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ABSTRACT 

Most of the heating, ventilation, and air conditioning (HVAC) systems used to 
provide comfort in residential, commercial, and industrial buildings are electric vapour 
compression type. These systems consume considerable amounts of electrical energy, 
mostly generated from fossil fuels such as coal, oil, and natural gas. The continuous 
burning of fossil fuels contributes significantly to global warming due to the 
greenhouse effect in the ozone. Consequently, more energy-efficient and cleaner 
cooling options are required. Absorption chiller appears to be an attractive alternative 
for cooling as it operates primarily with heat energy. The heat is obtainable from 
various sources such as solar, geothermal heat, or waste heat. The use of solar-assisted 
absorption chiller for space cooling is limited to the availability of solar radiation, 
hence, energy storage is crucial to achieving extended hours of cooling operation. 
Therefore, the main goal of this research is to evaluate the performance of a solar-
assisted double-effect absorption cooling system integrated with absorption energy 
storage (AES) and study its economic feasibility. This thesis simulated and evaluated 
the operational and economic performance characteristics of a solar-assisted cooling 
system. The solar-assisted cooling system consists of a parabolic trough solar collector 
(PTC), parallel-flow double-effect water-lithium bromide (H2O-LiBr) absorption 
chiller, and absorption energy storage (AES). The thermodynamic model of the system 
is developed, validated, and simulated using the Engineering Equation Solver (EES) 
software package. The economic feasibility of the system is evaluated based on the 
annuity method. The simulation is carried out in four stages. Firstly, a detailed 
parametric analysis of the system is performed without the AES, considering a 
reference double-effect absorption chiller by Broad air conditioning company (USA) 
for determining the area of the PTC. Secondly, the system without AES is optimized 
using the genetic algorithm technique, where the system exergy efficiency is 
maximized. The optimization parameters considered are the mass flow rates of the 
external working fluids and solution distribution ratio of the parallel-flow double-
effect absorption chiller. Thirdly, the solar-assisted cooling system is then integrated 
with AES and simulated, where its performance and the storage charging and 
discharging characteristics are discussed. Fourthly, the economic potential of the solar-
assisted cooling system with and without AES is evaluated considering a reference 
commercial building. The results show an overall coefficient of performance (COP) 
of the integrated solar cooling system of 0.99 and an exergy efficiency of 6.8%. The 
energy storage density of the AES for typical climatic conditions of Dhahran, Saudi 
Arabia, is found to be 444.3 MJ/m3. The energy storage density from the integrated 
solar-assisted cooling system is higher by 13 - 54% compared to other integrated 
systems based on single-effect configuration. The economic analysis indicates a 
reasonable payback period of five years to recover the initial investment of the solar-
assisted system with AES. A specific solar collector area of 1.16 m2/kW of cooling is 
obtained. This could be applied in sizing the solar collector field and evaluating the 
performance of similar systems under various climatic conditions with minimum solar 
radiation of around 500 W/m2. 
 

 



