MODIFIED SHIPPING CONTAINERS FOR TRANSITIONAL SHELTER CONSTRUCTION

PHILIP LING CHIE HUI

UNIVERSITI TEKNOLOGI MALAYSIA

MODIFIED SHIPPING CONTAINERS FOR TRANSITIONAL SHELTER CONSTRUCTION

PHILIP LING CHIE HUI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2022

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my main supervisor Associate Professor Dr. Tan Cher Siang for his guidance, critics, and encouragement, both in research study and life lesson. I would like to thank my co-supervisors Dr. Lee Yeong Huei who had gave supportive information in finite element modelling and information on full scale ISO container testing which he in-charge together with Dr. Tan, and also Associate Professor Ar. Dr. Lim Yaik Wah who gave support and opened my vison during thesis preparation

I also thankful to Universiti Teknologi Malaysia and Malaysia Ministry of Education for funding my PhD study via Zamalah Scholarship and Research Student Grant programme. Big thanks to UTM High Performance Computing (HPC) for providing software required for analysis. My gratitude also given to UTM staff at Structure and Material Laboratory D04 for assisting in lab testing. Special thanks to Mr Leong Chee Cheong from Chee Kong Engineering & Construction Sdn Bhd for his expertise and consultation on experimental design and Ir Tu Yong Eng from YLD Professional Sdn. Bhd. for helping in theoretical work.

All the colleagues in Steel and Composite Construction research group (SCC-RG) should also receive appreciation as their constructive criticism during the colloquium meeting had greatly improve the quality of this research work. Special thanks to Mr. Faisal Amysar bin Redzuan and Mr Chai Teck Jung for giving advice and helpful insight on my research work.

Special thanks to my beloved family who had gave encouragement and being my biggest support to complete the thesis. Thank you to my partner Ms Won Su Hwei and all the friends from Skudai Chinese Methodist Church who gave me spiritual support along the thesis journey. Last but not least, thanks Lord for giving me chance to gain new knowledge and met fabulous people during this wonderful study. Glory to the Lord, Amen!

ABSTRACT

As the number of displaced people skyrocketed due to natural disaster, conflict and urbanization, the demand of temporary housing solution had increased substantially. As the concept of transitional shelter been proposed to mitigate the issue related to transition stage from temporary shelter to permanent housing, International Organization for Standardization (ISO) standardized shipping container could become a potential candidate due to its modularity and inherent strength. Although ISO did govern that the specification of container had to fulfil requirement for marine and logistic purpose, for residential purpose the container shelter must be modified to include the necessary opening for ventilation requirement. This would greatly affect its structural integrity especially its lateral stiffness that was highly dependent on the condition of corrugated side wall. Hence, this research aims to investigate the ISO container transitional shelter (CTS) from engineering perspective, focusing on its lateral load resistance. Current lateral stiffness design for container wall was revised and modified to include effect of opening by validation of experimental results and design guideline for CTS was developed. Theoretical calculation for lateral stiffness of corrugated panel based on latest publication was modified based on result of lateral load testing using 48 corrugated panels considering effect of panel thickness, opening size, and loading orientation. Two full scale ISO container with different opening configuration were tested under two different loading direction to obtain the lateral stiffness for both axes. Numerical model of ISO container was also developed using finite element software Abaqus and validated with the experimental result. The theoretical calculation developed was then validated with the full scale container test result to amend the formulation for container shelter purpose. From this research, the new correlated formulation proposed could accurately estimate the lateral stiffness of the corrugated panel. Thirteen sets of finite element model were developed, and the correlation factor was proposed to improve the accuracy of current modelling technique. Based on the test stiffness of full scale container, the theoretical stiffness of container shelter was formulated with acceptable prediction when validated with experimental result. Lateral stiffness design procedure for CTS was proposed using the developed theoretical formulation. In nutshell, the research provided update to current stiffness design of corrugated steel shear wall, and the structural design of CTS could become more reliable and flexible in opening layout for engineers by using the new equation proposed.

ABSTRAK

Memandangkan bilangan orang yang berpindah akibat bencana alam, konflik dan proses perbandaran semakin meningkat, permintaan perumahan sementara telah meningkat dengan ketara. Disebabkan konsep rumah perlindungan peralihan dicadangkan untuk mengurangkan isu berkaitan dengan peralihan daripada perumahan sementara kepada perumahan kekal, kontena berpiawai Pertubuhan Standardisasi Antarabangsa (ISO) telah dijadikan calon yang berpotensi disebabkan oleh modulariti dan kekuatannya. Walaupun ISO telah menetapkan spesifikasi kontena yang diperlui untuk memenuhi keperluan tujuan marin dan logistik, untuk tujuan kediaman rumah perlindungan kontena mesti diubah suai untuk memasukkan bukaan yang diwajibkan bagi keperluan pengudaraan. Ini akan menjejaskan integriti struktur terutamanya kekukuhan sisi yang sangat bergantung kepada keadaan dinding sisi beralun. Oleh itu, penyelidikan ini bertujuan untuk menyiasat rumah perlindungan peralihan kontena ISO dari perspektif kejuruteraan, memfokuskan pada rintangan beban sisi. Pengiraan rintangan beban sisi bagi dinding kontena telah disemak semula dan diubah suai untuk mempertimbangkan kesan bukaan dengan pengesahan keputusan eksperimen, diikuti dengan pembangunan garis panduan reka bentuk untuk rumah perlindungan peralihan kontena. Pengiraan teori untuk kekakuan sisi panel beralun berdasarkan penerbitan terkini telah diubah suai berdasarkan keputusan ujian beban sisi menggunakan 48 panel beralun yang mengambil kira kesan ketebalan panel, saiz bukaan dan orientasi pembebanan. Dua kontena ISO skala penuh dengan konfigurasi pembukaan berbeza telah diuji dari dua arah pembebanan yang berbeza untuk mendapatkan kekakuan sisi bagi kedua-dua paksi. Model berangka bagi kontena ISO juga dibangunkan menggunakan perisian unsur terhingga Abaqus dan disahkan dengan keputusan eksperimen. Pengiraan teori yang dibangunkan juga disahkan dengan keputusan ujian kontena skala penuh untuk meminda formulasi bagi penggunaan rumah perlindungan kontena. Daripada penyelidikan ini, rumusan teori baru yang diterima pakai telah dibangunkan dan boleh menganggarkan kekukuhan sisi panel beralun dengan tepat. Tiga belas set model elemen terhingga telah dibangunkan dan faktor korelasi telah dicadangkan untuk meningkatkan ketepatan teknik pemodelan semasa. Berdasarkan ujian kekukuhan kontena skala penuh, kekukuhan teori rumah perlindungan kontena telah dirumuskan dan boleh mencapai ramalan yang boleh diterima apabila disahkan dengan keputusan eksperimen. Prosedur reka bentuk kekakuan sisi untuk rumah perlindungan peralihan kontena telah dicadangkan menggunakan rumusan teori yang dibangunkan. Secara ringkasnya, penyelidikan menyediakan kemas kini kepada reka bentuk kekukuhan dinding ricih keluli beralun, dan reka bentuk struktur rumah perlindungan peralihan kontena boleh menjadi lebih dipercayai dan mudah dalam susun atur pembukaan untuk jurutera dengan menggunakan persamaan baharu yang dicadangkan.

TABLE OF CONTENTS

TITLE

	DECL	ARAT	ION	iii
	DEDI	CATIO	N	iv
	ACKN	IOWLI	EDGEMENT	v
	ABST	RACT		vi
	ABST	RAK		vii
	TABL	E OF (CONTENTS	viii
	LIST	OF TA	BLES	xiv
	LIST	OF FIG	JURES	xvi
	LIST	OF AB	BREVIATIONS	xxvii
	LIST	OF SYI	MBOLS	xxviii
	LIST	OF AP	PENDICES	XXX
CHAPTER	R 1	INTR	ODUCTION	1
	1.1	Resear	ch Background	1
	1.2	Problem	m Statement	3
	1.3	Object	ives of Research	5
	1.4	Scope	of Research	б
	1.5	Signifi	cance of Research	6
	1.6	Thesis	outline	7
CHAPTER	R 2	LITE	RATURE REVIEW	9
	2.1	Introdu	iction	9
	2.2	Introdu	action to ISO Standardized Shipping Containers	10
		2.2.1	Container Components and Part Assembly	11
		2.2.2	Dimension and Rating	15
		2.2.3	Materials	16
	2.3	Shippi	ng Container as Building Material	16
	2.4	Housin	g Design Consideration	18
		2.4.1	Space, Light and Ventilation	18

	2.4.2	Structura	l Requirements	20
	2.4.3	Fire Safe	ty Requirements	21
2.5	Feasib Transi	ility Stud tional She	ly of ISO Shipping Containers as lters	21
	2.5.1	Feasibilit	y Framework	22
	2.5.2	Technica	1	22
	2.5.3	Economi	c	25
	2.5.4	Legal		26
	2.5.5	Operation	nal	27
		2.5.5.1	Social Sustainability	28
		2.5.5.2	Environmental Sustainability	29
	2.5.6	Schedule		30
	2.5.7	Current s	tatus of container shelter	31
	2.5.8	Potential container	construction recommendation for transitional shelter	35
2.6	Previo Struct	ous work of ure	n Structural Performance of Container	38
	2.6.1	Analytica	al Work	38
		2.6.1.1	Introduction to Energy Method	39
		2.6.1.2	Deformation Expression of Corrugated Sheet	40
		2.6.1.3	Total Strain Energy Components	43
		2.6.1.4	Energy due to out-of-plane bending of cross section, U_F	44
		2.6.1.5	Energy due to in-plane bending of plate, U_B	46
		2.6.1.6	Energy due to shear strain of plate, U_s	46
		2.6.1.7	Energy due to axial deformation of side plate, U_T	47
		2.6.1.8	Compatibility Condition for Deformation of Corrugated Panel	47
		2.6.1.9	Minimization of The Total Strain Energy	48
		2.6.1.10	Stiffness of Corrugated Profile	50

