied in text for several types of research domains and it 

has been used extensively in virtual screening as an alternative similarity searching 

method which outperformed the conventional similarity approaches (Abdo et al., 

2010; Abdo et al., 2014; Abdo et al., 2012; Abdo et al., 2011). There are several 

similarity measures that have been recently developed for virtual screening that 

outperformed the Tanimoto coefficient such as quantum-based similarity measure 
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(SQB) (Al-Dabbagh et al., 2015), and adapting text similarity measures (ASMTP) 

(Himmat et al., 2016) which has been derived from a similarity measure of text 

processing and ideal for virtual screening. 

Many researchers in chemoinformactics have taken great interest in the 

fragment bases and bit-strings similarity method particularly, virtual screening (Abdo 

and Salim, 2010; Ahmed et al., 2012a) in which variations of study have been 

conducted within the domain area. The molecular databases (fingerprint) consists of 

massive amount of bit-strings that describes the molecules features (Bajorath, 2017a; 

Todeschini and Consonni, 2009). Many of the classical similarity approaches assume 

that molecular features/ fragments that do not relate to biological activity carry the 

same weight as the important ones. Generally, chemists may consider some fragments 

to be more important than others based on the chemical structure diagrams, such as 

functional groups. For this reason, the weight for each fragment in chemical structure 

compounds has been investigated by giving more weight to those fragments that are 

more important. Therefore, a match between two molecules on highly weighted 

features contributes more to a total similarity than a match based on less important 

features (Arif et al., 2016). Various weighting functions have been introduced for a 

new fragment weighting scheme for Bayesian Inference Network in Ligand-Based 

Virtual Screening (Abdo and Salim, 2010). The fragment reweighting approach has 

been developed by applying reweighting variables and relevance feedback for a better 

performance of retrieval recall of Bayesian Inference Network (Ahmed et al., 2012b).  

The application of data fusion techniques has contributed to major 

improvement on the overall performances of conventional similarity methods (Ahmed 

et al., 2014a; Willett, 2013). The combination of multiple data sources that is translated 

into a single source in which, the fused source result is expected to be more informative 

compared to the individual input sources (Liggins II et al., 2017). The concept of 

multiple information combination sources has been adequately applied (Willett, 2013) 

and recent researchers have found that in terms of similarity, more actives among top 

ranking molecules can be obtained using fusion of several similarity coefficients 

compared to individual coefficients (Brey et al., 2002). The molecular representations, 

query molecules, docking scores and similarity coefficients have been combined 
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mostly using linear combination techniques (Salim et al., 2003). In many fusion 

experiments, the use of fusion source over a single source has shown better results 

either in text retrieval or chemical compound retrieval. In order to achieve the best 

retrieval performance through data fusion, these two requirements must be taken into 

measure; the accurateness of each individual source and the independence of sources 

relative to one another (Saeed et al., 2014).  

Most of the similarity-based virtual screening techniques deal with large 

amounts of data that contain redundant and irrelevant features. The current molecule's 

fingerprint is often made up of multiple properties. Furthermore, since their 

importance levels differ, removing some features may improve the recall of the 

similarity measure (Vogt et al., 2010). Data with irrelevant and redundant features can 

affect the results of the virtual screening and make it harder to interpret (Liu and 

Motoda, 2007; Solorio-Fernández et al., 2020). Features selection can enhance the 

recall of similarity measure and allow important features to be given more weight 

while ignoring the unimportant features (Vogt et al., 2010). Many types of currently 

used fingerprints are highly complex, with many features, therefore many bit positions, 

often exceeding 1000 features or fragments.  