vi 

ABSTRAK 

Sebilangan besar sistem pemanasan, pengudaraan, dan penyaman udara 
(HVAC) yang digunakan untuk memberikan keselesaan di bangunan kediaman, 
komersial, dan perindustrian adalah jenis pemampatan wap elektrik. Sistem ini 
menggunakan sejumlah besar tenaga elektrik, kebanyakannya dihasilkan dari bahan 
bakar fosil seperti arang batu, minyak, dan gas asli. Pembakaran bahan api fosil secara 
berterusan menyumbang kepada pemanasan global kerana kesan rumah hijau di ozon. 
Oleh itu, pilihan penyejukan lebih cekap tenaga dan bersih diperlukan. Penyejuk 
penyerapan nampaknya menjadi alternatif yang menarik untuk penyejukan kerana ia 
beroperasi terutamanya dengan tenaga haba. Haba dapat diperoleh dari pelbagai 
sumber seperti suria, haba bumi, atau haba terbuang. Penggunaan penyejuk 
penyerapan berbantukan suria untuk penyejukan ruang terhad kepada ketersediaan 
sinaran suria, oleh itu, penyimpanan tenaga sangat penting untuk mencapai operasi 
penyejukan yang berpanjangan. Oleh itu, tujuan utama kajian ini adalah untuk menilai 
prestasi sistem penyejukan penyerapan kesan berganda dengan bantuan suria yang 
disatukan dengan penyimpanan tenaga penyerapan (AES) dan mengkaji kesauran 
ekonominya. Tesis ini mensimulasi dan menilai ciri-ciri prestasi operasi dan ekonomi 
sistem penyejukan berbantukan suria. Sistem penyejukan berbantukan suria terdiri 
daripada pengumpul suria parabolik (PTC), penyejuk penyerapan air-lithium bromida 
(H2O-LiBr) kesan selari, dan penyimpanan tenaga penyerapan (AES). Model 
termodinamik sistem dibangunkan, disahkan dan disimulasi menggunakan pakej 
perisian Engineering Equation Solver (EES). Kebolehlaksanaan ekonomi sistem 
dinilai berdasarkan kaedah anuiti. Simulasi dijalankan dalam empat peringkat. 
Pertama, analisis parametrik terperinci sistem dilakukan tanpa AES dengan 
menimbangkan penyejuk penyerapan kesan berganda oleh syarikat penyaman udara 
Broad (USA) untuk menentukan kawasan PTC. Kedua, sistem tanpa AES 
dioptimumkan menggunakan teknik algoritma genetik, yang mana kecekapan eksergi 
sistem dimaksimumkan. Parameter pengoptimuman yang dipertimbangkan adalah 
kadar aliran jisim cecair kerja luaran dan nisbah taburan larutan penyejuk penyerapan 
kesan berganda aliran selari. Ketiga, sistem penyejukan berbantukan suria kemudian 
disatukan dengan AES dan disimulasikan, yang mana prestasi dan ciri-ciri pengisian 
dan pelepasan penyimpanan dibincangkan. Keempat, potensi ekonomi sistem 
penyejukan berbantu suria dengan dan tanpa AES dinilai dengan menimbangkan satu 
rujukan bangunan komersial. Hasilnya menunjukkan keseluruhan pekali prestasi 
(COP) sistem penyejukan suria bersepadu adalah 0.99 dan kecekapan eksergi 6.8%. 
Ketumpatan simpanan tenaga AES untuk keadaan iklim khas Dhahran, Arab Saudi, 
didapati 444.3 MJ/m3. Ketumpatan simpanan tenaga dari sistem penyejukan 
berbantukan suria bersepadu adalah lebih tinggi sebanyak 13% sehingga 54% 
berbanding sistem bersepadu lain berdasarkan konfigurasi kesan tunggal. Analisis 
ekonomi menunjukkan tempoh pembayaran balik yang munasabah selama lima tahun 
untuk mendapatkan semula pelaburan awal sistem bantuan suria dengan AES. 
Kawasan pemungut suria tertentu dengan penyejukan 1.16 m2/kW diperolehi. Ini dapat 
diterapkan dalam ukuran medan pengumpul suria dan menilai prestasi sistem yang 
serupa dalam berbagai keadaan iklim dengan radiasi suria minimum sekitar 500 W/m2.  
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CHAPTER 1  
 

 

 

INTRODUCTION 

 

1.1 Problem Background 

The demand for air conditioning is ever increasing in many parts of the world, 

mainly due to population growth, industrialization, urbanization, and global climate 

change (Xu et al., 2018). Vapour compression systems have been widely used to 

provide comfort in buildings. These systems are powered by electricity that is mostly 

generated from fossil fuels such as coal, oil, and natural gas. The continuous usage of 

fossil fuels contributes largely to global warming (Sarbu & Sebarchievici, 2013a). 

Moreover, the electric vapour compression air conditioning systems consume 

considerable electrical energy. About 55% of the world’s annual energy consumption 

in residential buildings is attributed to cooling (Harvey et al., 2014). Santamouris 

(2016) reported a comprehensive detail on energy consumption by air conditioners 

worldwide. For example, energy consumption by cooling systems in the residential 

sector in the Kingdom of Saudi Arabia (KSA) is about 60% (Alaidroos & Krarti, 

2016). This is due to high ambient temperatures, which prevail throughout the long 

summer seasons. Similar statistics indicate that the operating cost of air conditioners 

contribute to about 30% of the total electricity bills in Malaysian residential sector 

(Yau & Pean, 2014). Moreover, the energy consumption by air-conditioning systems 

in the Malaysian building sector is expected to grow by 56% by the year 2040 (Yau & 

Amir, 2019). 

