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ABSTRACT 

As the number of displaced people skyrocketed due to natural disaster, conflict 

and urbanization, the demand of temporary housing solution had increased 

substantially. As the concept of transitional shelter been proposed to mitigate the issue 

related to transition stage from temporary shelter to permanent housing, International 

Organization for Standardization (ISO) standardized shipping container could become 

a potential candidate due to its modularity and inherent strength. Although ISO did 

govern that the specification of container had to fulfil requirement for marine and 

logistic purpose, for residential purpose the container shelter must be modified to 

include the necessary opening for ventilation requirement. This would greatly affect 

its structural integrity especially its lateral stiffness that was highly dependent on the 

condition of corrugated side wall. Hence, this research aims to investigate the ISO 

container transitional shelter (CTS) from engineering perspective, focusing on its 

lateral load resistance. Current lateral stiffness design for container wall was revised 

and modified to include effect of opening by validation of experimental results and 

design guideline for CTS was developed. Theoretical calculation for lateral stiffness 

of corrugated panel based on latest publication was modified based on result of lateral 

load testing using 48 corrugated panels considering effect of panel thickness, opening 

size, and loading orientation. Two full scale ISO container with different opening 

configuration were tested under two different loading direction to obtain the lateral 

stiffness for both axes. Numerical model of ISO container was also developed using 

finite element software Abaqus and validated with the experimental result. The 

theoretical calculation developed was then validated with the full scale container test 

result to amend the formulation for container shelter purpose. From this research, the 

new correlated formulation proposed could accurately estimate the lateral stiffness of 

the corrugated panel. Thirteen sets of finite element model were developed, and the 

correlation factor was proposed to improve the accuracy of current modelling 

technique. Based on the test stiffness of full scale container, the theoretical stiffness of 

container shelter was formulated with acceptable prediction when validated with 

experimental result. Lateral stiffness design procedure for CTS was proposed using 

the developed theoretical formulation. In nutshell, the research provided update to 

current stiffness design of corrugated steel shear wall, and the structural design of CTS 

could become more reliable and flexible in opening layout for engineers by using the 

new equation proposed. 
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ABSTRAK 

Memandangkan bilangan orang yang berpindah akibat bencana alam, konflik 

dan proses perbandaran semakin meningkat, permintaan perumahan sementara telah 

meningkat dengan ketara. Disebabkan konsep rumah perlindungan peralihan 

dicadangkan untuk mengurangkan isu berkaitan dengan peralihan daripada perumahan 

sementara kepada perumahan kekal, kontena berpiawai Pertubuhan Standardisasi 

Antarabangsa (ISO) telah dijadikan calon yang berpotensi disebabkan oleh modulariti 

dan kekuatannya. Walaupun ISO telah menetapkan spesifikasi kontena yang diperlui 

untuk memenuhi keperluan tujuan marin dan logistik, untuk tujuan kediaman rumah 

perlindungan kontena mesti diubah suai untuk memasukkan bukaan yang diwajibkan 

bagi keperluan pengudaraan. Ini akan menjejaskan integriti struktur terutamanya 

kekukuhan sisi yang sangat bergantung kepada keadaan dinding sisi beralun. Oleh itu, 

penyelidikan ini bertujuan untuk menyiasat rumah perlindungan peralihan kontena 

ISO dari perspektif kejuruteraan, memfokuskan pada rintangan beban sisi. Pengiraan 

rintangan beban sisi bagi dinding kontena telah disemak semula dan diubah suai untuk 

mempertimbangkan kesan bukaan dengan pengesahan keputusan eksperimen, diikuti 

dengan pembangunan garis panduan reka bentuk untuk rumah perlindungan peralihan 

kontena. Pengiraan teori untuk kekakuan sisi panel beralun berdasarkan penerbitan 

terkini telah diubah suai berdasarkan keputusan ujian beban sisi menggunakan 48 

panel beralun yang mengambil kira kesan ketebalan panel, saiz bukaan dan orientasi 

