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ABSTRACT 

The demand for advanced water treatment technologies is increasing for the 

treatment of high-strength wastewater, including complex water pollutants. Removal 

of bisphenol A (BPA) from water has presented a major challenge for the water 

industry. Membrane separation has the advantages of simplicity, high speed, and 

high efficiency, and has received extensive attention around the world. It is well 

known that membrane materials and membrane processes are two of the key factors 

affecting the separation process. The selection of suitable membrane materials is of 

great significance to produce effective dual-function ceramic membrane which 

possesses filtration and photocatalysis features in a single unit of membrane. In this 

study, naturally existing bauxite was selected as a ceramic material because of its 

availability and the presence of iron (III) oxide (Fe2O3) and titanium dioxide (TiO2) 

which have potential to be used as photocatalyst. In the first stage of this work, 

bauxite powder was subjected to thermal treatment at different temperatures. In the 

second stage of the study, a hydrophilic, asymmetric bauxite hollow fiber membrane 

(BHFM) was fabricated by phase inversion and sintering method. To study the 

morphologies of BHFM, the bauxite loading and sintering temperature was varied 

from 45 to 55 wt% and at temperature ranging from 1250 to 1450 ºC.  Then, in the 

third stage, the yielded membrane was subjected to the surface modification to lift up 

the photocatalytic properties using titanium dioxide (1wt% of TiO2) and copper 

oxide (1wt% of CuO) particles via hydrothermal method for the removal of BPA. 

TiO2 and CuO particles were modified on the surface of 50 wt% BHFM by varying 

the hydrothermal time of 2.5h, 5.0h and 7.5h. In the fourth stage of the study, the 

photocatalytic membrane was further evaluated for the photocatalytic efficiency in 

degradation of BPA, which was present in water. The finding of this study showed 

that the powder treated at 800 ºC possessed good photocatalytic degradation as it was 

able to degrade up to 75% of 5 mg/L BPA. 50 wt% BHFM which spun at bore fluid 

flow rate of 10 mL/min, air gap of 5 cm, and sintering temperature of 1300 °C 

induced good mechanical strength of 98.2 MPa,  stable permeate water flux (PWF) 

of ~281.4 L/m
2
h and moderate BPA degradation rate of less than 70%. The pristine 

BHFM and modified TiO2 and CuO BHFM with hydrothermal time of 5.0h showed 

promising finding with almost even distribution of modified particles on the 

membrane surface. The experimental results of photocatalytic activity test showed 

that the BPA degradation of 96.8% was achieved by CuO BHFM under visible light 

irradiation, while for UV light irradiation, TiO2 BHFM possessed the degradation 

rate of 90.3% for 360 minutes. Three intermediate products were determined which 

were 4-(2-hydroxy-2-propanol)phenol, 4-isopropenylphenol and dihydroxybenzene. 

All the findings in this study are helpful for understanding the process of 

photodegradation and to become a promising potential treatment to degrade BPA to 

provide water safety for living organisms. 
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ABSTRAK 

Permintaan terhadap teknologi rawatan air termaju semakin meningkat untuk 

rawatan air dengan pencemaran tinggi termasuk bahan cemar yang kompleks. 

Penyingkiran bisphenol A (BPA) dari air memberikan cabaran yang besar dalam 

industri air. Pemisahan membran yang mempunyai kelebihan dari segi 

kesederhanaan, kelajuan yang tinggi, dan kecekapan yang tinggi telah mendapat 

perhatian luas di seluruh dunia. Secara umumnya, telah diketahui bahawa bahan 

membran dan proses membran adalah dua faktor utama yang mempengaruhi proses 

pemisahan. Pemilihan bahan membran yang sesuai sangat penting untuk 

menghasilkan membran seramik dwi fungsi yang berkesan dengan mempunyai ciri 

penapisan dan fotomangkin dalam satu unit membran. Dalam kajian ini, bauksit yang 