	2.6.2 Experimental Study	51
	2.6.3 Numerical Study	56
2.7	Critical Review on Status of Container transitional Shelter	59
CHAPTER 3	RESEARCH METHODOLOGY	67
3.1	Introduction	67
3.2	Theoretical Work	68
	3.2.1 ECCS approach	68
	3.2.1.1 Sheet deformation: Profile distortion	69
	3.2.1.2 Sheet deformation: Shear Strain	75
	3.2.1.3 Flexibility Relationship with Diaphragm Orientation	76
	3.2.1.4 Total flexibility and shear stiffness of panel	77
	3.2.2 Effect of Opening on Wall Stiffness	77
	3.2.2.1 ECCS approach on effect of opening	78
	3.2.2.2 Zha and Zuo (2016) approach on wall opening	80
3.3	Scaled Experimental Work for Isolated Panel Testing	82
	3.3.1 Coupon Tensile Test	82
	3.3.2 Loading Frame for Isolated Panel Testing	83
	3.3.3 Test Specimen for Isolated Panel Testing	84
	3.3.4 Test Setup for Isolated Panel Testing	87
3.4	Full Scale ISO Container Testing	92
	3.4.1 Tensile Coupon Test	92
	3.4.2 Container Load Test	93
3.5	Numerical work	97
3.6	Chapter Summary	102
CHAPTER 4	LATERAL STIFFNESS OF ISOLATED CORRUGATED WALL WITH OPENINGS	103
4.1	Introduction	103
4.2	Coupon Tensile Test	104
4.3	Result from Isolated Panel Testing	105

	4.3.1	Shear stit	ffness from isolated panel S-0.8-0W0D-L and S-1.0-0V	test for W0D-L	107
	4.3.2	Shear stift specimen	ffness from isolated panel S-0.8-0W0D-T and S-1.0-0V	test for W0D-T	110
	4.3.3	Shear stif	ffness from isolated panel S-0.8-1W-L and S-1.0-1W-I	test for	113
	4.3.4	Shear stift specimen	ffness from isolated panel S-0.8-1W-T and S-1.0-1W-T	test for Γ	116
	4.3.5	Shear stift specimen	ffness from isolated panel S-0.8-1D-L and S-1.0-1D-L	test for	119
	4.3.6	Shear stift specimen	ffness from isolated panel S-0.8-1D-T and S-1.0-1D-T	test for	122
	4.3.7	Shear stift specimen	ffness from isolated panel S-0.8-1V-L and S-1.0-1V-L	test for	125
	4.3.8	Shear stif	ffness from isolated panel S-0.8-1V-T and S-1.0-1V-T	test for	128
	4.3.9	Shear stift specimen	ffness from isolated panel R-0.8-0W0D and R-1.0-0W	test for 0D	131
	4.3.10	Shear stift specimen	ffness from isolated panel R-0.8-2W and R-1.0-2W	test for	134
	4.3.11	Shear stif	ffness from isolated panel R-0.8-1D and R-1.0-1D	test for	137
	4.3.12	Shear stift specimen	ffness from isolated panel R-0.8-3D and R-1.0-3D	test for	140
4.4	Failure	e mode and	loading history		143
4.5	Strain	analysis			145
4.6	Parame	etric study			150
	4.6.1	Effect of I	Plate Thickness		150
	4.6.2	Effect of (Openings		151
		4.6.2.1	Opening Dimensions		152
		4.6.2.2	Opening Orientation		153
		4.6.2.3	Panel Orientation		153
		4.6.2.4	Summary of Findings		154
4.7	Compa	arison with	Previous Model		155
	4.7.1	Stiffness r	reduction of ECCS		155
	4.7.2	Stiffness 1	reduction of Zha and Zuo		157

	4.7.3	Summar	y of Findings	159
4.8	Modif	fication fac	ctor for ECCS formulation	159
	4.8.1	Stiffness opening	of corrugated panel without effect of	159
	4.8.2	Stiffness	of panel with opening	162
4.9	Chapt	er Summa	ry	166
CHAPTER 5	ISO S ACTI	SHIPPING IONS	G CONTAINER WITH LATERAL	167
5.1	Introd	uction		167
5.2	Full S	caled Exp	erimental Tests	167
	5.2.1	Tensile 7	Fest	168
	5.2.2	Containe	r Test SC1	169
		5.2.2.1	Test 1- Load Case 3 with door opened	169
		5.2.2.2	Test 2a- Load Case 2 with door closed	170
		5.2.2.3	Test 2b- Load Case 2 with door opened	171
	5.2.3	Containe	r Test SC2	172
		5.2.3.1	Test 3a- Load Case 2 with door opened	172
		5.2.3.2	Test 3b- Load Case 2 with door closed	173
		5.2.3.3	Test 4a- Load Case 3 with door opened	174
		5.2.3.4	Test 4b- Load Case 3 with door closed	175
	5.2.4	Strain ga	uge analysis	176
		5.2.4.1	Strain of container SC1	176
		5.2.4.2	Strain of Container SC2	177
5.3	Nume	erical Inves	stigations	178
	5.3.1	Configur	ration 1	179
	5.3.2	Configur	ration 2	185
	5.3.3	Configur	ration 3	189
	5.3.4	Configur	ration 4	195

	5.3.5 Maximum stress and strain analysis of FEM model	200
5.4	Comparison of FEM Model with Previous Work and Test Result	204
	5.4.1 Comparison with Giriunas (2012)	204
	5.4.2 Comparison with Zha. and Zuo. (2016)	207
	5.4.3 Comparison with full scale ISO container test	210
5.5	Application of Developed Equation in Lateral Stiffness Calculation	212
5.6	Stiffness Design for Container Shelter	220
	5.6.1 Work Example	222
5.7	Chapter Summary	225
CHAPTER 6	CONCLUSION AND RECOMMENDATIONS	227
6.1	Research Summary	227
6.2	Concluding Remark	228
6.3	Limitation of Research and Future Work Recommendation	229
REFERENCES		231
APPENDIX		243
LIST OF PUBLI	CATION	280

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	ISO Shipping Container Components	12
Table 2.2	ISO Shipping Container Dimension and Rating	15
Table 2.3	Material properties for CORTEN-A compared with	16
Table 2.4	UBBL Light and ventilation requirement	19
Table 2.5	Imposed floor load by Fourth Schedule, UBBL	20
Table 2.6	Summary of design requirement for each standard	64
Table 3.1	Load Cases Tested	96
Table 3.2	Details of FEM components type and size	98
Table 3.3	Container Configuration Tested in Abaqus	102
Table 4.1	Tensile test result for coupon specimens	104
Table 4.2	Comparison of panel stiffness from experiment and	105
Table 4.3	Effect of thickness on test stiffness of panel	150
Table 4.4	Effect of thickness on ECCS stiffness of panel	151
Table 4.5	Effect of opening size on test stiffness of panel	152
Table 4.6	Stiffness of panel in longitudinal orientation	153
Table 4.7	Stiffness of panel in transverse orientation	153
Table 4.8	Stiffness difference among panel orientation	154
Table 4.9	Comparison of test stiffness reduction factor with Zha	158
Table 4.10	Theoretical stiffness of panel using Equation 4.5	161
Table 4.11	Theoretical stiffness of panel using Equation 4.6	162
Table 4.12	Modified stiffness for the corrugated panel	165
Table 5.1	Tensile test results	168
Table 5.2	Comparison of FEM and experimental results	178

Table 5.3	Modification factor used by Giriunas	204
Table 5.4	Stress and deformation comparison for Configuration 1	205
Table 5.5	Stress and deformation shape comparison for Configuration 2	206
Table 5.6	Minimum Stiffness Requirement for ISO Shipping Container	212
Table 5.7	Comparison of ISO specification with theoretical and FEM stiffness	213
Table 5.8	Stiffness comparison for ISO container without correlation factor	216
Table 5.9	Stiffness comparison for ISO container with correlation factor from Table 5.7	217
Table 5.10	Stiffness comparison for modified ISO container using equation 6.1	219
Table 5.11	Stiffness calculation for each corrugated band	223

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 1.1	Concept of transitional shelter	2
Figure 1.2	SWOT analysis of transitional shelter	3
Figure 1.3	Idea of modified ISO container transitional shelter	4
	for disasters	
Figure 2.1	An ISO shipping container shown with front assembly	11
Figure 2.2	Two storey residential houses and Studio 6 hotel	32
	constructed using shipping containers	
Figure 2.3	Refugee camp comprised of container houses in	32
	Turkey	
Figure 2.4	Container shelter at Khuza'a	33
Figure 2.5	Future Shack, emergency shelter made from used	34
	container	
Figure 2.6	Richardson's Yard in Brighton	34
Figure 2.7	Concept of residential container house	35
Figure 2.8	Concept of container warehouse	36
Figure 2.9	A three storey container house with cantilever	36
Figure 2.10	A three storey container building with balcony	37
Figure 2.11	Container building with both 20ft and 40ft	37
	containers	
Figure 2.12	Shear flow in a stressed-skin diaphragm	39
Figure 2.13	Nomenclature for corrugated plate dimension	40
Figure 2.14	Cross section deformation of corrugation	44
Figure 2.15	Shear stiffness with respect to profile orientation	50
	and load direction	
Figure 2.16	Experimental work on roof shed incorporating	52
	stressed skin action	