Furthermore, most of the electric vapour compression systems operate with 

chlorinated fluorocarbon compounds (CFCs), which, when exposed to the atmosphere 

through leakages contributes to the depletion of the ozone layer and hence, the global 

warming. Therefore, more energy-efficient and greener cooling systems that utilize 
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renewable energy are needed. Solar energy is regarded as a promising alternative 

source as it is clean and abundantly available in most regions of the world (Hepbasli 

& Alsuhaibani, 2011). Solar energy is continuously becoming a subject of interest for 

cooling due to the positive correlation between peak air conditioning load and solar 

radiation intensity (Bataineh & Alrifai, 2015). Mazharul et al., (2014) investigated the 

prospects of solar cooling in KSA, considering 21 different locations. The study 

revealed that most of the studied locations have solar radiation intensity more than 6-

kWh/m2/day in summer. They concluded that this is quite adequate for cooling 

applications. Hence, the deployment of solar energy to drive cooling systems is one of 

the most viable alternatives (Zhai et al., 2011).  

Sorption technologies (absorption, adsorption, and desiccant) are regarded as 

good alternatives for vapour compression cooling systems and can be driven by 

renewable energy such as solar (González-Gil et al., 2011). Solar absorption 

technology is experiencing more attention and commercial advancement compared to 

other sorption technologies (Allouhi et al., 2015). In addition, absorption technology 

is at the forefront in terms of the number of installations worldwide (Montagnino, 

2017). Techno-economic evaluation of different cooling systems; namely: vapour 

compression system, solar-driven absorption system and PV powered vapour 

compression system has been carried out (Al-Ugla et al., 2016). The results revealed 

that a solar absorption system is more economically feasible than a solar PV-vapour-

compression system.  

The deployment of solar-based thermal cooling systems is limited to available 

solar radiation hours. The intermittency of solar energy creates a mismatch between 

cooling needs and available energy supply. Energy storage is, therefore, necessary to 

minimize the mismatch and achieve extended cooling coverage from solar-driven 

cooling systems. Solar thermal energy storage (TES) is mainly classified into sensible, 

latent, or sorption/thermochemical heat.  

Sensible storage involves storing or extracting heat in a medium by heating or 

cooling, without phase change. The quantity of sensible heat stored is determined by 

the product of specific heat, temperature change, and amount of the storage material. 
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The sensible heat storage materials generally can be liquids (water, thermal oil, and 

liquid metals) or solids (metals, minerals, and ceramics) (Leonzio, 2017). Sensible heat 

storage is the most commonly used for solar thermal applications compared to other 

thermal energy storage options (Zhang et al., 2016a). However, it is associated with 

low storage density, a high rate of heat loss to the ambient and requires a large volume.  

In the latent thermal storage system, heat is stored and discharged at or near-

constant temperature and involves phase change of the storage materials (Mohamed et 

al., 2017). These materials are generally called phase change materials (PCM) and 

examples include paraffin, ice, fatty acids, and salts, etc. The latent heat storage has 

better storage density compared to sensible heat, but with several drawbacks, such as 

low thermal conductivity, phase segregation, corrosive behaviour, and thermal 

instability at high temperatures (Ibrahim et al., 2017).  

Sorption/thermochemical heat storage is achieved through the breaking of 

binding forces between the sorbent and the sorbate in form of chemical potential, 

where a large amount of heat can be stored (Yu et al., 2013). In other words, sorption 

thermal energy storage (STES) involves a reversible physio-chemical phenomenon 

where the energy is stored chemically. The energy is usually recovered upon supplying 

low-temperature heat (N’Tsoukpoe et al., 2009).  