pembebanan. Dua kontena ISO skala penuh dengan konfigurasi pembukaan berbeza 

telah diuji dari dua arah pembebanan yang berbeza untuk mendapatkan kekakuan sisi 

bagi kedua-dua paksi. Model berangka bagi kontena ISO juga dibangunkan 

menggunakan perisian unsur terhingga Abaqus dan disahkan dengan keputusan 

eksperimen. Pengiraan teori yang dibangunkan juga disahkan dengan keputusan ujian 

kontena skala penuh untuk meminda formulasi bagi penggunaan rumah perlindungan 

kontena. Daripada penyelidikan ini, rumusan teori baru yang diterima pakai telah 

dibangunkan dan boleh menganggarkan kekukuhan sisi panel beralun dengan tepat. 

Tiga belas set model elemen terhingga telah dibangunkan dan faktor korelasi telah 

dicadangkan untuk meningkatkan ketepatan teknik pemodelan semasa. Berdasarkan 

ujian kekukuhan kontena skala penuh, kekukuhan teori rumah perlindungan kontena 

telah dirumuskan dan boleh mencapai ramalan yang boleh diterima apabila disahkan 

dengan keputusan eksperimen. Prosedur reka bentuk kekakuan sisi untuk rumah 

perlindungan peralihan kontena telah dicadangkan menggunakan rumusan teori yang 

dibangunkan. Secara ringkasnya, penyelidikan menyediakan kemas kini kepada reka 

bentuk kekukuhan dinding ricih keluli beralun, dan reka bentuk struktur rumah 

perlindungan peralihan kontena boleh menjadi lebih dipercayai dan mudah dalam 

susun atur pembukaan untuk jurutera dengan menggunakan persamaan baharu yang 

dicadangkan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The increasing report of natural disasters had been observed worldwide over 

the past decades. According to the statistics by The United Nations Office for Disaster 

Risk Reduction, total of 98.6 million people had been affected by the natural disaster 

with over 66.5 billion US dollar economy damage in year 2015 alone (Centre for 

Research on the Epidemiology of Disasters (CRED), 2016). Besides, the conflicts 

within and among the countries such as civil war, persecution or revolution encouraged 

the migration of residents as refugees. The United Nation Refugee Agency had 

reported that till 2016 there were 22.5 million refugees and 20 people were forcibly 

moved from their home every minute (UN Refugee Agency (UNHCR), 2017). 

Combined with the victims from the natural disasters, these whooping numbers of 

people were waiting for all sort of emergency aids including food, medicine and shelter 

as their protection and livelihood. 

In general, conventional post-disaster shelters can be categorized into 

emergency shelter, temporary shelter, temporary housing, and permanent housing 

(Quarantelli, 1995). When disaster occurs, the affected people will attempt to find 

emergency shelter to protect them, at most overnight, before the arrival of the rescue. 

Temporary shelter is the place where the displaced people are settled and stayed before 

they can move into new housing. In some cases, especially when large crowd of 

population are involved or the construction of permanent housing requires long period 

of time, temporary housing will be provided too as alternative measures. Temporary 

house is more structurally robust and comfort to live compared to emergency and 

temporary shelter, however it is still not designed for long service life.  
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Figure 1.1: Concept of transitional shelter (Shelter Centre, 2012)  

Currently transitional shelter had been introduced into disaster relief 

programme as the substitute of the traditional approach. Transitional shelter is defined 

as an incremental approach to provide shelter which can be upgraded, reused, 

relocated, resold and recycled (Shelter Centre, 2012). This is illustrated in Figure 1.1. 

It had been implemented since year 2004 at several disaster regions such as Sri Lanka, 

Jogjakarta, Aceh, Peru and Haiti (UN-HABITAT, 2009). Compared to conventional 

approach which is carried out phase-by-phase, transitional shelter is rather a 

continuous development of improving existing shelter which may become the 

permanent housing by itself. 