Figure 2.17	Experimental work stressed skin action for	53
	corrugated steel shear panel	
Figure 2.18	Profiled steel wall testing setup	54
Figure 2.19	Loading frame setup of SPSW testing	54
Figure 2.20	20ft container test with and without wall opening	55
Figure 2.21	Space frame model of 40ft container	56
Figure 2.22	Model comparison between corrugated panel with	57
	plain steel panel	
Figure 2.23	Seismic analysis for modular house without and	57
	with corrugated wall	
Figure 2.24	Shipping container modelling using Autodesk	58
	robot	
Figure 2.25	Shipping container model with different wall	59
	removal	
Figure 2.26	Summary of feasibility study	60
Figure 2.27	Layout suggestion for single 40 feet container	62
Figure 2.28	Layout suggestion for two 40 feet container	63
Figure 3.1	Work flowchart of the research	67
Figure 3.2	Shear flexibility components in ECCS and focus	69
	of this research	
Figure 3.3	Factors α_1 , α_2 , and α_3 to allow for intermediate	71
	purlins	
Figure 3.4	Factors α_4 to allow for number of sheet lengths	72
Figure 3.5	Factor α_5 for the influence of sheet length for	73
	sheeting spanning parallel to the length of the	
	diaphragm in ECCS	
Figure 3.6	Factor α_5 to allow for sheet continuity in ECCS	73
Figure 3.7	Sheeting constant K in ECCS	74
Figure 3.8	Shear flexibility of panel in different orientation	76
Figure 3.9	Types of opening on corrugated panel	78

Figure 3.10	Concept of flexible band and stiffness band	80
Figure 3.11	Partition of flexible band surrounding the opening	81
Figure 3.12	Dimension of coupon specimen	82
Figure 3.13	Loading frame assembly	84
Figure 3.14	Cross-section geometry of profiled steel	85
Figure 3.15	Panel Configuration for scaled experiment	86
Figure 3.16	Instrument setup for scaled experiment	87
Figure 3.17	Schematic diagram of scaled experiment setup	88
Figure 3.18	Experimental workflow for isolated panel test	89
Figure 3.19	Strain gauge position for S-0.8-1W-L-S2	90
Figure 3.20	Strain gauge position for S-0.8-1W-T-S2	90
Figure 3.21	Strain gauge position for S-1.0-1W-L-S2	91
Figure 3.22	Strain gauge position for R-0.8-0W0D-S2	91
Figure 3.23	Strain gauge position for R-0.8-2W-S2	92
Figure 3.24	Location of tensile coupon specimen	93
Figure 3.25	Detail layout of container SC1 for testing.	94
Figure 3.26	Detail layout of container SC2 for testing	95
Figure 3.27	Location of load cell LVDT and strain gauge & actual testing setup	95
Figure 3.28	Experimental workflow for container SC1 and SC2	96
Figure 3.29	User interface of Abaqus 6.14 with its module	97
Figure 4.1	Load deflection graph for S-0.8-0W0D-L	108
Figure 4.2	Panel profile for S-0.8-0W0D-L before loading and after loading	108
Figure 4.3	Load deflection graph for S-1.0-0W0D-L	109
Figure 4.4	Panel profile for S-1.0-0W0D-L before loading and after loading	109
Figure 4.5	Load deflection graph for S-0.8-0W0D-T	111

Figure 4.6	Panel profile for S-0.8-0W0D-T before loading	111
	and after loading	
Figure 4.7	Load deflection graph for S-1.0-0W0D-T	112
Figure 4.8	Panel profile for S-1.0-0W0D-T before loading	112
	and after loading	
Figure 4.9	Load deflection graph for S-0.8-1W-L	114
Figure 4.10	Panel profile for S-0.8-1W-L before loading and	114
	after loading	
Figure 4.11	Load deflection graph for S-1.0-1W-L	115
Figure 4.12	Panel profile for S-1.0-1W-L before loading and	115
	after loading	
Figure 4.13	Load deflection graph for S-0.8-1W-T	117
Figure 4.14	Panel profile for S-0.8-1W-T before loading and	117
	after loading	
Figure 4.15	Load deflection graph for S-1.0-1W-T	118
Figure 4.16	Panel profile for S-1.0-1W-T before loading and	118
	after loading	
Figure 4.17	Load deflection graph for S-0.8-1D-L	120
Figure 4.18	Panel profile for S-0.8-1D-L before loading and	120
	after loading	
Figure 4.19	Load deflection graph for S-1.0-1D-L	121
Figure 4.20	Panel profile for S-1.0-1D-L before loading and	121
	after loading	
Figure 4.21	Load deflection graph for S-0.8-1D-T	123
Figure 4.22	Panel profile for S-0.8-1D-T before loading and	123
	after loading	
Figure 4.23	Load deflection graph for S-1.0-1D-T	124
Figure 4.24	Panel profile for S-1.0-1D-T before loading and	124
	after loading	
Figure 4.25	Load deflection graph for S-0.8-1V-L	126

Figure 4.26	Panel profile for S-0.8-1V-L before loading and	126
Figure 4.27	Load deflection graph for S-1.0-1V-L	127
Figure 4.28	Panel profile for S-1.0-1V-L before loading and after loading	127
Figure 4.29	Load deflection graph for S-0.8-1V-T	129
Figure 4.30	Panel profile for S-0.8-1V-T before loading and after loading	129
Figure 4.31	Load deflection graph for S-1.0-1V-T	130
Figure 4.32	Panel profile for S-1.0-1V-T before loading and after loading	130
Figure 4.33	Load deflection graph for R-0.8-0W0D	132
Figure 4.34	Panel profile for R-0.8-0W0D before loading and after loading	132
Figure 4.35	Load deflection graph for R-1.0-0W0D	133
Figure 4.36	Panel profile for R-1.0-0W0D before loading and after loading	133
Figure 4.37	Load deflection graph for R-0.8-2W	135
Figure 4.38	Panel profile for R-0.8-2W before loading and after loading	135
Figure 4.39	Load deflection graph for R-1.0-2W	136
Figure 4.40	Panel profile for R-1.0-2W before loading and after loading	136
Figure 4.41	Load deflection graph for R-0.8-1D	138
Figure 4.42	Panel profile for R-0.8-1D before loading and after loading	138
Figure 4.43	Load deflection graph for R-1.0-1D	139
Figure 4.44	Panel profile for R-1.0-1D before loading and after loading	139
Figure 4.45	Load deflection graph for R-0.8-3D	141

Figure 4.46	Panel profile for R-0.8-3D before loading and	141
Figure 4.47	Load deflection graph for R-1.0-3D	142
Figure 4.48	Panel profile for R-1.0-3D before loading and after loading	142
Figure 4.49	Panel tearing at corner of opening after loading	143
Figure 4.50	Stress concentration and panel failure around bolt hole	144
Figure 4.51	A typical load deflection curve of panel testing	144
Figure 4.52	Strain analysis for S-0.8-1W-L-S2	146
Figure 4.53	Strain analysis for S-0.8-1W-T-S2	146
Figure 4.54	Strain analysis for S-1.0-1W-T-S2	147
Figure 4.55	Strain analysis for R-0.8-0W0D-S2	149
Figure 4.56	Strain analysis for R-0.8-2W-S2	149
Figure 4.57	ECCS and test stiffness reduction factor	155
Figure 4.58	Unity relationship of ECCS stiffness and test stiffness	156
Figure 4.59	ECCS stiffness in relation to panel thickness	157
Figure 4.60	Relationship between Zha & Zuo and test reduction factor	158
Figure 4.61	Zha & Zuo reduced stiffness vs test stiffness using equation 4.5	163
Figure 4.62	Panel partition for stiffness calculation by Zha & Zuo approach	163
Figure 4.63	Test stiffness vs Zha & Zuo stiffness for 0.8mm transverse panel	164
Figure 4.64	Test stiffness vs Zha & Zuo stiffness for 1.0 mm transverse panel	164
Figure 4.65	Test stiffness vs modified Zha & Zuo stiffness	166
Figure 5.1	Load deflection curve for Experiment Test 1	169
Figure 5.2	Load deflection curve for Experiment Test 2a	170

Figure 5.3	Load deflection curve for Experiment Test 2b	171
Figure 5.4	Load deflection curve for Experiment Test 3a	172
Figure 5.5	Load deflection curve for Experiment Test 3b	173
Figure 5.6	Load deflection curve for Experiment Test 4a	174
Figure 5.7	Load deflection curve for Experiment Test 4b	175
Figure 5.8	Strain of SC1 during Test 2b at front wall and door	176
Figure 5.9	Strain of SC2 during Test 4b at front wall and door	177
Figure 5.10	Load-deflection curve for FEM containers under Load Case 1	180
Figure 5.11	Load-deflection curve for FEM containers under Load Case 2	180
Figure 5.12	Load-deflection curve for FEM containers under Load Case 3	181
Figure 5.13	von Mises Stress of Configuration 1 under Load Case 1	181
Figure 5.14	3D view on deformation of Configuration 1 under Load Case 1	182
Figure 5.15	Side view on deformation of Configuration 1 under Load Case 1	182
Figure 5.16	Front view on deformation of Configuration 1 under Load Case 1	182
Figure 5.17	von Mises Stress of Configuration 1 under Load Case 2	183
Figure 5.18	3D view on deformation of Configuration 1 under Load Case 2	183
Figure 5.19	Front view on deformation of Configuration 1 under Load Case 2	183
Figure 5.20	von Mises Stress of Configuration 1 under Load Case 3	184

