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ABSTRACT 

Rock Quality Designation (RQD) is a widely applied rock mass classification 

system for quantifying rock mass quality because it is simple and easily obtained 

compared to other rock mass classification systems. The rock mass quality using RQD 

can be identified from drill cores and scanline surveys. However, the calculation of 

RQD from core samples is expensive and directional-dependent. On the other hand, 

the scanline survey of obtaining RQD, provides point base information, is time-

consuming, and is not practicable in large areas. In addition, the information by 

scanline survey is limited to the rock outcrop only, and subsurface rock mass quality 

remains unidentified. For subsurface investigation of rock mass conditions, 2D 

Electrical Resistivity Tomography (2D ERT) has been extensively applied; however, 

no comprehensive and detailed correlation of RQD and resistivity values exists to date. 

This study utilised an integrated Unmanned Aerial Vehicle survey (UAV) and 2D ERT 

survey at two sites with similar geological formations and aims to establish the 

correlation between resistivity and RQD indexes. The UAV survey enables the 

reconstruction of 3D point cloud that calculates the RQD on the surface indirectly from 

1 m × 1 m block utilizing Volumetric Joint Count (Jv). This was achieved in 

ShapeMetrix (SMX) software. At the same time, the 2D ERT survey allows extracting 

the corresponding resistivity values for each RQD indexes from the same block using 

ZonRes2D software. A series of Linear Regression (LR) analysis and k-Nearest 

Neighbour (k-NN) algorithm were performed in Python to obtain continuous 

projections of RQD and rock resistivity and assigned resistivity values to respective 

RQD indexes. Two hundred twenty-three data points were obtained representing RQD 

and corresponding resistivity values. These data points successfully provide a 

continuous projection of RQD with resistivity using LR analyses, and it was confirmed 

that the resistivity of rock mass increases 30 Ωm for each unit increase in RQD index. 

Whereas the k-NN efficiently assigned resistivity values to various RQD indexes, the 

very poor rock shows a resistivity value of less than 350 Ωm; for poor rock, it ranges 

from 350-1150 Ωm. While for fair rock, the resistivity varies between 1150 to 1850 

Ωm, for good rock, the resistivity ranges from 1850 to 2500 Ωm, and excellent rock 

has a resistivity value greater than 2400 Ωm. The established correlation of RQD 

obtained via k-NN characterize the surface and subsurface rock mass quality along the 

slope in RQD mapping. It was found that the subsurface rock mass quality was at 

higher quality compared to the surface at both sites. It can be concluded that the 

integrated UAV and 2D ERT have been successfully applied in this study. In addition, 

the established correlation will help in obtaining the RQD values using expeditious, 

inexpensive, and environmental non-destructive approach. 
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ABSTRAK 

Rock Quality Designation (RQD) adalah sistem pengelasan jisim batuan yang 

digunakan secara meluas untuk mengukur kualiti jisim batuan kerana ia senang digunakan 

dan mudah diperolehi berbanding sistem pengelasan yang lain. Kualiti jisim batuan 

menggunakan RQD boleh dikenal pasti daripada teras gerudi dan juga tinjauan garis 

imbasan. Walau bagaimanapun, pengiraan RQD daripada sampel teras adalah mahal dan 

bergantung kepada arah. Sebaliknya, tinjauan garis imbasan untuk mendapatkan nilai 

RQD, hanya menyediakan maklumat pada titik lokasi tertumpu, mengambil masa yang 

lama dan tidak sesuai dipraktikkan di kawasan yang besar. Di samping itu, maklumat 

melalui tinjauan garis imbasan adalah terhad kepada singkapan batuan sahaja, dan kualiti 

jisim batuan di bawah permukaan masih tidak dapat dikenalpasti. Untuk penyiasatan 

keadaan jisim batuan bawah permukaan, keadaan jisim batuan 2-Dimensi Tomografi 

Kerintangan Elektrik (2D ERT) telah digunakan secara meluas, namun tiada korelasi 

komprehensif dan terperinci antara RQD dan nilai kerintangan wujud sehingga kini. 