The International Organisation of Migration (IOM), in its publication, had 

carried out strength, weakness, opportunities and threat (SWOT) analysis of 

transitional shelter which were summarised in Figure 1.2 (Shelter Centre, 2012). With 

careful decision-making and detailed planning based on local scenario and available 

resources, the transitional shelter can become potentially the best solution for housing 

crisis after the migration of displaced people from conflict or disasters. The common 

types of material used in transitional shelter are bamboo, timber and steel frame 

(International Federation of Red Cross and Red Crescent Societies, 2011). Recently, 

another potential candidate had gained attention from researcher as transitional shelter 

that is used ISO shipping containers.  
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Figure 1.2: SWOT analysis of transitional shelter (Shelter Centre, 2012) 
  

1.2 Problem Statement 

Current emergency shelters provided for disaster refugees are complained 

about too late, too expensive and contradict to local culture and living needs (Johnson, 

2007). An emergency shelters, i.e., camp shelter that meant for temporary use of 6 

months are often being prolonged into years of utilization, while waiting for 

government to provide permanent dwells. These temporary shelters are also not 

designed to withstand strong natural impacts like wind gusts, floods and land 

movement which exposed the refugees to the hazards of second wave of natural 

disaster impacts. The tarpaulin and canvas camp material do not provide sufficient 

security for the refugees to protect their lives and belongings over social crimes. 

Conversely, provisions of timber and brick temporary shelters to the refugees would 

solve some of the mentioned problems but they are not a sustainable solution. When 

the refugees move out form the temporary disaster camp into a permanent shelter, the 

abandoned timber and brick shelters will become huge amount of waste that need 
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another budgets and efforts for disposal. Urge for an improved shelter design is 

needed, which is available immediately, rapid and ease construction, open-ended 

design that adaptable to local social and cultural needs, pre-designed for long-term 

usage, cost effective and environmentally friendly. With these demands in mind, steel 

modular building such as modified ISO shipping container could serve as good 

solution. The term “modified” used in this context refers to modification which will 

deteriorate the structural performance of shipping container, such as aperture for 

ventilation and installation of heavy machinery such as air conditioner. The idea of 

using modified shipping container as container transitional shelter (CTS) was 

visualized in Figure 1.3. With its capability to be arranged in different orientation and 

stacked on each other, the modularity of container shelter could be used as buildings 

for multi-purpose (Hong, 2017). The uses of container as housing materials had been 

popularised due to its construction speed, waste reduction and modular construction 

(Nduka et al., 2018). It can also be used in different kind of terrain or climate including 

coastal region (Haque et al., 2022). ISO shipping containers manufactured to ISO 668 

specification can withstand extreme natural impacts and weather conditions. Reusing 

ISO shipping containers as shelters for their second life purpose can save up to 95% 

energy compared to recycling them into raw steel materials that made it a sustainable 

construction solution (Vijayalaxmi, 2010). 

Figure 1.3 Idea of modified ISO container transitional shelter for disasters (Prinz & 

Nussbaumer, 2014) 
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Although some studies on the container had been done, they only investigated 

container strength as whole without prioritizing the load condition of residential 

purpose (Børvik et al., 2008a; Zha & Zuo, 2016a). The research done on container 

shelter also did not assess all structural performance, especially its resistance under 

lateral load (Bernardo et al., 2013; Zafra et al., 2021). Hence there is an urge for the 

stiffness prediction of the container shelter as the deflection control was especially 

crucial for container module which could be stacked up to form mid-rise building. The 

structural performance of container shelter should also be investigated using more 

advanced engineering approach such as finite element software. Moreover, although 

ISO shipping containers carry the structural integrity as guaranteed by ISO standards, 

used and modified containers would cause the warranty voided. Container architects 

and builders diligently recommend the sustainability of container houses, but to date, 

no professional personnel or organization has provided a code of practice to the design 

and build of CTS. This causes the CTS idea is hardly accepted by the public, e.g., 

residents, insurance companies and bank etc. A comprehensive scientific and 

engineering study must be conducted to provide a design procedure for the CTS. 