Figure 5.21	3D view on deformation of Configuration 1 under	184
	Load Case 3	
Figure 5.22	Front view on deformation of Configuration 1	184
	under Load Case 3	
Figure 5.23	von Mises Stress of Configuration 2 under Load	186
	Case 1	
Figure 5.24	3D view on deformation of Configuration 2 under	186
	Load Case 1	
Figure 5.25	von Mises Stress of Configuration 2 under Load	186
	Case 2	
Figure 5.26	3D view on deformation of Configuration 2 under	187
	Load Case 2	
Figure 5.27	Front view on deformation of Configuration 2	187
	under Load Case 2	
Figure 5.28	von Mises Stress of Configuration 2 under Load	188
	Case 3	
Figure 5.29	3D view on deformation of Configuration 2 under	188
	Load Case 3	
Figure 5.30	Side view on deformation of Configuration 2	188
	under Load Case 3	
Figure 5.31	Load deflection curve for Case 2 (Configuration 3	190
	& 4)	
Figure 5.32	Load deflection curve for Case 3 (Configuration 3	190
	& 4)	
Figure 5.33	von Mises Stress of Configuration 3 (door closed)	191
	under Load Case 3	
Figure 5.34	3D view on deformation of Configuration 3 (door	191
	closed) under Load Case 3	
Figure 5.35	Side view on deformation of Configuration 3	191
	(door closed) under Load Case 3	
Figure 5.36	von Mises Stress of Configuration 3 (door	192
	opened) under Load Case 3	

Figure 5.37	3D view on deformation of Configuration 3 (door	192
	opened) under Load Case 3	
Figure 5.38	Side view on deformation of Configuration 3	192
	(door opened) under Load Case 3	
Figure 5.39	von Mises Stress of Configuration 3 (door closed)	193
	under Load Case 2	
Figure 5.40	3D view on deformation of Configuration 3 (door	193
	closed) under Load Case 2	
Figure 5.41	Front view on deformation of Configuration 3	193
	(door closed) under Load Case 2	
Figure 5.42	von Mises Stress of Configuration 3 (door	194
	opened) under Load Case 2	
Figure 5.43	3D view on deformation of Configuration 3 (door	194
	opened) under Load Case 2	
Figure 5.44	Front view on deformation of Configuration 3	194
	(door opened) under Load Case 2	
Figure 5.45	von Mises Stress of Configuration 4 (door	196
	opened) under Load Case 2	
Figure 5.46	3D view on deformation of Configuration 4 (door	196
	opened) under Load Case 2	
Figure 5.47	Front view on deformation of Configuration 4	196
	(door opened) under Load Case 2	
Figure 5.48	von Mises Stress of Configuration 4 (door closed)	197
	under Load Case 2	
Figure 5.49	3D view on deformation of Configuration 4 (door	197
	closed) under Load Case 2	
Figure 5.50	Front view on deformation of Configuration 4	197
	(door closed) under Load Case 2	
Figure 5.51	von Mises Stress of Configuration 4 (door	198
	opened) under Load Case 3	
Figure 5.52	3D view on deformation of Configuration 4 (door	198
	opened) under Load Case 3	

Figure 5.53	Side view on deformation of Configuration 4	198
	(door opened) under Load Case 3	
Figure 5.54	von Mises Stress of Configuration 4 (door closed)	199
	under Load Case 3	
Figure 5.55	3D view on deformation of Configuration 4 (door	199
	closed) under Load Case 3	
Figure 5.56	Side view on deformation of Configuration 4	199
	(door closed) under Load Case 3	
Figure 5.57	Maximum stress of FEM SC1	200
Figure 5.58	Strain analysis of FEM SC1 at front wall	201
Figure 5.59	Strain analysis of FEM SC1 at door	201
Figure 5.60	Maximum stress of FEM SC2	202
Figure 5.61	Strain analysis of FEM SC2 at front wall	203
Figure 5.62	Strain analysis of FEM SC2 at door	203
Figure 5.63	Stress distribution for Zha&Zuo 20ONR-1D	207
Figure 5.64	Stress distribution for Zha&Zuo 20ONR-1D2W	208
Figure 5.65	Deformation for Zha&Zuo 20ONR-1D	208
Figure 5.66	Deformation for Zha&Zuo 20ONR-1D2W	208
Figure 5.67	Load deflection graph for FEM Zha&Zuo	209
	200NR- 1D	
Figure 5.68	Load deflection graph for FEM Zha&Zuo	209
	200NR- 1D2W	
Figure 5.69	Door assembly of FEM compared to actual	210
	container	
Figure 5.70	Base system for holding ISO container specimen	211
Figure 5.71	Partition of SC1 container wall based on Zha &	215
	Zuo approach	
Figure 5.72	Partition of container wall based on new approach	215
Figure 5.73	Test stiffness versus theoretical stiffness for	217
	modified ISO container	

Figure 5.74	Test stiffness vs new theoretical stiffness for	
	modified ISO container	
Figure 5.75	Design workflow for stiffness of container shelter	221
Figure 5.76	Container wall with two windows and one door	222
Figure 5.77	Partitioning of container wall	223

LIST OF ABBREVIATIONS

ISO	-	International Organization for Standardization
CTS	-	Container transitional shelter
UN	-	United Nation
SWOT	-	Strength, weakness, opportunity, threat
TELOS	-	Technical, economic legal, operational, and scheduling
ASTM	-	American Society for Testing and Materials
BSI	-	British Standard Institution
ECCS	-	European Convention for Constructional Steelwork
UBBL	-	Uniform Building By-Laws
SPSW	-	Steel-Plate Shear Walls
FEM	-	Finite Element Model
PV	-	Photovoltaics
FRP	-	Fire resistance period
m	-	metre
ft	-	foot, equal to 0.3048 m
kg	-	kilogram
MPa	-	Megapascal (1 N/mm ²)
Ν	-	Newton (1 kg \cdot m/s ⁻²)
С	-	Carbon
Si	-	Silicon
Mn	-	Manganese
Р	-	Phosphorus
S	-	Sulphur
Cu	-	Copper
SG	-	Strain gauge

LIST OF SYMBOLS

f_y	-	yield strength
f_u	-	ultimate strength/ Tensile strength
F	-	applied force
a	-	width of panel in direction perpendicular to corrugation
b	-	depth of panel in direction parallel to corrugation
b_T, b_S, b_B	-	width of top plate, side plate and bottom plate respectively
t	-	net panel thickness
h	-	height of sheeting profile
d	-	pitch of corrugation
Ε	-	elastic modulus of steel
Κ	-	sheeting constant in ECCS
ν	-	Poisson's ratio
A_d	-	total opening area of panel
μе	-	micro strain
δ	-	displacement of panel given by LVDT
Δ	-	shear deflection of panel
Δ_i	-	shear deflection of single corrugation
С	-	shear flexibility (mm/ kN)
V	-	shear force
u_T, u_S, u_B	-	bending deformation of top plate, side plate and bottom plate
		respectively
γτ, γς, γΒ	-	shear deformation of top plate, side plate and bottom plate
		respectively
VT	-	axial deformation of side plate
θ_B, θ_C	-	corner rotation of corrugation section at corner B and C
Φ_{B}, Φ_{C}	-	chord rotation of corrugation section at corner B and C
$M_B, M_C,$	-	end moment of corrugation section at corner B, C, D and E
M_D, M_E		
M_y	-	Bending moment of corrugation plate
U_{Top}	-	Top plate energy

UBottom	-	Bottom plate energy
U_F	-	Energy due to out-of-plane bending of corrugation section
S	-	total perimeter of corrugation $(2b_T+4b_S+2b_B)$
D	-	ending stiffness (flexural rigidity) of the plate
U_B	-	Energy due to in-plane bending of corrugation plate
U_S	-	Energy due to shear strain of corrugation plate
A_S	-	cross sectional area of plate
G	-	Shear modulus
τ	-	Shear stress
U_T	-	Energy due to axial deformation of side plate
N_S	-	Axial load along the side plate
U	-	Total strain energy due to unit shear deformation per
		corrugation
E_T	-	Total strain energy due to shear deformation per corrugation
k	-	Transverse shear stiffness of corrugated panel
k'	-	Longitudinal shear stiffness of corrugated panel
е	-	horizontal projection of the corrugation section

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Equation Derivation for Stiffness of Corrugated	243
	Panel Using Energy Method	
Appendix B	LVDT Readings	257
Appendix C	Detail Examples for the Stiffness Calculation	273

CHAPTER 1

INTRODUCTION

1.1 Research Background

The increasing report of natural disasters had been observed worldwide over the past decades. According to the statistics by The United Nations Office for Disaster Risk Reduction, total of 98.6 million people had been affected by the natural disaster with over 66.5 billion US dollar economy damage in year 2015 alone (Centre for Research on the Epidemiology of Disasters (CRED), 2016). Besides, the conflicts within and among the countries such as civil war, persecution or revolution encouraged the migration of residents as refugees. The United Nation Refugee Agency had reported that till 2016 there were 22.5 million refugees and 20 people were forcibly moved from their home every minute (UN Refugee Agency (UNHCR), 2017). Combined with the victims from the natural disasters, these whooping numbers of people were waiting for all sort of emergency aids including food, medicine and shelter as their protection and livelihood.

In general, conventional post-disaster shelters can be categorized into emergency shelter, temporary shelter, temporary housing, and permanent housing (Quarantelli, 1995). When disaster occurs, the affected people will attempt to find emergency shelter to protect them, at most overnight, before the arrival of the rescue. Temporary shelter is the place where the displaced people are settled and stayed before they can move into new housing. In some cases, especially when large crowd of population are involved or the construction of permanent housing requires long period of time, temporary housing will be provided too as alternative measures. Temporary house is more structurally robust and comfort to live compared to emergency and temporary shelter, however it is still not designed for long service life.