Kajian ini menggunakan Tinjauan Kenderaan Udara Tanpa Pemandu (UAV) dan tinjauan 

2D ERT di dua tapak dengan pembentukan geologi yang serupa, bertujuan untuk 

mewujudkan korelasi antara kerintangan dan indeks RQD. Tinjauan UAV membolehkan 

pembinaan semula titik awan 3D bagi pengiraan nilai RQD pada permukaan secara tidak 

langsung daripada blok 1 m × 1 m menggunakan Kiraan Bersama Volumetrik (Jv). Ini 

dicapai dalam perisian ShapeMetrix (SMX). Pada masa yang sama, tinjauan 2D ERT 

membolehkan pengekstrakan nilai kerintangan yang sepadan untuk setiap indeks RQD 

dari blok yang sama dengan menggunakan perisian ZonRes2D. Satu siri analisis Regresi 

Linear (LR) dan algoritma k-Nearest Neighbor (k-NN) telah dilakukan di dalam Python 

untuk mendapatkan unjuran berterusan RQD dengan kerintangan batuan dan memberikan 

nilai kerintangan kepada indeks RQD masing-masing. Dua ratus dua puluh tiga titik data 

diperolehi yang mewakili RQD dan nilai kerintangan yang sepadan. Titik data ini berjaya 

memberikan unjuran berterusan nilai RQD dengan kerintangan menggunakan analisis LR, 

dan telah disahkan bahawa kerintangan jisim batuan meningkat sebanyak 30 Ωm untuk 

setiap peningkatan unit dalam indeks RQD. Manakala k-NN dapat memberikan nilai 

kerintangan kepada pelbagai indeks RQD dengan lebih efisien, di mana batuan yang 

sangat lemah menunjukkan nilai kerintangan kurang daripada 350 Ωm; untuk batuan 

lemah, ia berkisar antara 350-1150 Ωm. Seterusnya, bagi batuan saksama, kerintangan 

berbeza antara 1150 hingga 1850 Ωm, untuk batuan yang baik, kerintangan antara 1850 

hingga 2500 Ωm, dan batuan yang sangat baik mempunyai nilai kerintangan lebih daripada 

2400 Ωm. Korelasi bagi RQD yang diperolehi melalui k-NN mencirikan kualiti jisim 

batuan permukaan dan bawah permukaan di sepanjang cerun dalam pemetaan RQD. Ia 

didapati, kualiti jisim batuan bawah permukaan adalah lebih tinggi berbanding permukaan 

di kedua-dua tapak. Jadi, dapat disimpulkan bahawa pengunaan kaedah UAV dan 2D ERT 

secara bersepadu telah berjaya diaplikasikan dalam kajian ini. Di samping itu, korelasi 

yang disediakan ini akan membantu dalam mendapatkan nilai RQD menggunakan 

pendekatan yang lebih cepat, murah dan tidak merosakkan alam sekitar. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

In recent decades, slope stability assessment has been getting greater interest 

in response to the construction of extensive road networks and residential areas in the 

hilly and mountainous region due to population expansion and socio-economic 

development. Malaysia is also among the countries having 25% of the terrain hilly and 

mountainous [5]. Consequently, a substantial portion of highways and residential areas 

in Malaysia are exposed to the threat of slope failure. Slope failure contributes to 8.3% 

of all-natural disasters in Malaysia, causing 500 fatalities to date  [6].  Therefore, a 

comprehensive rock slope stability assessment is crucial to mitigate rock slope failure, 

particularly along the roadside, thus reducing the loss of life, property damage, and 

socio-economic impact.  

A comprehensive and robust rock slope stability assessment is needed to 

understand several parameters. These parameters include the understanding of analysis 

of geologic discontinuities and physical characteristics of the rock slope. 

Measurements of geological discontinuities involve orientations, persistence, spacing, 

and roughness of joints and faults. In contrast, the physical characteristics encompass 

the slope height, slope length, face angle, identification of various lithological features, 

and measuring the magnitude of driving and resistive forces [7-10].  