1.3 Objectives of Research  

The aim of the research is to investigate the potential of ISO shipping container 

as transitional shelter from engineering perspective, especially its structural integrity 

on the lateral load.  

The objectives of the research are: 

1) To modify and formulate new engineering formulation for the lateral stiffness 

of modified ISO shipping containers. 

2) To determine the correlation factor through numerical analysis and theoretical 

formulation for stiffness of modified ISO shipping container shelter. 

3) To develop and propose the design guideline for container transitional shelters. 
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1.4 Scope of Research 

A scaled experiment had been conducted using 48 commercially available steel 

panel to verify the theoretical calculation on lateral stiffness of corrugated profile given 

by current code of practice. Different set of panels with various net thickness, opening 

size and loading orientation were tested and the lateral stiffness, maximum load, failure 

mode and strain data were obtained. Parametric study was carried out to compare the 

test results to previous analytical models. The existing formulation given by code of 

practice was modified to include effect of opening for more accurate representation. 

Two full scale 20ft ISO containers with different wall opening were also tested 

under lateral loading from two different principal axis. The load-deflection 

relationship, deformed shape and strain data were collected. Besides, numerical model 

of a 20ft ISO container was modelled using finite element software Abaqus. The load-

deflection analysis was carried out on modified numerical model with same opening 

configuration as full scale experimental specimen. The results of numerical model 

were compared with previous research outcome and the full scale test result to validate 

the accuracy of numerical model. The results of full scale container would also validate 

the theoretical formulation developed in previous scaled down test.  

The stiffness design for CTS was developed by proposing calculation 

workflow with inclusion of modified stiffness formulation and consideration of wall 

opening. A work example was demonstrated for lateral stiffness design of single storey 

container shelter.  

1.5 Significance of Research 

The integration of ISO shipping container as rapid steel modular construction 

system would provide a safer and withstandable structure, open-ended design that 

adaptable to local social and cultural needs, rapid and ease construction, lightness, 

economic and sustainable shelters compared with conventional shelters for 

emergency, temporary or long tern usage. The study also contributes to the rapid 
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construction for post-disaster reconstruction and re-urbanization. As parts of this study 

was focused on the stressed-skin design, the revision of the existing design guidelines 

can be used in other types of steel modular construction, helping engineers to predict 

the structural performance of their design under lateral load such as wind. This study 

is also necessary to understand the structural integrity of modular steel building using 

ISO shipping container. The study provides further justification, modification and 

proposed operative procedures to implement the steel modular building as emergency 

shelters. The demonstrated workflow with revised formulation and design approach 

achieves more precise representation on the structural stiffness of container shelter. 

The proposed design workflow of container shelter was supported with results from 

both theoretical and numerical data, which validated with experimental results and thus 

be more accurate than previous research. Development of numerical analysis using 

finite element approach enlightens the structural engineers to simplify the structural 

analysis of container shelter using computation power of engineering software.  

1.6 Thesis outline  

This thesis was comprised of six (6) chapters. Chapter 1 described the 

introduction of thesis including research background, problem statement, research 

objectives, scope of research and research significance. Chapter 2 consisted of 

literature review on the ISO shipping container, container architecture, housing design 

consideration and previous research on container structure. Chapter 3 consisted of 

research methodology for development of theoretical calculation, experimental setup 

of both scaled down testing and full scale ISO container test, and development of 

numerical model and finite element analysis. Chapter 4 depicted on lateral stiffness of 

corrugated wall by scaled down experiment. Chapter 5 depicted the validation of test 

result of full scale ISO container test with both theoretical and numerical model, 

together with the stiffness design guideline of CTS. Chapter 6 was the conclusion for 

the research and future work recommendation.   
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