Figure 1.1: Concept of transitional shelter (Shelter Centre, 2012)

Currently transitional shelter had been introduced into disaster relief programme as the substitute of the traditional approach. Transitional shelter is defined as an incremental approach to provide shelter which can be upgraded, reused, relocated, resold and recycled (Shelter Centre, 2012). This is illustrated in Figure 1.1. It had been implemented since year 2004 at several disaster regions such as Sri Lanka, Jogjakarta, Aceh, Peru and Haiti (UN-HABITAT, 2009). Compared to conventional approach which is carried out phase-by-phase, transitional shelter is rather a continuous development of improving existing shelter which may become the permanent housing by itself.

The International Organisation of Migration (IOM), in its publication, had carried out strength, weakness, opportunities and threat (SWOT) analysis of transitional shelter which were summarised in Figure 1.2 (Shelter Centre, 2012). With careful decision-making and detailed planning based on local scenario and available resources, the transitional shelter can become potentially the best solution for housing crisis after the migration of displaced people from conflict or disasters. The common types of material used in transitional shelter are bamboo, timber and steel frame (International Federation of Red Cross and Red Crescent Societies, 2011). Recently, another potential candidate had gained attention from researcher as transitional shelter that is used ISO shipping containers.

Figure 1.2: SWOT analysis of transitional shelter (Shelter Centre, 2012)

1.2 Problem Statement

Current emergency shelters provided for disaster refugees are complained about too late, too expensive and contradict to local culture and living needs (Johnson, 2007). An emergency shelters, i.e., camp shelter that meant for temporary use of 6 months are often being prolonged into years of utilization, while waiting for government to provide permanent dwells. These temporary shelters are also not designed to withstand strong natural impacts like wind gusts, floods and land movement which exposed the refugees to the hazards of second wave of natural disaster impacts. The tarpaulin and canvas camp material do not provide sufficient security for the refugees to protect their lives and belongings over social crimes. Conversely, provisions of timber and brick temporary shelters to the refugees would solve some of the mentioned problems but they are not a sustainable solution. When the refugees move out form the temporary disaster camp into a permanent shelter, the abandoned timber and brick shelters will become huge amount of waste that need another budgets and efforts for disposal. Urge for an improved shelter design is needed, which is available immediately, rapid and ease construction, open-ended design that adaptable to local social and cultural needs, pre-designed for long-term usage, cost effective and environmentally friendly. With these demands in mind, steel modular building such as modified ISO shipping container could serve as good solution. The term "modified" used in this context refers to modification which will deteriorate the structural performance of shipping container, such as aperture for ventilation and installation of heavy machinery such as air conditioner. The idea of using modified shipping container as container transitional shelter (CTS) was visualized in Figure 1.3. With its capability to be arranged in different orientation and stacked on each other, the modularity of container shelter could be used as buildings for multi-purpose (Hong, 2017). The uses of container as housing materials had been popularised due to its construction speed, waste reduction and modular construction (Nduka et al., 2018). It can also be used in different kind of terrain or climate including coastal region (Haque et al., 2022). ISO shipping containers manufactured to ISO 668 specification can withstand extreme natural impacts and weather conditions. Reusing ISO shipping containers as shelters for their second life purpose can save up to 95% energy compared to recycling them into raw steel materials that made it a sustainable construction solution (Vijayalaxmi, 2010).

Figure 1.3 Idea of modified ISO container transitional shelter for disasters (Prinz & Nussbaumer, 2014)

Although some studies on the container had been done, they only investigated container strength as whole without prioritizing the load condition of residential purpose (Børvik et al., 2008a; Zha & Zuo, 2016a). The research done on container shelter also did not assess all structural performance, especially its resistance under lateral load (Bernardo et al., 2013; Zafra et al., 2021). Hence there is an urge for the stiffness prediction of the container shelter as the deflection control was especially crucial for container module which could be stacked up to form mid-rise building. The structural performance of container shelter should also be investigated using more advanced engineering approach such as finite element software. Moreover, although ISO shipping containers carry the structural integrity as guaranteed by ISO standards, used and modified containers would cause the warranty voided. Container architects and builders diligently recommend the sustainability of container houses, but to date, no professional personnel or organization has provided a code of practice to the design and build of CTS. This causes the CTS idea is hardly accepted by the public, e.g., residents, insurance companies and bank etc. A comprehensive scientific and engineering study must be conducted to provide a design procedure for the CTS.

1.3 Objectives of Research

The aim of the research is to investigate the potential of ISO shipping container as transitional shelter from engineering perspective, especially its structural integrity on the lateral load.

The objectives of the research are:

- To modify and formulate new engineering formulation for the lateral stiffness of modified ISO shipping containers.
- To determine the correlation factor through numerical analysis and theoretical formulation for stiffness of modified ISO shipping container shelter.
- 3) To develop and propose the design guideline for container transitional shelters.

1.4 Scope of Research

A scaled experiment had been conducted using 48 commercially available steel panel to verify the theoretical calculation on lateral stiffness of corrugated profile given by current code of practice. Different set of panels with various net thickness, opening size and loading orientation were tested and the lateral stiffness, maximum load, failure mode and strain data were obtained. Parametric study was carried out to compare the test results to previous analytical models. The existing formulation given by code of practice was modified to include effect of opening for more accurate representation.

Two full scale 20ft ISO containers with different wall opening were also tested under lateral loading from two different principal axis. The load-deflection relationship, deformed shape and strain data were collected. Besides, numerical model of a 20ft ISO container was modelled using finite element software Abaqus. The loaddeflection analysis was carried out on modified numerical model with same opening configuration as full scale experimental specimen. The results of numerical model were compared with previous research outcome and the full scale test result to validate the accuracy of numerical model. The results of full scale container would also validate the theoretical formulation developed in previous scaled down test.

The stiffness design for CTS was developed by proposing calculation workflow with inclusion of modified stiffness formulation and consideration of wall opening. A work example was demonstrated for lateral stiffness design of single storey container shelter.

1.5 Significance of Research

The integration of ISO shipping container as rapid steel modular construction system would provide a safer and withstandable structure, open-ended design that adaptable to local social and cultural needs, rapid and ease construction, lightness, economic and sustainable shelters compared with conventional shelters for emergency, temporary or long tern usage. The study also contributes to the rapid construction for post-disaster reconstruction and re-urbanization. As parts of this study was focused on the stressed-skin design, the revision of the existing design guidelines can be used in other types of steel modular construction, helping engineers to predict the structural performance of their design under lateral load such as wind. This study is also necessary to understand the structural integrity of modular steel building using ISO shipping container. The study provides further justification, modification and proposed operative procedures to implement the steel modular building as emergency shelters. The demonstrated workflow with revised formulation and design approach achieves more precise representation on the structural stiffness of container shelter. The proposed design workflow of container shelter was supported with results from both theoretical and numerical data, which validated with experimental results and thus be more accurate than previous research. Development of numerical analysis using finite element approach enlightens the structural engineers to simplify the structural analysis of container shelter using computation power of engineering software.

1.6 Thesis outline

This thesis was comprised of six (6) chapters. Chapter 1 described the introduction of thesis including research background, problem statement, research objectives, scope of research and research significance. Chapter 2 consisted of literature review on the ISO shipping container, container architecture, housing design consideration and previous research on container structure. Chapter 3 consisted of research methodology for development of theoretical calculation, experimental setup of both scaled down testing and full scale ISO container test, and development of numerical model and finite element analysis. Chapter 4 depicted on lateral stiffness of corrugated wall by scaled down experiment. Chapter 5 depicted the validation of test result of full scale ISO container test with both theoretical and numerical model, together with the stiffness design guideline of CTS. Chapter 6 was the conclusion for the research and future work recommendation.

REFERENCES

- Abrasheva, G., Senk, D., & Häußling, R. (2012). 'Shipping containers for a sustainable habitat perspective'. *Revue de Métallurgie*, 109(5), 381–389. https://doi.org/10.1051/metal/2012025
- AFAD Turkey. (2017). The Latest on Housing Centers. https://web.archive.org/web/20170324033500/https://www.afad.gov.tr/tr/237 4/barinma-merkezlerinde-son-durum.
- Anwar, M., Rasul, M. G., & Khan, M. M. K. (2020). 'Performance Analysis of rooftop greenery systems in Australian subtropical climate'. *Energy Reports*, 6, 50–56. https://doi.org/10.1016/j.egyr.2019.08.017
- Arslan, H. (2007). 'Re-design, re-use and recycle of temporary houses'. Building and Environment, 42(1), 400–406. https://doi.org/10.1016/j.buildenv.2005.07.032
- Arslan, H., & Cosgun, N. (2008). 'Reuse and recycle potentials of the temporary houses after occupancy: Example of Duzce, Turkey'. *Building and Environment*, 43(5), 702–709. https://doi.org/10.1016/j.buildenv.2007.01.051
- Asfour, O. S. (2019). 'Learning from the past: Temporary housing criteria in conflict areas with reference to thermal comfort'. *International Journal of Disaster Risk Reduction*, 38(101206). https://doi.org/10.1016/j.ijdrr.2019.101206
- Atmaca, A., & Atmaca, N. (2016). 'Comparative life cycle energy and cost analysis of post-disaster temporary housings'. *Applied Energy*, 171, 429–443. https://doi.org/10.1016/j.apenergy.2016.03.058
- Atmaca, N. (2017). 'Life-cycle assessment of post-disaster temporary housing'.
 Building Research & Information, 45(5), 524–538. https://doi.org/10.1080/09613218.2015.1127116
- Bashawri, A., Garrity, S., & Moodley, K. (2014). 'An Overview of the Design of Disaster Relief Shelters'. *Procedia Economics and Finance*, 18, 924–931. https://doi.org/10.1016/S2212-5671(14)01019-3
- BBC News. (2014). Brighton shipping container homes an "overwhelming success." Https://Www.Bbc.Com/News/Uk-England-Sussex-28035388.