Rock slope stability assessment techniques are broadly categorized as 

kinematic analysis, numerical modeling, limit equilibrium analysis, and empirical 

methods [11]. This research work mainly emphasized the empirical technique for slope 

stability assessment. The empirical method or rock mass classification system  

quantitively describe the engineering behaviour of rock mass condition [12]. 

Numerous rock mass classifications systems such as Terzaghi, Rock Quality 
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Designation (RQD),  Rock Structure Rating (RSR), Rock Mass Rating (RMR), 

Modified Rock Mass rating (MRMR), Q-system, Slope Mass Rating (SMR) and 

Geological Strength Index (GSI) are in practiced for slope stability assessment [13, 

14]. 

 

Rock Quality Designation (RQD) is a standard technique in mining and 

geotechnical investigation for quantifying the quality and degree of jointing of rock 

mass based on the RQD index [15]. RQD index is the indicator of the rock mass quality 

that represents the degree of fracturing of the rock mass [15]. The application of RQD 

for the characterization of rock mass quality dates to Deer’s work in 1963 [8, 13, 16].  

The widespread application of  RQD for rock engineering is because it can be simply, 

inexpensively, and rapidly obtained compared to other rock mass classification 

systems [16, 17]. The use of RQD as primary parameters in various rock mass 

classification systems such as RMR, Q-system, GSI, and SMR also demonstrate its 

importance [16, 18, 19]. The correlation of RQD with rock mass deformability and 

unconfined compressive strength also signifies its importance [20-22]. The rock mass 

quality using RQD can be identified from drill cores and scanline surveys [16].   

The primary limitation of the coring method is that rock cores give different 

values of RQD for same location when samples are obtained from cores with varying 

drilling orientations [23]. To overcome this, Hudson and Priest recommended to 

acquire three cores in different directions to obtain information on the three-

dimensional (3D) jointing in a rock mass. However, such practice is costly and time-

consuming [24, 25]. The other limitation of coring is that the storing of cores requires 

a significant amount of space and is mostly waisted, which prevents future inspections 

[18]. This leads to the modification of the RQD classification system by indirectly 

measuring the degree of fracturing of rock mass from fracture frequency (λ) and 

Volumetric Joint Count (Jv) for numerous engineering applications [26]. Due to low 

cost, simplicity, and reproducibility, the indirect way resulted in the quick 

development of the RQD for evaluating rock mass quality for various engineering 

applications such as slope stability, mining engineering, and tunnels [27].  The indirect 

calculation of RQD using Jv is more reliable compared to fracture frequency because 

RQD may be sensitive to the directions of the scanline. In contrast, the sampling 

direction does not influence the Jv. 
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Various remote sensing techniques such as Interferometric Synthetic Aperture 

Radar (InSAR), Light Detection and Ranging (LiDAR), Unmanned Aerial Vehicle 

(UAV) and Terrestrial Laser Scanning (TLS) provide a promising approach to 

indirectly (Jv) quantify rock mass quality using RQD [28-30]. These techniques cover 

a larger area in a short time and provide aerial images and high-resolution 3D point 

cloud without direct contact with rock slope as opposed to manual geological mapping. 

Currently,  UAV has proven its significance for slope stability assessment because it 

is inexpensive compared to InSAR and LiDAR and more efficient than TLS, especially 

on steep rock slopes [31].  Although UAV is a well-established technique for rock 

slope stability assessment, the information provided by UAV is limited to rock outcrop 

only and the subsurface rock mass quality remains unidentified. In addition, although 

UAV itself is rapid technique but the quantification of rock mass conditions based on 

Jv from UAV point cloud is time-consuming specially for larger area. 