Several deep learning techniques and each with their own advantages offered 

have been widely applied in various types of fields and it is believed that the 

performance of the proposed deep learning in these fields were the best compared to 

all previously work done for addressing similar problems. Autoencoders (AE) is a 

powerful deep learning technique that essentially used in a situation where complex 

data such as image and video are involved. AE is good in handling low dimensional 

feature representation from the inputs based on the unsupervised learning (Liu et al., 

2017; Strub and Mary, 2015; Zhang et al., 2019). The AE has the advantage of 

establishing a functional link between the high-dimensions and low-dimensions 

representations and vice versa. The AE establishes efficient functional linkages 

between the high-dimensions and low- dimensions representations and is compelled 

by using the nonlinear distance metric-based cost function to provide a meaningful 

points arrangement in the low- dimensions representation (Lemke and Peter, 2019). In 

chemoinformatics, one of the major drawbacks of chemical fingerprints in virtual 
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screening is that the fingerprint descriptors often consist of irrelevant and redundant 

features. Therefore, by removing some of these features can improve the recall of the 

similarity measure performance (Vogt et al., 2010). Thus, this research proposed a new 

approach for identifying the important features of molecules in chemical datasets 

based on the representation of the molecular features using Autoencoder (AE), with 

the aim of removing irrelevant and redundant features for improving the performance 

of the similarity searching measures. 

Deep belief network (DBN) is another technique that has been effectively 

applied to further investigate on feature abstraction and image reconstruction features 

(Peng et al., 2016; Semwal et al., 2017; Suk et al., 2016; Zou et al., 2015). DBN has 

been effectively used for multi-level feature selection for the selection of least number 

of the most discriminative genes in order to improve sample classification accuracy 

(Ibrahim et al., 2014), as well as feature selection for remote sensing scene 

classification (Zou et al., 2015). The reconstruction in the DBN can be achieved by 

applying layer-wise weights on the input features, called reconstruction weights. Given 

all layer-wise reconstruction weights, a reconstruction error can be calculated for each 

input feature. The variation of features would commonly make the difference of 

reconstruction errors. Intuitively, a feature with a lower reconstruction error is more 

re-constructible. In the feature learning procedure of the DBN, the more re-

constructible features are more prone to hold the feature intrinsic. Due to these, the 

DBN is proposed in this research to investigate whether some features are more 

important than others, through molecular structure. Moreover, the importance of each 

feature is taken into consideration, by selecting the features that are more re-

constructible as the discriminative features, which leads to a new feature-selection 

method for ligand-based virtual screening.  

1.3 Problem Statement 

As discussed in the problem background, it can be inferred that there are two 

implicit problems relating to chemical similarity search methods which are first, it 

assumes all molecular features are as equivalent in significance, therefore all molecular 
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features are utilized into similarity measure calculation. Second, each weighting 

schemes calculates each feature’s weight independently with zero connection to all 

other features (Vogt et al., 2010). The effectiveness of a retrieval can be improved with 

the help of features reweighting and feature selection by improving the recall of 

similarity measure. 

Several reweighting methods such as features reweighting, features selection, 

mini-fingerprint, fuzzy correlation coefficient have been used to improve the 

performance of Bayesian inference network similarity method (Ahmed et al., 2011a, 

2011b; Ahmed et al., 2013), but still the performance for highly diverse dataset is low 

and require more enhancement (Ahmed et al., 2012a). Additionally, the effectiveness 

of the performance of similarity methods and retrieval of chemical structures may be 

improved by importing techniques from different fields (Al-Dabbagh et al., 2015; 

Himmat et al., 2016). 

The chemical datasets are represented using different descriptors to convert 

molecules into numerical values whereby each descriptor has different important 

features compared to others (Fouaz et al., 2019). In this research, features selection is 

proposed to all molecular fingerprints descriptors and only the important features are 

selected from each descriptor. They are combined to form a new descriptor which then 

will be used to obtain the improvement of the molecules similarity searching 

performance for chemical databases.  

1.4 Research Questions  

The main research question is: 

How do representation of molecular features and feature selection positively 

effect and improve the recall of molecular similarity searching? 

To answer the above-mentioned research question, this thesis must address the 

following issues:  
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How can a new dimension reduction based on Autoencoder be adopted in 

LBVS for removing redundant and irrelevant molecular features and improve the 

effectiveness of the molecular similarity searching? 

How can deep belief networks (DBN) be adopted in ligand based virtual 

screening for molecular reconstruction of features weight?  

How to design a new feature selection model for LBVS based on reconstruction 

features weight to improve the recall of molecular similarity searching?  

Can feature selection model be used with multiple descriptors to select and 

combine the important features from multiple descriptors to improve the effectiveness 

of molecular similarity searching?  