- Berman, J. W., & Bruneau, M. (2005). 'Experimental Investigation of Light-Gauge Steel Plate Shear Walls'. *Journal of Structural Engineering*, 131(2), 259–267. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(259)
- Bernardo, L. F. A., Oliveira, L. A. P., Nepomuceno, M. C. S., & Andrade, J. M. A. (2013). 'Use of refurbished shipping containers for the construction of housing buildings: details for the structural project'. *Journal of Civil Engineering and Management*, 19(5), 628–646. https://doi.org/10.3846/13923730.2013.795185
- Børvik, T., Hanssen, A. G., Dey, S., Langberg, H., & Langseth, M. (2008a). 'On the ballistic and blast load response of a 20 ft ISO container protected with aluminium panels filled with a local mass — Phase I: Design of protective system'. *Engineering Structures*, 30(6), 1605–1620. https://doi.org/10.1016/j.engstruct.2007.10.010
- Børvik, T., Hanssen, A. G., Dey, S., Langberg, H., & Langseth, M. (2008b). 'On the ballistic and blast load response of a 20 ft ISO container protected with aluminium panels filled with a local mass — Phase I: Design of protective system'. *Engineering Structures*, 30(6), 1605–1620. https://doi.org/10.1016/j.engstruct.2007.10.010
- Bowley, W., & Mukhopadhyaya, P. (2017). 'A sustainable design for an off-grid passive container house'. *International Review of Applied Sciences and Engineering*, 8(2), 145–152. https://doi.org/10.1556/1848.2017.8.2.7
- British Standard Institution. (1994). BS 5950: Structural use of steelwork in building: Part 9: code of practice for stressed skin design.
- British Standard Institution. (2004). BS EN 10025-5: 2004. Hot rolled products of structural steels Technical delivery conditions for structural steels with improved atmospheric corrosion resistance.
- British Standard Institution. (2005). BS EN 1993-1-1:2005 Eurocode 3: Design of steel structures Part 1-1: General rules and rules for buildings.
- British Standard Institution. (2006a). BS EN 1993-1-2:2005. Eurocode 3: Design of steel structures—Part 1-2: General Rules Structural Fire Design.
- British Standard Institution. (2006b). BS EN 1993-1-3:2006 Eurocode 3: Design of steel structures: Part 1–3: General rules —Supplementary rules for cold-formed members and sheeting.
- British Standard Institution. (2006c). BS EN ISO 14040:2006: Environmental management, Life cycle assessment, Principles and framework.

- British Standard Institution. (2009). BS ISO 6892-1:2009. Metallic materials Tensile testing Part 1: Method of test at room temperature.
- British Standard Institution. (2012). BS EN 1363-1:2012. Fire Resistance Tests. General Requirements.
- British Standard Institution. (2016a). BS ISO 668:2013+A2:2016. Series 1 freight containers—Classification, dimensions and ratings.
- British Standard Institution. (2016b). BS ISO 1496-1:2013+A1:2006. Series 1 freight containers —Specification and testing Part 1: General cargo containers for general purposes.
- Bryan, E. R. (1973). *The stressed skin design of steel building (Constrado monographs)*. London Lockwood.
- Bryan, E. R., & el Dakhakhni, W. M. (1964). 'Behaviour of Sheeted Portal Frame Sheds: Theory and Experiments'. *Proceedings of the Institution of Civil Engineers*, 29(4), 743–778. https://doi.org/10.1680/iicep.1964.9593
- Bullard, C. W., & Herendeen, R. A. (1975). 'The energy cost of goods and services'. *Energy Policy*, 3(4), 268–278. https://doi.org/10.1016/0301-4215(75)90035-X
- Caia, G., Ventimiglia, F., & Maass, A. (2010). 'Container vs. dacha: The psychological effects of temporary housing characteristics on earthquake survivors'. *Journal of Environmental Psychology*, 30(1), 60–66. https://doi.org/10.1016/j.jenvp.2009.09.005
- Canadian Manufacturing.com. (2016). Four-storey hotel made of repurposed shipping containers opens in Alberta. https://Www.Canadianmanufacturing.Com/Manufacturing/Four-Storey-Hotel-Made-Repurposed-Shipping-Containers-Opens-Alberta-180017/.
- Centre for Research on the Epidemiology of Disasters (CRED). (2016). 2015 disasters in numbers: The United Nations Office for Disaster Risk Reduction. Université catholique de Louvain.
- Chen, L.-K., Yuan, R.-P., Ji, X.-J., Lu, X.-Y., Xiao, J., Tao, J.-B., Kang, X., Li, X., He, Z.-H., Quan, S., & Jiang, L.-Z. (2021). 'Modular composite building in urgent emergency engineering projects: A case study of accelerated design and construction of Wuhan Thunder God Mountain/Leishenshan hospital to COVID-19 pandemic'. *Automation in Construction*, 124, 103555. https://doi.org/10.1016/j.autcon.2021.103555

- Chen, Z., Liu, J., & Yu, Y. (2017). 'Experimental study on interior connections in modular steel buildings'. *Engineering Structures*, 147, 625–638. https://doi.org/10.1016/j.engstruct.2017.06.002
- Clark, Phillip C.. (1987). *Method for converting one or more steel shipping containers into a habitable building at a building site and the product thereof* (Patent No. US4854094A).
- Dara, C., & Hachem-Vermette, C. (2019). 'Evaluation of low-impact modular housing using energy optimization and life cycle analysis'. *Energy, Ecology and Environment*, 4(6), 286–299. https://doi.org/10.1007/s40974-019-00135-4
- Dara, C., Hachem-Vermette, C., & Assefa, G. (2019). 'Life cycle assessment and life cycle costing of container-based single-family housing in Canada: A case study'. *Building and Environment*, 163(106332). https://doi.org/10.1016/j.buildenv.2019.106332
- Davies, J. M., & Bryan, E. R. (1982). Manual of stressed skin diaphragm design.
- Davies, J. M., & Lawson, R. M. (1978a). 'Light gauge steel diaphragms with openings'. *IABSE Proceedings*.
- Davies, J. M., & Lawson, R. M. (1978b). 'The shear deformation of profiled metal sheeting'. International Journal for Numerical Methods in Engineering, 12(10), 1507–1541. https://doi.org/10.1002/nme.1620121005
- Deng, E.F., Zong, L., Ding, Y., Zhang, Z., Zhang, J.F., Shi, F.W., Cai, L.M., & Gao, S.C. (2020). 'Seismic performance of mid-to-high rise modular steel construction - A critical review'. *Thin-Walled Structures*, 155, 106924. https://doi.org/10.1016/j.tws.2020.106924
- Department of Standards Malaysia. (2010a). MS EN 1991-1-1:2010. Eurocode 1: Actions on Structures- Part 1-1:General Actions- Densities, Self-Weight, Imposed Loads for Buildings.
- Department of Standards Malaysia. (2010b). MS EN 1993-1-1:2010 NA- Malaysia National Annex to Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings.
- Elgaaly, M. (1998). 'Thin steel plate shear walls behavior and analysis'. *Thin-Walled Structures*, 32(1–3), 151–180. https://doi.org/10.1016/S0263-8231(98)00031-7

- European Convention for Constructional Steelwork (ECCS). (1977). ECCS-XVII-77-1E: European Recommendations for the stressed skin design of steel structures.
- European Convention for Constructional Steelwork (ECCS). (1995). European Recommendations for the Application of Metal Sheeting Acting as a Diaphragm—Stressed Skin Design.
- Faragallah, R. N. (2021). 'Fundamentals of temporary dwelling solutions: A proposed sustainable model for design and construction'. *Ain Shams Engineering Journal*, 12(3), 3305–3316. https://doi.org/10.1016/j.asej.2020.11.016
- Farzampour, A., Laman, J. A., & Mofid, M. (2015). 'Behavior prediction of corrugated steel plate shear walls with openings'. *Journal of Constructional Steel Research*, 114, 258–268. https://doi.org/10.1016/j.jcsr.2015.07.018
- Félix, D., Branco, J. M., & Feio, A. (2013). 'Temporary housing after disasters: A state of the art survey'. *Habitat International*, 40, 136–141. https://doi.org/10.1016/j.habitatint.2013.03.006
- Feng, R., Shen, L., & Yun, Q. (2020). 'Seismic performance of multi-story modular box buildings'. *Journal of Constructional Steel Research*, 168, 106002. https://doi.org/10.1016/j.jcsr.2020.106002
- Genelin, Christopher L., Dinan, Robert J., Hoemann, John M., & Salim, Hani A. (2009). *Evaluation of Blast Resistant Rigid Walled Expeditionary Structures*.
- Germanischer Lloyd Aktiengesellschaft. (1995). Guidelines for the Construction, Repair and Testing of Freight Containers.
- Giriunas, K. A. (2012). *Evaluation, Modeling, and Analysis of Shipping Container Building Structures.* PhD Thesis, The Ohio State University.
- Giriunas, K., Sezen, H., & Dupaix, R. B. (2012). 'Evaluation, modeling, and analysis of shipping container building structures'. *Engineering Structures*, 43, 48–57. https://doi.org/10.1016/j.engstruct.2012.05.001
- Hall, James A. (2011). Accounting Information Systems (7th ed.). Cengage Learning.
- Hany Abulnour, A. (2014). 'The post-disaster temporary dwelling: Fundamentals of provision, design and construction'. *HBRC Journal*, 10(1), 10–24. https://doi.org/10.1016/j.hbrcj.2013.06.001
- Haque, Md. O., Aman, J., & Mohammad, F. (2022). 'Construction sustainability of container-modular-housing in coastal regions towards resilient community'.