wujud secara semula jadi telah dipilih sebagai bahan seramik kerana ketersediaan 

bahan tersebut dan adanya ferum (III) oksida (Fe2O3) dan titanium dioksida (TiO2) 

yang berpotensi untuk digunakan sebagai fotomangkin. Pada peringkat pertama 

kajian, serbuk bauksit menjalani rawatan terma pada suhu yang berbeza. Pada 

peringkat kedua kajian, membran serat berongga hidrolik, asimetrik menggunakan 

bauksit (BHFM) dihasilkan dengan menggunakan kaedah penyongsangan fasa dan 

pembakaran. Untuk mengkaji morfologi BHFM, muatan bauksit dan suhu 

persinteran dipelbagaikan dari 45% berat hingga 55% berat dan pada suhu antara 

1250 ºC hingga 1450 ºC. Pada peringkat ketiga kajian, membran terhasil dilakukan 

pengubahsuaian permukaan untuk meningkatkan sifat fotobermangkin dengan 

menggunakan zarah TiO2 (1% berat TiO2) dan tembaga oksida (CuO) (1% berat 

CuO) melalui kaedah hidrotermal untuk penyingkiran BPA. Zarah TiO2 dan CuO 

diubahsuai pada permukaan 50% berat BHFM dengan mempelbagaikan masa 

hidroterma 2.5 jam, 5.0 jam dan 7.5 jam. Pada peringkat keempat kajian, membran 

fotobermangkin selanjutnya dinilai untuk kecekapan fotobermangkin dalam 

penurunan BPA yang terdapat di dalam air. Hasil kajian menunjukkan bahawa 

serbuk bauksit yang menjalani rawatan terma pada suhu 800 ºC  mengalami 

penurunan fotobermangkin yang baik kerana mampu menurunkan sehingga 75% dari 

5 mg/L BPA. 50% berat BHFM yang diputar pada kadar aliran bendalir gerek 10 mL 

/min, jurang udara 5 cm, dan suhu persinteran 1300 °C memberikan kekuatan 

mekanikal yang baik pada 98.2 MPa dan fluks air telapan stabil (PWF) ~ 281.4 L / 

m
2
j dan kadar penurunan BPA sederhana kurang daripada 70%. BHFM yang tidak 

diubahsuai dan TiO2 dan CuO BHFM yang telah diubahsuai dengan masa hidroterma 

5.0 jam menunjukkan penemuan yang memberangsangkan dengan sebaran zarah 

yang diubahsuai hampir sama rata pada permukaan membran. Hasil eksperimen ujian 

aktiviti fotobermangkin menunjukkan bahawa penurunan BPA 96.8% dicapai oleh 

CuO BHFM di bawah penyinaran cahaya tampak, sementara untuk penyinaran 

cahaya UV, TiO2 BHFM menguasai kadar penurunan 90.3% selama 360 minit. Tiga 

produk perantaraan ditentukan iaitu 4- (2-hidroksi-2-propanol) fenol, 4-

isopropenilfenol dan dihidroksibenzena. Semua penemuan dalam kajian ini 

bermanfaat untuk memahami proses fotopenurunan dan menjadi rawatan yang amat 

berpotensi dalam menurunkan BPA untuk keselamatan air bagi organisma hidup. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Research  

The presence of contaminated wastewater containing endocrine disrupting 

compounds (EDC), in particular bisphenol A (BPA), has had an effect on both living 

organisms and the environment. It can also induce immunotoxic, mutagenic, 

genotoxic, hepatotoxic, teratogenic, neurotoxic and carcinogenic effects, even at 

nanomolar level (Pfeifer et al. 2015). Despite BPA‘s negative impact on the human 

body, it is one of the most commonly produced and used compounds worldwide with 

annual production expected to reach 10.6 million metric tons in 2022. Its annual 

growth rate between 2016 and 2022 is approximately 4.8% (Industry Experts, 2016). 