For rapid subsurface investigation of rock mass quality, 2D Electrical 

Resistivity Tomography (2D ERT) has been extensively applied [32-35]. The stability 

of the rock slope is highly influenced by the fracturing, weathering and presence of 

water and clay content in the rock mass. This makes 2D ERT an attractive technique 

for slope stability assessment because the resistivity of the rock mass is highly 

sensitive to the fracturing, weathering, and presence of water and clay content [32, 36, 

37]. The increasing interest in the application of 2D ERT for geotechnical investigation 

is due to its lightweight, easy portability, technological advance data collection and 

interpretation and non-destructive data gathering ability [38]. However, as discussed 

above 2D ERT is extensively applied for various rock engineering applications, but 

very little work is carried out to quantify rock mass quality based on RQD using 2D 

ERT. This is because of the lack of comprehensive and detail correlation of resistivity 

for all RQD indexes to date.  
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1.2 Problem Statement 

RQD has widespread application such as geotechnical investigation, rock slope 

stability assessment, rock mass deformability prediction and tunnel support designing. 

However, the traditional way of calculation of RQD suffers several limitations. Firstly, 

rock cores yield different values for a given location when samples are extracted with 

varying orientations of drilling [23]. In addition, the coring technique is costly and 

time-consuming, and many steep areas are inaccessible for shifting heavy drilling 

equipment [24, 25]. Furthermore, storing cores requires a significant amount of space 

and is mostly waisted, which prevents future inspections [18]. To overcome this, the 

indirect calculation of  RQD by measuring the degree of rock mass fracturing was 

introduced [26]. However, the indirect calculation of RQD provide point-based 

information, is directional dependent, and time-consuming especially on a large slope 

[10, 39-41].   

To overcome the above-mentioned shortcoming of RQD calculation, few 

researchers attempted to correlate RQD and resistivity values in granitic rock [1-4]. 

However, their correlation of RQD and resistivity values provided previously 

possesses certain deficiencies.  The primary limitation of previous research works on 

correlation of RQD, and resistivity is that it provides the spotted correlation of RQD 

and resistivity values, thus lacks a continuous projection of RQD and resistivity for all 

RQD indexes.  Additionally, all the previous work integrates 2D ERT and boreholes, 

which is considered an expensive and time-consuming approach. 

 This research work deploys an integrated UAV and 2D ERT surveys to 

calculate RQD and the corresponding resistivity values. This will allow to obtain a 

continuous projection of RQD and corresponding resistivity values, thus enable to 

assigned resistivity values to all RQD indexes. The approach presented in this research 

work is cost-effective, expeditious and environmentally non-destructive as opposed to 

previous researchers.  



 

5 

1.3 Significance of the Research 

UAV is widely applied for geotechnical assessments, particularly rock slope 

stability assessment. These techniques provide a promising approach for rapidly 

assessing the rock slope's stability.  UAVs provide 3D point cloud of rock slope surface 

over a large area quickly. However, the information provided by UAV is limited to the 

outcrop. Whereas the rock mass is heterogeneous, therefore not necessary that the rock 

behaves the same as represented on the outcrop. Thus, for a detailed assessment of the 

rock slope, the surface and subsurface kinematics are required simultaneously. To 

expose, subsurface lithology, 2D ERT, an indirect geophysical technique is an 

efficient, inexpensive, and rapid approach.   

This research work will integrate the surface information obtained by UAV 

with the subsurface interpretation of 2D ERT. The combined information such as RQD 

and resistivity obtained by these techniques will be correlated to improve the RQD 

classification system by assigning the resistivity values to various RQD indexes in the 

RQD classification system. Thus, the outcome of this research work will provide an 

inexpensive, rapid and efficient rock mass quality assessment approach.  

1.4 Research Objectives 

The research study aims to establish a correlation of resistivity with RQD by 

incorporating resistivity values to various RQD indexes. This can be achieved by 

obtaining the following objectives. 

I. To determine RQD and corresponding resistivity values using UAV and 2D 

ERT survey 

II. To establish continuous projection of RQD and resistivity and assign resistivity 

values to RQD indexes using simple linear regression and k-Nearest 

Neighbours (k-NN) classifiers. 
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III. To compare the effect Jv and resistivity with RQD using multiple linear 

regression. 

IV. To characterize rock mass quality along both sites using established 

correlation. 

  

1.5  Scope of the Study 

The focus of this study is on the rock mass characterization base on RQD.  