Built Environment Project and Asset Management, 12(3), 467–485. https://doi.org/10.1108/BEPAM-01-2021-0011

- Ho, Chin Siong. (2008). 'Urban governance and rapid urbanization issues in Malaysia'. Jurnal Alam Bina, 13(4), 1–24.
- Hong, Y. (2017).' A study on the condition of temporary housing following disasters:
 Focus on container housing'. *Frontiers of Architectural Research*, 6(3), 374–383. https://doi.org/10.1016/j.foar.2017.04.005
- Horne, M. R., & Raslan, R. A. S. (1971). 'An energy solution to the shear deformation of corrugated plates'. *IABSE Publications*, 31(1).
- Hossain, K. M. A., & Wright, H. D. (2004). 'Experimental and theoretical behaviour of composite walling under in-plane shear'. *Journal of Constructional Steel Research*, 60(1), 59–83. https://doi.org/10.1016/j.jcsr.2003.08.004
- Hosseinzadeh, S. A. A., & Tehranizadeh, M. (2014). 'The wall-frame interaction effect in steel plate shear wall systems'. *Journal of Constructional Steel Research*, 98, 88–99. https://doi.org/10.1016/j.jcsr.2014.02.013
- International Federation of Red Cross and Red Crescent Societies. (2011). Transitional shelters: Eight designs. IFRC.
- International Organization for Standardization. (1999). ISO 834:1999. Fire-resistance Tests — Elements of Building Construction.
- Ioannides, Socrates A. & Ruddy, John L. (2000). Rules of Thumb for Steel Design. 2000 North American Steel Construction Conference.
- Islam, H., Zhang, G., Setunge, S., & Bhuiyan, M. A. (2016). 'Life cycle assessment of shipping container home: A sustainable construction'. *Energy and Buildings*, 128, 673–685. https://doi.org/10.1016/j.enbuild.2016.07.002
- Ismail, Mazran., Al-Obaidi, Karam M., Abdul Rahman, Abdul Malek., & Ahmad, Mardiana Idayu. (2015). 'Container Architecture in The Hot-Humid Tropics: Potential and Constraints'. *International Conference on Environmental Research and Technology (ICERT 2015).*
- Jamaludin, A. A., Ilham, Z., Wan-Mohtar, W. A. A. Q. I., Abdul Halim-Lim, S., & Hussein, H. (2021). 'Comfortable Liveable Space: Shipping Container and Bamboo as Sustainable Building Materials in Equatorial Climate Perspective?' *International Journal of Built Environment and Sustainability*, 8(2), 11–22. https://doi.org/10.11113/ijbes.v8.n2.728

- Johnson, C. (2007). 'Impacts of prefabricated temporary housing after disasters: 1999 earthquakes in Turkey'. *Habitat International*, 31(1), 36–52. https://doi.org/10.1016/j.habitatint.2006.03.002
- Johnson, C., Lizarralde, G., & Davidson, C. H. (2006). 'A systems view of temporary housing projects in post-disaster reconstruction'. *Construction Management* and Economics, 24(4), 367–378. https://doi.org/10.1080/01446190600567977
- Khandare, Raksha., Chotaliya, N., Gediya, D., Gohel, J., & Hingu, D. (2021).
 'Feasibility of using Recycled Shipping Container Material in Building Construction, Design and Analysis using STAAD-Pro'. *International Research Journal of Engineering and Technology*, 8(5).
- Kotnik, J. (2008). *Container Architecture: This Book Contains* 6441 Containers. Page One Publising Pte Ltd.
- Kristiansen, A. B., Ma, T., & Wang, R. Z. (2019). 'Perspectives on industrialized transportable solar powered zero energy buildings'. *Renewable and Sustainable Energy Reviews*, 108, 112–124. https://doi.org/10.1016/j.rser.2019.03.032
- Kristiansen, A. B., Zhao, B. Y., Ma, T., & Wang, R. Z. (2021). 'The viability of solar photovoltaic powered off-grid Zero Energy Buildings based on a container home'. *Journal of Cleaner Production*, 286, 125312. https://doi.org/10.1016/j.jclepro.2020.125312
- Kucukvar, M., Kutty, A. A., Al-Hamrani, A., Kim, D., Nofal, N., Onat, N. C., Ermolaeva, P., Al-Ansari, T., Al-Thani, S. K., Al-Jurf, N. M., Bulu, M., & Al-Nahhal, W. (2021). 'How circular design can contribute to social sustainability and legacy of the FIFA World Cup Qatar 2022TM? The case of innovative shipping container stadium'. *Environmental Impact Assessment Review*, 91(106665). https://doi.org/10.1016/j.eiar.2021.106665
- Lawson, R. M. (1976). *The flexibility and strength of corrugated diaphragms and folded plates*. PhD Thesis, University of Salford.
- Lawson, R. M., & Davies, J. M. (1975). 'The Shear Flexibility of Corrugated Steel Sheeting'. 3rd International Specialty Conference on Cold-Formed Steel Structures.
- Ling, P. C. H., Tan, C. S., Lee, Y. H., & Tu, Y. E. (2021). 'Design Consideration of Container Shelter in Malaysia'. Jurnal Teknologi, 83(5), 1–7. https://doi.org/10.11113/jurnalteknologi.v83.16774

- Livin Spaces. (2016). A Contemporary Malaysian Container Home by Ken Kwok of Anand Bungalows. https://Livinspaces.Net/Projects/Architecture/Malaysia-Container/.
- Luttrell, L. D. (1967). Strength and Behavior of Light-gage Steel Shear Diaphragms.
- MacRae, G., & Hodgkin, D. (2011). 'Half full or half empty? Shelter after the Jogjakarta earthquake'. *Disasters*, 35(1), 243–267. https://doi.org/10.1111/j.1467-7717.2010.01202.x
- Masram, Haidaliza & Misnan, Siti Hajar. (2019). 'Evolution of Policy for Affordable Housing Programmes in Malaysia'. International Journal of Accounting, Finance and Business, 4(17), 86–98.
- Mayo, Anthony J. & Nohria, Nitin. (2005). *The Truck Driver Who Reinvented Shipping*. https://hbswk.hbs.edu/item/the-truck-driver-who-reinventedshipping.
- Nan, X., Yan, H., Wu, R., Shi, Y., & Bao, Z. (2020). 'Assessing the thermal performance of living wall systems in wet and cold climates during the winter'. *Energy and Buildings*, 208, 109680. https://doi.org/10.1016/j.enbuild.2019.109680
- Nazir, F. A., Edwards, D. J., Shelbourn, M., Martek, I., Thwala, W. D. D., & El-Gohary, H. (2021). 'Comparison of modular and traditional UK housing construction: a bibliometric analysis'. *Journal of Engineering, Design and Technology*, 19(1), 164–186. https://doi.org/10.1108/JEDT-05-2020-0193
- Nduka, D. O., Mosaku, T., Omosa, C. O., & James, O. D. (2018). 'The use of intermodal steel building unit (ISBU) for the provision of habitable homes: Enablers and challenges'. *International Journal of Mechanical Engineering* and Technology, 9(13), 340–352.
- Olivares, A. A. P. (2010). Sustainability in prefabricated architecture-A comparative life cycle analysis of container architecture for residential structures . Victoria University of Wellington.
- Oloto, Enitan & Adebayo, Anthony K. (2012). 'Building With Shipping Containers: A Sustainable Approach To Solving Housing Shortage In Lagos Metropolis'. *7th International Conference on Innovation in Architecture, Engineering & Construction.*

- Peña, José A., & Schuzer, Kurt. (2012). 'Design of reusable emergency relief housing units using general-purpose (GP) shipping containers'. *International Journal* of Engineering Research and Innovation, 4, 55–64.
- Perrucci, D. v., Vazquez, B. A., & Aktas, C. B. (2016). 'Sustainable Temporary Housing: Global Trends and Outlook'. *Procedia Engineering*, 145, 327–332. https://doi.org/10.1016/j.proeng.2016.04.082
- Prinz, G. S., & Nussbaumer, A. (2014). 'On Fast Transition Between Shelters and Housing After Natural Disasters in Developing Regions'. *Technologies for Sustainable Development*, 225–235. Springer International Publishing. https://doi.org/10.1007/978-3-319-00639-0_19
- QED Sustainable Urban Developments Ltd. (2017). *Richardson's Yard*. https://www.qedproperty.com/qed-projects/richardsons-yard.
- Quarantelli, E. L. (1995). 'Patterns of sheltering and housing in US disasters'. Disaster Prevention and Management: An International Journal, 4(3), 43–53. https://doi.org/10.1108/09653569510088069
- Reid Fiest. (2016, March 31). Calgary developer thinks outside the box with shipping container hotel. *https://globalnews.ca/news/2610683/calgary-developer-thinks-outside-the-box-with-shipping-container-hotel/*.
- Rob Colman. (2017, March 27). Steel shines in Ladacor's modular construction and designs.

https://www.canadianmetalworking.com/canadianfabricatingandwelding/article/fabricating/steel-shines-in-ladacor-s-modular-construction-and-designs.