Because of the wide usage of polycarbonate plastics and epoxy resins in industry and 

households, BPA is a prevalent contaminant in the environment and its 

concentration, especially in the aquatic environment, is constantly increasing 

(Cleveland et al. 2014; Bilal et al. 2019; Grelska and Noszczyńska 2020). It enters 

these ecosystems mainly through the effluents of wastewater treatment plants 

(WWTPs), where by lack of efficient systems of its removal, BPA may contaminate 

drinking water sources downstream (Zielinska et al. 2019). Taking into account that 

BPA possesses an ecological risk, there is an urgent necessity to eliminate it from the 

environment. 

Currently, there are different methods of BPA wastewater treatment including 

physical and chemical process such as adsorption, membrane technologies, 

oxidation, coagulation/flocculation and photocatalysis. The benefits of these 

approaches are that they are capable of extracting a wide variety of dyes and fast 

processes (Pearce et al., 2003). On the other hand, these methods are expensive and 

the aggregation of concentrated sludge often causes difficulties to remove the 

contaminants (Li and Guthrie, 2010; Pearce et al., 2003). In general, biological 
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treatment methods are more efficient and environmentally friendly (Pearce et al., 

2003).It has been reported that microorganisms are able to degrade BPA molecule 

efficiently under anoxic conditions and the intermediate products (amines) could be 

detoxified under aerobic environment (Grekova-Vasileva et al., 2009). The aromatic 

compounds were then degraded under aerobic condition (Stolz, 2001), to produce 

catechol compound and eventually to CO2, water and ammonia (Van der Zee and 

Villaverde, 2005). Among the studied method, removal of BPA through 

photocatalysis degradation is found to be the most competitive one because it does 

not need a high operating temperature and several coloring materials can be removed 

simultaneously (Crini, 2006). The versatility of photocatalysis is due to its high 

efficiency, economic feasibility and simplicity of design (Chen et al, 2010). 

Advanced oxidation processes (AOPs) have attracted increasing attention for 

water and wastewater treatment. AOPs differ from conventional physical and 

biological water treatment processes as they generate hydroxyl radicals, which are 

the strongest oxidant after fluorine in aqueous solutions. AOPs are able to degrade 

toxic and refractory pollutants into simple and harmless inorganic molecules without 

generating secondary waste. In addition, recalcitrant organic contaminants can also 

be eliminated by degradation of these compounds under certain exposure to the 

sunlight. The generation of hydroxyl radicals can be initiated by primary oxidants 

(hydrogen peroxide, ozone, and wet air oxidation), energy sources (UV light, 

ultrasonic and heat) or catalysts (for example, titania, zinc oxide and Fenton reagent). 

Several drawbacks of AOPs still need to be addressed before industrial introduction 

at large scale, including the high cost for chemicals either as oxidants or energy 

sources, and the potentiality to handle large amounts of wastewater (Leong et al., 

2014). 

Semiconductor photocatalysts offer advanced oxidation processes (AOP) and 

are able to degrade a wide range of ambiguous refractory organic pollutants in waste 

water effectively, which has drawn much attention worldwide. Semiconductor 

photocatalysts like TiO2, ZnO, Fe2O3 and Cu2O are capable of generating highly 

reactive species under irradiation to mineralize organic compounds. Among the 

possible technologies to accomplish this task, novel and economical advanced 
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oxidation techniques based on catalytic or chemical photooxidation are emerging as a 

promising alternative. Semiconductor mediated photocatalytic oxidation has been 

accepted as a promising alternative to the conventional methods because most of the 

pollutants can be completely mineralized to CO2 and H2O with suitable catalysts 

(Zangeneh et al. 2015). 

Commercial membranes are produced from two distinct classes of material: 

polymers consisting of organic material (e.g. polysulfone, regenerated cellulose, 

poliamide and polyvynilfluoride) or inorganic materials (mainly ceramics) (Coutinho 

et al., 2009). Ceramic membranes have advantageous properties when compared to 

polymeric membranes such as higher mechanical, chemical and thermal stability, 

which are basic requirements for adequate cleaning protocols and, consequently, 

higher membrane lifetime (Gebreyohanneset al., 2006; Mantzavinos and 

Kalogerakis, 2005). Furthermore, depending on the used materials, they can present a 

higher hydrophilicity (Hofs et al., 2011; Coutinho et al., 2009). The improvement of 

membrane hydrophilicity and fouling reduction through the use of membrane 

coatings with nanoparticles are currently a challenge (Chen et al., 2003). 