Based on the RQD Index, the RQD employs a single parameter to evaluate the rock 

mass quality. In this study, the RQD was calculated indirectly using Jv. Two study 

sites have opted for data acquisition: rocks slope along the PLUS expressway (KM 

258.17, Jelapang, Perak) and Bukit Ayam, Pengerang, Johor, having granite 

formations. UAV surveys at both sites were performed using DJI Phantom 4 v2.0 

Quadcopter UAV system. The acquired UAV images were processed in shapeMetrix 

(SMX) software to reconstruct 3D Point cloud. A 1 m*1 m flat block were drawn on 

3D point cloud and RQD was calculated indirectly using Jv to correlate with 

subsurface resistivity values. The resistivity of rock mass is influenced by the 

saturation of the water content in the joints of rock mass. Knowing that, the resistivity 

filed data in this research was performed in dry and hot season.  The corresponding 

subsurface resistivity values for various RQD indexes were calculated by carrying 2D 

ERT survey using ABEM LS Tetrameter utilizing ZondRes2D software. Thus, the 

integrated UAV and 2D ERT survey enable to obtained RQD and corresponding 

resistivity values. 

To establish a continuous projection of resistivity and RQD, simple linear 

regression analysis modelling was performed using python. After establishing a 

continuous projection of RQD and resistivity values, k-NN modelling was performed 

in python to assign the resistivity values to various RQD indexes. In line with this, the 

multiple linear aggression analysis was also performed using python to study the 

compare the effect of Jv and resistivity on RQD. Finally, the surface and subsurface 

rock quality along the slope was characterized by constructing RQD mapping in 

ArcGIS using the inverse distance weightage (IDW) interpolation technique. 



 

7 

1.6 Thesis Outline 

The report of this research work is presented in seven chapters. Every chapter 

provide comprehensive discussion and explanation about the research. A summary of 

each chapter is as follow. 

Chapter 1, the chapter discusses the background of the study that serves a 

guidance for the reader to know what research has been done previously. The chapter 

also explain the problem statement, scope of the research, research aims, objectives of 

the research and significance of the research. 

Chapter 2, this chapter presents detail literature review of previous research 

work. Discussions and comments of the contribution of previous research is also 

provided in this chapter. The chapter outlines detail information on rock mass 

classification system particularly RQD, various remote sensing techniques especially 

UAV survey and geophysical techniques specifically 2D ERT.  

Chapter 3, this chapter provide detail explanation on research methodology, 

which covers description about the study area, various approaches deployed for data 

collection and processing such as UAV and 2D ERT survey. The chapter also explain 

the calculation of RQD from UAV point cloud and extraction of corresponding 

resistivity values from 2D ERT interpretation. 

Chapter 4 presents the results obtained from various survey works such as 2D 

ERT and UAV. This chapter presents the outcome of UAV and 2D ERT survey in the 

form 3D point cloud and resistivity tomograph respectively. Furthermore, 2D ERT 

survey is authenticated in various ways including comparison the outcome of 2D ERT 

interpretation at multiple electrodes spacing. In addition, discussion on the 2D ERT 

interpretations achieved by the two different software is also presented to validate the 

2D ERT interpretation. 

Chapter 5 provides the detail of various sections and 1 m* 1 m block used to 

calculate RQD and corresponding resistivity values. The detail of the number of joints 
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identified at both sites is also provided. The obtained RQD and corresponding 

resistivity values is also tabulated in this chapter. 

Chapter 6 highlights the finding of the research work in relation to the 

objectives. The continuous projection of the RQD and corresponding resistivity values 

obtained using simple linear regression analysis is presented in this chapter. In 

addition, the outcome of k-NN modelling and its application of assigning resistivity 

values to RQD indexes is also discussed. The effect of Jv and resistivity on RQD 

studied using multiple linear regression is also explained in this chapter. The obtained 

characterization of rock mass quality along both rock slope is also provided in this 

chapter. 

Chapter 7, this chapter provide the concluding remarks on the research 

outcomes. The chapter also suggest the possible extension of this research work.  
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