There is increasing interest in sorption thermal energy storage (STES), 

especially in Europe (Cot-Gores et al., 2012; N’Tsoukpoe et al., 2009; Pinel et al., 

2011). This is due to the negligible heat losses associated with sorption storage because 

the heat is stored in the form of chemical potential. The high energy storage density of 

sorption storage is another good advantage over the sensible counterpart (Yu et al., 

2013). Depending on the priority, cooling and heating effects can be exploited from 

sorption storage. While sorption thermal storage systems offer such advantages of 

compactness and high energy storage density, there are still drawbacks, such as 

complexity in systems configuration, expensive investment, and weak heat and mass 

transfer capacity (for chemical reaction sorption) (Yu et al., 2013). 
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Turning back to the sorption cooling technologies, absorption chillers are more 

commercially available; constituting about 82% market distribution of the sorption 

technologies worldwide (Allouhi et al., 2015). Hence, coupling absorption energy 

storage with an absorption chiller while sharing the same working fluid worth further 

consideration and this is the focus of the present research. The term absorption energy 

storage (AES) is also referred to as liquid sorption storage (Scapino et al., 2017). The 

common working fluid used in commercial absorption chillers are H2O-LiBr (water-

lithium bromide) and NH3-H2O (ammonia-water) but with different configurations and 

applications. The NH3-H2O absorption chiller is more complicated as it requires an 

additional component called a rectifier used to separate droplet carryover of water from 

the solution after desorption. Chillers working with NH3-H2O produce sub-zero 

temperatures (Sun et al., 2012), hence, are widely used for refrigeration. In H2O-LiBr 

absorption chillers, water, which is environmentally safe, is used as the refrigerant, 

and this restricts the application to above 0 °C, hence, are mostly used for comfort 

cooling. The H2O-LiBr absorption chillers are already in the market as single-effect 

and double-effect. Single-effect absorption chillers require operating temperature in 

the range of 80 °C to 100 °C, achieving a thermal coefficient of performance (COP) 

of around 0.7 – 0.8 while double-effect chillers operate at higher driving temperatures 

up to around 180 °C, with COP up to 1.4 (Shirazi, et al., 2018). Integration of H2O-

LiBr absorption chiller with absorption energy storage is advantageous over NH3-H2O 

absorption chiller due to higher enthalpy of evaporation of water compared to other 

liquids (Li & Sumathy, 2000).     

1.2 Problem Statement 

Electric vapour compression systems have been used in many facilities for 

comfort cooling (Ibrahim et al, 2017). However, the contribution of these systems in 

the total energy consumption in buildings is very high, which causes additional stress 

in the generation and distribution of electric systems (Aman et al., 2018). One 

alternative for cooling is the solar air conditioning based on absorption technology 

(Hirmiz et al., 2018). The variability of solar energy is the main concern in the real 

deployment of solar-driven absorption chillers as an alternative for air conditioning 
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and refrigeration. Hence, energy storage is necessary to bridge the gap between the 

energy supply and its demand. Despite the significant number of research activities, 

prototypes, and products in the field of solar air conditioning, there is still a need for 

more innovative and technological advancement to make the process more efficient, 

economical, cost-effective, and sustainable. 

Although sensible heat storage has been widely used in the application of solar 

thermal energy, its law storage density, high thermal losses, and large storage volume 

requirement are the major drawbacks. Research focus on sorption storage is recently 

increasing due to its low heat losses and high capability of energy storage. Since 

absorption cooling systems are already commercial; constituting about 82% market 

distribution of absorption chiller technologies (Allouhi et al., 2015), coupling this 

matured technology with absorption energy storage deserves further attention and 

research focus. Mugnier & Goetz, (2001) emphasized that integration of sorption 

energy storage into continuous sorption systems seems to be realistic in the future 

based on their comparative study of different thermal storage options. Based on the 

literature survey, many studies on absorption energy storage focused on long-term 

(seasonal) heating applications. Hence, the use of this technology on existing 

absorption chillers for cooling is yet, not well investigated and this is the focus of the 

present study.  

The main goal of the present study is to address the problem of intermittent 

utilization of solar energy for air conditioning applications through proper system 

integration with absorption energy storage and driven by solar thermal energy. The 

problem is to model, simulate, and evaluate the performance and operational 

characteristics of a solar-assisted double-effect H2O-LiBr absorption chiller integrated 

with absorption energy storage. The integrated chiller-absorption energy storage 

system can provide simultaneous cooling and charging of the storage unit for the 

cooling application.   
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1.3 Research Gaps 

Absorption cooling systems are classified based on the working fluid type. 