1.2 Problem Statements 

Bauxite is among the most important ore of aluminium and the existence of 

bauxite in Malaysia that has been discovered was reddish-brown color which 

indicated that it was naturally composed of heterogeneous material and comprises of 

more than one aluminum hydroxide minerals (Abdullah et al., 2016). Bauxite 

commonly comprises various metal oxides, including Fe2O3, Al2O3, TiO2, SiO2, and 

CaO and among these oxides, Fe2O3 and TiO2 are the commonly used photocatalysts. 

Previously, researchers have demonstrated bauxite‘s capability as an adsorbent for 

removing pollutants (Yan el at, 2020; Shi et al, 2020(a); Shi et al, 2020(b)). Based on 

the above elicitation, bauxite was considered as the low-price and easily available 

material to be used as photodegradation photocatalysts. The evaluation and 

application of natural bauxite minerals as heterogeneous photocatalyst for 

degradation of organic pollutants are not investigated so far. 
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Ceramic membranes were successfully applied for treatment of various 

wastewaters including those from domestic and industrial sectors (Bhattacharya et 

al., 2015). One of the limiting factors for ceramic membranes includes fouling. These 

could be overcome by use of nanocomposite membrane which results in low fouling 

due to presence of inorganic nanomaterial, thus increasing membrane productivity. 

Metal oxide nanoparticles are widely used for removal of harmful contaminants and 

heavy metals from water. Nanocomposites are formed by combining one or two 

nanomaterials having unique properties resulting in desirable properties. The usage 

of membrane filtration for water treatment is on the rise due to increasingly stringent 

regulations regarding environmental safety. However, morphological control of the 

membrane surface to improve its photocatalytic reactivity for the degradation of 

organic pollutants remains a challenge. 

Titanium dioxide (TiO2) and copper oxide (CuO) are the most studied 

photocatalysts due to their particular advantages, includes easy availability, low cost 

and high chemical stability due to its high oxidant capacity of the photogenerated 

holes, which gives a high photocatalytic activity (Fujishima et al., 2000). TiO2 has 

high chemical stability and excellent biocompatibility along with photocatalytic and 

other optical and electrical properties. Use of TiO2 in separation process arises from 

its anti-fouling and antimicrobial characteristics (Oun et al., 2017). TiO2 as 

photocatalyst is known to remove estrogens and bisphenols. CuO on the other hand 

is used for removal of contaminants from wastewater and has wide application in the 

field of gas sensors, catalysis as well as show antibacterial activity. CuO was 

impregnated on surface of activated carbon for removal of endocrine disruption 

compound (EDC) like atrazine, caffeine and diclofenac respectively from drinking 

water. To encounter this challenge, immobilization nanoparticles by incorporating 

them into membrane while retaining the high functionality of the powdered form is a 

good solution. 

To the recent days, the development of cost-effective ceramic hollow fibre 

membrane which exhibit high hydrophilic membrane surface, high porosity, and 

rather uniform pore size distribution, high water flux, lower fouling, and longer 

membrane lifetime by utilizing economical and abundant bauxite solely to replace 
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the usage of pure alumina are limited and not widely studied. Therefore, with all 

these aforementioned pros, it makes bauxite as a very proficient raw material for 

cost-effective membrane development. Photocatalytic ceramic membranes have 

attracted considerable attention for wastewater treatment. Among the photocatalysts 

used, titanium dioxide (TiO2) and copper oxide (CuO) are considered efficient 

because of their photoactivity, physical and chemical stability, low cost and easy 

access. However, the requirement of separation of the suspension catalyst particles 