1.5 Research Objectives 

The aim of this study is to develop a ligand-based similarity methods based on 

new molecular features representation, features reweighting and feature selection 

methods to improve the effectiveness of molecular similarity searching, by 

reconstructing features weight based on deep learning techniques and selecting only 

the important features with lowest error value. Selecting a subset of the original feature 

set will save time and contributes to rapid search on vast chemical databases to retrieve 

compounds with the most identical biological activity to the reference structure. 

Thus, the following objectives have been set with the intent of achieving this 

goal: 

(a) To investigate a new LBVS dimension reduction based on Autoencoder deep 

learning for a new representation of the molecules features with low 

dimensions to improve the molecular similarity searching. 



10 

(b) To design a new feature selection model for LBVS based deep belief networks 

to select the important features which can be used to improve the molecular 

similarity searching. 

(c) To improve the molecular similarity searching based on combining the 

important subset features from multiple descriptors based on feature selection 

model.  

1.6 Research Scope  

The focus of this study will be on similarity methods that are based on 2D 

fingerprints. These similarity methods can be used to measure the extent of molecule 

pairs which are characterised by 2D fingerprints and would structurally resemble each 

other. The applications of these methods are conducted using 2D fingerprints that are 

binary and non-binary. 

In addition, this study focuses on different approaches which are based on deep 

learning that were used to enhance the effectiveness of molecular retrieval. The first 

approach is based on the representation of the molecular features using 

Autoencoder (AE), where it aims to remove irrelevant and redundant features and 

presented a new molecular representation to enhance the recall of the similarity 

searching. The second approach is features selection model based on deep belief 

networks (DBN) which is used to calculate the molecular reconstruction features 

weight and select only the important features according to the least reconstruction 

features error value that will be used later in similarity calculation to enhance the 

performance of molecular similarity searching by rapidly screening very large 

chemical datasets with millions of compounds in a short period of time. The proposed 

approaches based on deep learning were used MDL Drug Data Report (MDDR) 

datasets for the training. 

The MDDR datasets have been represented by several 2D fingerprints such as 

atom type extended-connectivity fingerprints (ECFP), atom type extended 
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connectivity fingerprints counts (ECFC), functional class daylight path-based 

fingerprint counts (FPFC), functional class extended connectivity fingerprints counts 

(FCFC), atom type connectivity fingerprints counts (EPFC), functional class daylight 

path-based fingerprints (FPFP), A Log P types extended connectivity fingerprint 

counts (LCFC), A Log P types daylight path-based fingerprint counts (LPFC), 

functional class extended connectivity fingerprints (FCFP), A Log P types daylight 

path-based fingerprints (LPLP) and A Log P extended connectivity fingerprint (LCFP) 

(Chen and Reynolds, 2002; Klon et al., 2004; Sakkiah et al., 2014); in which all these 

fingerprints have different important features and different molecular representations. 

The concept of data fusion with deep learning techniques have been implemented with 

some of these molecular fingerprints and only the important selected features from 

each fingerprint were combined to form a new descriptor which will be used to obtain 

performance improvement of molecular similarity searching for chemical databases. 

In this study, the similarity approaches will assess a large dataset that is 

obtained from the MDDR database. This database makes single and multiple reference 

structures accessible. The comparison between the performance of this method and the 

performance of traditional 2D similarity methods will be presented, including 

Tanimoto Similarity Method (TAN), Bayesian Inference Networks (BIN), Adapted 

Similarity Measure of Text Processing (ASMTP) and Quantum-Based Similarity 

Method (SQB). 

1.7 Significance of the Study 

The primary aim of this research is to improve the effectiveness of molecular 

similarity searching ligand-based virtual screening by utilizing deep learning 

techniques for molecular representation features and feature selection for selecting the 

most essential features for the application of molecular similarity searching 

calculation. At present, the average cost of discovering and developing a new drug into 

the market is very expensive, which approximately reaching to $1 billion or more and 

it is time consuming (Morgan et al., 2011). A huge portion of this cost is estimated 

due to high failure rates of molecules that seems to be convincing drug candidates 
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during initial stages of screening. This often happened because there are millions of 

chemical compounds needed to be screened, however it is very difficult to test all these 

overwhelming numbers of compounds in chemical databases within a short period of 

time.  