These are water-lithium bromide (H2O-LiBr) and ammonia-water (NH3-H2O) 

absorption chillers. The two have different configurations as highlighted in the 

background, Section 1.1, with NH3-H2O chiller having more components and requires 

higher heat input. The current work is concerned with the integration of absorption 

energy storage with the H2O-LiBr absorption cooling system using the same working 

fluid. Based on the literature review on integrated H2O-LiBr chiller-absorption energy 

storage, the following research gaps are summarized: 

 There is no clear rule yet on sizing solar collector field for a given absorption 

chiller cooling capacity as indicated in CHAPTER 2, Section 2.2.5. 

 Several simulation-based studies related to solar-driven single-effect 

absorption chiller coupled with absorption storage are reported in the literature. 

However, to the best of the author’s knowledge, there are scarce attempts of 

integrating absorption storage with double-effect H2O-LiBr absorption chillers. 

Since a double-effect absorption chiller requires heat source at high 

temperature (up to about 180 oC), utilization of sensible hot storage at this 

temperature to drive the chiller during the period of non-available solar energy 

may suffer significant heat loss. Therefore, it is more suitable to integrate 

absorption energy storage with a double-effect absorption chiller. In addition, 

the double-effect absorption chiller has a better performance compared to a single-

effect chiller (COP in the range 1.0 – 1.4). Therefore, this study attempts to bridge 

the gap and open a new direction towards integrating double-effect chiller with 

absorption energy storage and evaluating its performance.  

 Economic evaluation of the integrated chiller-absorption energy storage is 

limited even for single-effect based systems. This needs to be performed to 

evaluate the economic potential of the solar cooling system integrated with 

absorption energy storage. 
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1.4 Research Objectives 

The objectives of the research are:  

i. To develop a thermodynamic model of a solar-assisted H2O-LiBr 

double-effect chiller integrated with absorption energy storage.   

ii. To conduct a detailed parametric analysis and optimization of the base 

solar-assisted system without the storage for the purpose of sizing the 

solar collector field. 

iii. To evaluate the performance and operational characteristics of the 

integrated solar-assisted double-effect absorption system with storage, 

such as cooling effect, COP, exergy efficiency, and energy storage 

density. 

iv. To study and evaluate the economic feasibility of the integrated solar 

system with absorption energy storage. 

 

1.5 Research Scopes 

The research work is conducted within the following scopes:  

i. Modelling of the solar-assisted double-effect H2O-LiBr absorption 

chiller with storage was carried out based on the first and second laws 

of thermodynamics (energy and exergy).  

ii. The model involves sub-models of solar collector, double-effect H2O- 

LiBr absorption chiller, and absorption energy storage. 

iii. The thermodynamic model is validated with experimental/catalogue 

data available in the literature. 

iv. The software package Engineering equation solver (EES) (Klein & 

Alvarado, 2017) is used for simulating the models in this study, similar 

to the following studies (Bagheri et al., 2019; Bellos et al., 2017; Qiao, 

2004). This has been discussed in detail under the ‘selection of software 

package’ in CHAPTER 3, Section 3.2. 
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v. Application of the studied system for cooling was investigated 

considering a reference commercial building and weather conditions of 

the Eastern region of Saudi Arabia as a case study.  

 

1.6 Significance of the Research 

Integrating absorption energy storage with the existing solar-driven absorption 

chillers can provide enhanced performance and sustainability in certain applications 

such as commercial and residential buildings. The storage volume requirement for 

absorption energy storage is less than half of that required for sensible heat storage 

according to the literature (Yu et al., 2013). Hence, integrating absorption energy 

storage to a solar driven absorption chiller system will save a reasonable portion of 

space, reducing the cost of the initial investment. Moreover, using H2O-LiBr 

absorption systems for the storage is more advantageous because water is used as the 

refrigerant, which is environmentally safe compared to ammonia (NH3). The published 

work from this research will contribute to the world's academic literature and will be 

a reference source for future research in this area.  
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