hinders the wide application of photocatalytic reaction systems, thus, a submerged 

ceramic membrane photocatalytic reactor using membrane was developed to separate 

the catalyst from the effluent, however, the problem of membrane fouling happened 

occasionally. The above problems can be avoided in photocatalytic reactors where 

the catalytic particles are immobilized on a support or carrier. Hence, it is promising 

to employ the TiO2 and CuO on the membrane for removal of recalcitrant compound 

like BPA in the water. Further membrane structure modifications could still be tested 

to enhance the membrane efficiency and the performances evalution of the fabricated 

membrane towards photodegradation of organic contaminants can be studied. 

1.3 Research Objectives 

The main objective of this study is to develop hydrophilic, photocatalytically 

active hollow fibre membrane from bauxite powder for degradation of bisphenol A 

in the wastewater. The specific objectives of the research are as follows: 

1. To examine the effect of thermal treatment on the characteristics of raw 

bauxite powder and photocatalytic activity of bauxite powder.  

2. To study the influence of different bauxite loading and sintering temperatures 

on the development of microfiltration bauxite based hollow fibre membrane 

(BHFM) in terms of structural, physical, chemical and filtration properties. 

3. To investigate the composition of photocatalyst of sintered BHFM by surface 

functionalization of titanium dioxide (TiO2) and copper oxide (CuO) through 

hydrothermal method and to correlate the photocatalytic efficiency of 

modified BHFM on the degradation of synthetic BPA wastewater under UV 

and visible light as well as the membrane repeatibility study of BHFM. 
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1.4 Research Scope 

The present study is carried out to investigate the degradation of BPA from 

wastewater by photocatalytic BHFM. The scopes of study have been identified and 

are listed below: 

For Objective 1: 

(a) Investigating the effect of thermal treatment by exposing raw bauxite powder 

under heat temperature ranged from 600 ºC to 1000ºC on the characterization 

of bauxite powder.  

(b) For physical characterization, observing the morphological structure of the 

bauxite using FESEM and EDX mapping. 

(c) Analyzing the chemical composition contains in bauxite as well as the energy 

gap and effective surface area for further application through XRD, XRF, 

BET, AFM, MIP and UV-VIS-NIR. 

For Objective 2: 

(a) Varying the ceramic content from 45 wt% to 55 wt% of bauxite to observe 

the morphological structure of the BHFM upon selection of the best 

membrane. 

(b) Fabricating bauxite based hollow fibre membrane (BHFM) by using phase 

inversion based spinning technique, followed by the sintering process at the 

temperature of 1250° C to 1450° C. 

(c) Characterizing the morphology of BHFM via SEM, EDX and AFM, 

mechanical strength, contact angle, mercury intrusion test and XRD. 

(d) Evaluating the performances of BHFM characterization by conducting pure 

water permeation test and solute rejection test.  

(e) Conducting photocatalytic performance on fabricated BHFM under both 

visible and UV light irradiation with various BPA concentrations (10 mg/L, 

20 mg/L and 30 mg/L). 
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For Objective 3: 

(a) Conducting the surface modification of BHFM (selected BHFM based on 

Objective 2) to improve the photocatalytic properties of the membrane using 

hydrothermal method by varying the duration of hydrothermal reaction form 

2.5h, 5.0h and 7.5h using titanium dioxide (TiO2) and copper oxide (CuO) 

(b) Characterizing the morphology of decorated TiO2 BHFM and CuO BHFM in 

terms of morphology using SEM, elemental composition using EDX, 

crystallinity phase using XRD, surface roughness using AFM, mechanical 

strength, contact angle measurement and water permeation test. 

(c) Developing photocatalytic membrane reactor (PMR) using both visible and 

UV light to observe the photocatalytic performance of modified TiO2 and 

CuO BHFM (with hydrothermal time 5.0h) on the degradation of BPA at 

concentration of 10 mg/L, 20 mg/L and 30 mg/L. 