Particularly, this study proposes a new molecular representation based on deep 

learning techniques using multiple levels of abstractions and non-linear transformation 

so that the features of molecules that are most optimized for virtual screening purposes 

can be learned and optimized, layer by layer.  

Autoencoder has proven to be extremely effective at reducing data 

dimensionality while preserving significant underlying features. The Autoencoder has 

been employed to remove the molecules irrelevant and redundant features as well as 

produce a new molecular representation with low dimension. This new representation 

based on the low dimension is regarded as a new descriptor and used to enhance the 

recall of the similarity searching measures. 

The most distinguishable representations of molecules have been trained and 

learned based on beep belief networks to reconstruct the molecules features weight 

and select only important features for similarity searching. The selection of subset 

molecular features can help in shortening the time needed for screening hundreds of 

thousands of compounds. Thus, making it necessary for computer-based methods for 

compound selection and evaluation. The proposed hybrid deep learning techniques is 

expected to enhance the performance of the similarity searching to discover more 

novel drug compounds by proposing new ways to select the important features that 

helped to enhance the performance of the molecular similarity searching.  

1.8 Thesis Organization 

The outline of the thesis is presented in this section. There are seven chapters 

included in this thesis, which are organized as the followings: 
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Chapter 1, Introduction: This chapter provides an overview of the proposed 

research work in chemoinformatics, drug discovery, and virtual screening topics, as 

well as a brief review on the problem background, the problem statement, the 

objectives of the study, the research scope, and the significance of the study. 

Chapter 2, Literature Review: This chapter presents an overview of the area of 

chemoinformatics which contains the chemical structure representations, chemical 

descriptors, molecular similarity searching methods, and molecular similarity 

coefficients. Moreover, this chapter covers the ways used for improving the molecular 

similarity searching. The overview of deep learning concept and the deep learning use 

in others research fields and in chemoinformatics has been presented in this chapter. 

A brief description for the proposed deep learning techniques that will be used in this 

research is also included. This chapter is concluded with a discussion and overview of 

the relevance techniques applied to molecular similarity searching, as well as the most 

effective strategies to enhance these methods performances. 

Chapter 3, Research Methodology: This chapter discusses on the 

methodologies used for achieving the aims presented in this thesis and a general 

illustration of the experimental designs is also presented. 

Chapter 4, Similarity Searching Based on Deep Learning Autoencoder for 

Molecular Features Representation: This chapter describes and develop a new LBVS 

dimensionality reduction for low dimensional feature representation proposed to 

improve the performance of similarity searching measures. The motivation behind the 

importance of low dimensional feature representation of molecules was discussed in 

this chapter. This chapter is concluded with results findings and a brief conclusion. 

Chapter 5, Features Reweighting and Selection in Ligand-Based Virtual 

Screening for Molecular Similarity Searching: This chapter describes a new feature 

selection model for LBVS called DBN-FS. Here in this chapter, the reconstructed 

features weight for molecules are presented based on deep belief networks (DBN). A 

new feature selection model is proposed based on the reconstructed features weight to 

select only the important features those have low error value. The new selected features 
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are then used as a new descriptor to improve the performance of the similarity measure 

performance. The DBN-FS model and experimental design for this approach is 

presented in this chapter and the end of the chapter focuses on the results and 

discussion of the work. 

Chapter 6, Combination Selected Important Features from Multiple 

Descriptors: This chapter provides a new approach of the combination of important 

features from multiple descriptors and produced a new descriptor based on the selected 

features to use it for improving the performance of the similarity searching measures. 

The motivation behind the importance of the combining features from several 

descriptors was discussed in this chapter. An analysis of the outcomes of this approach 

is provided at the conclusion of this chapter, and it is compared to all prior suggested 

approaches as well as standard similarity measures. 

Chapter 7, Conclusion and Future Work: The discussion and conclusion on the 

all-inclusive work of the thesis is presented in this chapter. This chapter emphasizes 

on the results and its contributions, as well as providing suggestions and 

recommendations for future work.
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