- Satola, D., Kristiansen, A. B., Houlihan-Wiberg, A., Gustavsen, A., Ma, T., & Wang, R. Z. (2020). 'Comparative life cycle assessment of various energy efficiency designs of a container-based housing unit in China: A case study'. *Building and Environment*, 186, 107358. https://doi.org/10.1016/j.buildenv.2020.107358
- Sean Godsell Architects. (2001). *Future Shack*. https://www.seangodsell.com/future-shack.
- Shelter Centre. (2012). *Transitional Shelter Guidelines*. International Organization for Migration (IOM).
- Shen, J., Copertaro, B., Zhang, X., Koke, J., Kaufmann, P., & Krause, S. (2019). 'Exploring the Potential of Climate-Adaptive Container Building Design under

Future Climates Scenarios in Three Different Climate Zones'. *Sustainability*, 12(1), 108. https://doi.org/10.3390/su12010108

- Shen, K. N., & Germeraad, C. (2009). *Prefabricated container house* (Patent No. US8141304B2).
- Şener, S. M., & Torus, B. (2009). 'Container Post Disaster Shelters C-PoDS: A Generative Approach to Temporary Post-Disaster Sheltering'. 27th Conference on Education and Research in Computer Aided Architectural Design, 599–604.
- Sinha, S. C., Prakash, V., Ravikumar, P. B., & Raman, R. (1989). 'Modeling and simulation of cargo containers'. *Computers & Structures*, 33(4), 1065–1072. https://doi.org/10.1016/0045-7949(89)90442-2
- Smith, J. D. (2006). *Shipping Containers as Building Components*. PhD Thesis, University of Brighton.
- Su, M., Yang, B., & Wang, X. (2022). 'Research on Integrated Design of Modular Steel Structure Container Buildings Based on BIM'. Advances in Civil Engineering, 2022, 1–13. https://doi.org/10.1155/2022/4574676
- Tan, C. S., Lee Y. H. & Nussbaumer, A. (2015). UTM-EPFL Report on Laboratory Tests Container Stability.
- Tan, C. S., & Ling, P. C. H. (2018). 'Shipping Container as Shelter Provision Solution for Post-Disaster Reconstruction'. *E3S Web of Conferences*, 65(08007). https://doi.org/10.1051/e3sconf/20186508007
- Tanyer, A. M., Tavukcuoglu, A., & Bekboliev, M. (2018). 'Assessing the airtightness performance of container houses in relation to its effect on energy efficiency'. *Building and Environment*, 134, 59–73. https://doi.org/10.1016/j.buildenv.2018.02.026
- Tavares, V., Lacerda, N., & Freire, F. (2019). 'Embodied energy and greenhouse gas emissions analysis of a prefabricated modular house: The "Moby" case study'. *Journal of Cleaner Production*, 212, 1044–1053. https://doi.org/10.1016/j.jclepro.2018.12.028
- Tavares, V., Soares, N., Raposo, N., Marques, P., & Freire, F. (2021). 'Prefabricated versus conventional construction: Comparing life-cycle impacts of alternative structural materials'. *Journal of Building Engineering*, 41, 102705. https://doi.org/10.1016/j.jobe.2021.102705

- Tobi, S. U. M., Jasimin, T. H., & Rani, W. N. M. W. M. (2020). 'Overview of Affordable Housing from Supply and Demand Context in Malaysia'. *IOP Conference Series: Earth and Environmental Science*, 409(1), 012010. https://doi.org/10.1088/1755-1315/409/1/012010
- Trancossi, M., Cannistraro, G., & Pascoa, J. (2020). 'Thermoelectric and solar heat pump use toward self sufficient buildings: The case of a container house'. *Thermal Science and Engineering Progress*, 18, 100509. https://doi.org/10.1016/j.tsep.2020.100509
- Townshend, Derek. (2006). Study on Green Roof Application in Hong Kong. Urbis Limited.
- Malaysia (2015). Uniform Building By-laws 1984. G.N. 5178/85.
- UN-HABITAT. (2009). *Shelter Projects 2008*. International Federation of Red Cross and Red Crescent Societies (IFRC).
- UN Refugee Agency (UNHCR). (2017). Global Trends: Forced Displacement in 2016.
- Vijayalaxmi, J. (2010). 'Towards sustainable architecture a case with Greentainer'. *Local Environment*, 15(3), 245–259. https://doi.org/10.1080/13549830903575596
- Wang, C., Huang, X., Deng, S., Long, E., & Niu, J. (2018). 'An experimental study on applying PCMs to disaster-relief prefabricated temporary houses for improving internal thermal environment in summer'. *Energy and Buildings*, 179, 301– 310. https://doi.org/10.1016/j.enbuild.2018.09.028
- Wong, E. K. H., Tan, C. S. , & Ling, P. C. H. (2018). 'Feasibility of Using ISO Shipping Container to Build Low Cost House in Malaysia'. *International Journal of Engineering & Technology*, (2.29), 933. https://doi.org/10.14419/ijet.v7i2.29.14287
- Whitten, J. L., & Bentley, L. D. (2007). Systems Analysis & Design Methods (7th ed.). McGraw-Hill/Irwin.
- World Shipping Council. (2011). Container Supply Review 2011.
- Wright, H. D., & Hossain, K. M. A. (1997). 'In-plane shear behaviour of profiled steel sheeting'. *Thin-Walled Structures*, 29(1–4), 79–100. https://doi.org/10.1016/S0263-8231(97)00016-5
- Wrzesien, A. M., Lim, J. B. P., Xu, Y., MacLeod, I. A., & Lawson, R. M. (2015). 'Effect of stressed skin action on the behaviour of cold-formed steel portal

frames'. *Engineering Structures*, 105, 123–136. https://doi.org/10.1016/j.engstruct.2015.09.026

- Yu, Y., & Chen, Z. (2018). 'Rigidity of corrugated plate sidewalls and its effect on the modular structural design'. *Engineering Structures*, 175, 191–200. https://doi.org/10.1016/j.engstruct.2018.08.039
- Zafra, R. G., Mayo, J. R. M., Villareal, P. J. M., de Padua, V. M. N., Castillo, Ma. H. T., Sundo, M. B., & Madlangbayan, M. S. (2021). 'Structural and Thermal Performance Assessment of Shipping Container as Post-Disaster Housing in Tropical Climates'. *Civil Engineering Journal*, 7(8), 1437–1458. https://doi.org/10.28991/cej-2021-03091735
- Zaki, B. M., & Danraka, M. M. (2015). 'Potentials of Shipping Container Buildings and The Implication'. *The International Academic Conference for Sub-Sahara African Transformation & Development*.
- Zea Escamilla, E., & Habert, G. (2015). 'Global or local construction materials for post-disaster reconstruction? Sustainability assessment of twenty post-disaster shelter designs'. *Building and Environment*, 92, 692–702. https://doi.org/10.1016/j.buildenv.2015.05.036
- Zhang, G., Setunge, S., & van Elmpt, S. (2014). 'Using Shipping Containers to Provide Temporary Housing in Post-disaster Recovery: Social Case Studies'. *Procedia Economics and Finance*, 18, 618–625. https://doi.org/10.1016/S2212-5671(14)00983-6
- Zhang, W., Mahdavian, M., & Yu, C. (2018). 'Lateral strength and deflection of coldformed steel shear walls using corrugated sheathing'. *Journal of Constructional Steel Research*, 148, 399–408. https://doi.org/10.1016/j.jcsr.2018.06.009
- Zha, X., & Zuo, Y. (2016a). 'Theoretical and experimental studies on in-plane stiffness of integrated container structure'. *Advances in Mechanical Engineering*, 8(3), 168781401663752. https://doi.org/10.1177/1687814016637522
- Zha, X., & Zuo, Y. (2016b). 'Theoretical and experimental studies on in-plane stiffness of container structure with holes'. *Advances in Mechanical Engineering*, 8(6), 168781401665137. https://doi.org/10.1177/1687814016651372

LIST OF PUBLICATION

- Cher Siang Tan, Philip C.H. Ling. (2018). Shipping Container as Shelter Provision Solution for Post-Disaster Reconstruction. ICCEE 2018. E3S Web of Conferences, 65 (08007). https://doi.org/10.1051/e3sconf/20186508007
- Edric King Hui Wong, Cher Siang Tan, Philip Chie Hui Ling. (2018). Feasibility of Using ISO Shipping Container to Build Low Cost House in Malaysia. *International Journal of Engineering & Technology*, 7 (2.29), 933-939.
- Philip Chie Hui Ling and Cher Siang Tan. (2018). A Numerical Study on The Stiffness of Shipping Container. Proceedings of 7th International Graduate Conference of Engineering, Science and Humanities. Universiti Teknologi Malaysia, Johor Bahru, Malaysia 13 -15 August 2018.
- Philip Chie Hui Ling, Cher Siang Tan, Anis Saggaff. (2019). Feasibility of ISO Shipping Container as Transitional Shelter - A Review. *IOP Conf. Series: Materials Science and Engineering* 620 (012056). doi:10.1088/1757-899X/620/1/012056
- Philip Chie Hui Ling, Cher Siang Tan, Yeong Huei Lee, Shahrin Mohammad. (2020). Technical Information on ISO Shipping Container. Sustainable and Integrated Engineering International Conference 2019 (SIE 2019). IOP Conference Series: Materials Science and Engineering, 884 (2020) 012042. doi:10.1088/1757-899X/884/1/012042
- Philip Chie Hui Ling, Cher Siang Tan, Yeong Huei Lee, Yong Eng Tu. (2021). Design Consideration of Container Shelter in Malaysia. *Jurnal Teknologi*, 83:5 (2021) 1–7. https://doi.org/10.11113/jurnalteknologi.v83.16774
- Philip Chie Hui Ling, Cher Siang Tan. (2019). Numerical Simulation of ISO Freight Container Using Finite Element Modelling. Proceedings of AICCE'19, *Lecture Notes in Civil Engineering 53*. https://doi.org/10.1007/978-3-030-32816-0_31
- Yaik-Wah Lim, Philip C. H. Ling, Cher Siang Tan, Heap Yih Chong, Ashwin Thurairajah. (2022). Planning and coordination of modular construction. *Automation in Construction, 141*(104455). https://doi.org/10.1016/j.autcon.2022.104455