(d) Comparing the BPA degradation rate between decorated TiO2 BHFM/ CuO 

BHFM with pristine BHFM and commercial ceramic membrane 

representative - pristine and decorated CuO – alumina hollow fiber 

membrane (AHFM) 

(e) Identifying and determining the intermediate product through high pressure 

liquid chromatography (HPLC) for degradation of BPA using CuO BHFM. 

(f) Conducting reusability test of modified BHFM by exposing used membrane 

under the UV light and observe the performance of the membrane after 

several times of usage. 

 

 

 

1.5 Novelty of Study 

The outcome of this study is going to provide an early insight on the potential 

of ceramic photocatalytic membrane as a promising technology for complete 

degradation of BPA in the water. The hybrid function of this BHFM allows the 

separation and degradation to occur simultaneously which latter on contribute to 

rapid treatment process. High distribution of photocatalyst on the surface of BHFM 

after surface functionalization gives great advantage as it can be used under both UV 
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and visible light exposure and even under poor indoor lightning, thus prolong the 

lifetime of BHFM due to less fouling towards the membrane. The information gained 

in this study is able to give a new shine in the direction of solving the global crisis on 

the depletion of water source which getting worst while the demand of clean water 

keep increasing. Thus, the recovery of clean water using photocatalysis of BHFM is 

gaining serious considerations with the development of the novel recovery 

technologies. 

1.6 Organization of Report 

This thesis is organized into eight chapters which describe original works on 

the fabrication of photocatalytic ceramic hollow fibre membrane from bauxite with 

different bauxite loading and sintering temperature for removal of BPA and its 

detrimental effects in the wastewater. 

Chapter 1 briefly introduces on the general information of the research and 

rising issues that led to this study. Four objectives of the study are decided and the 

scopes of study are completed upon attaining all the objectives. Then, this chapter is 

resume with thesis outline and chapter summary. Chapter 2 discusses on a 

comprehensive literature review regarding bauxite in Malaysia and its availability 

and existing component in this mineral. This chapter also deliberates about the 

development of ceramic membrane and photocatalysis process as well as previous 

study of the degradation BPA using various technologies. In Chapter 3, all the 

materials, instruments and methodologies used throughout this study is discussed. 

Complete research framework and comprehensive illustrated working procedures 

from thermal treatment of the raw bauxite powder, fabrication of BHFM with 

different ceramic loading, characterization techniques and BHFM performance 

evaluation are describe in details. 

 

All the result and discussion are covered from Chapter 4 till Chapter 7. 

Chapter 4 focuses on the characterization of bauxite powder as new potential 
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photocatalyst and the effect of thermal treatment on the bauxite powder behaviour is 

revealed in this chapter. Chapter 5 presents the feasibility study of bauxite based 

hollow fibre membrane (BHFM) and the effect of various ceramic loading and 

sintering temperature towards the characterization of the pristine membrane in terms 

of morphological structure and chemical composition. The best membrane to be 

further used in this study is also being decided in this chapter. 

In Chapter 6, the surface functionalization conducted on the membrane 

surface to enhance the photocatalytic properties of fabricated BHFM is elaborated. 

Two types of nanoparticles that responsible in this study which is copper oxide 

(CuO) and titanium dioxide (TiO2) are decorated and the changes due to their 

deposition are comprehensively discussed in this chapter. Chapter 7 revealed the 

effect of BPA concentration and different light source (visible and UV) towards BPA 

degradation. The effectiveness of modified nanoparticles at the outer layer was 

investigated in presence of UVA light and the BPA degradation rate is determined 

using Langmuir-Hinshelwood model. The intermediate products of BPA have been 

identified by using high performance liquid chromatography (HPLC) analysis. The self-

cleaning ability of BHFM was also studied as well as the reusability of BHFM 

throughout this study. The best performance BHFM on the removal of BPA is 

revealed in this chapter.  

To conclude this thesis, general conclusions on this study and 

recommendation for future direction have been listed in Chapter 8. 
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