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ABSTRACT 

With global energy demand that keeps on increasing by 1.2% every year, CO2 

was predicted to increase as well. A short-term solution to reduce CO2 is to switch to 

carbon-neutral fuels and one of them is biodiesel. However, biodiesel’s higher 

viscosity and lower calorific value compared to pure petroleum diesel lead to higher 

brake specific fuel consumption (BSFC) especially for higher biodiesel blend. Even 

though there are many ways to reduce the BSFC, to quantify how much these ways 

manage to reduce it requires experiments that are costly and time consuming. At the 

same time, a limited simulation model can be used as the alternative to the 

experiments. Therefore, the objective of this research is to develop a model based on 

the Yanmar L70N6 engine using GT-Suite simulation software, to predict engine 

performance, combustion, and emissions when using biodiesel. The engine model was 

then used to simulate a high biodiesel blend with a variation of injection timing (IT), 

injection pressure (IP), and preheat biodiesel fuel (PF). In this research, experimental 

work was conducted to obtain baseline data for validating the simulation study based 

on the manufacturer’s default setting of IP (206 bar), IT (14 ºbTDC), and ambient 

temperature for fuel which is around 30°C. In the experiment, B10 and B30 were tested 

at four different speeds (1500, 2000, 2500, and 3000 rpm) with five different loads (3, 

5, 7.5, 10, and 11.5 Nm) at each speed.  Then, B30, B50, B70, and B100 were 

simulated with variations of IP (206, 220, 240, 260, 280, and 300 bars), IT (10, 12, 14, 

16, 18, 20, 22, and 24 ºbTDC) and PF (30, 40, 50, 60, 70, 80, and 100°C). For model 

validation, the engine speed was simulated at 2000 rpm with five different loads and 

comparison between the simulation and the experimental results showed less than 10% 

differences in the BSFC of B10 (8.8%) and B30 (5.1%). The results showed that by 

increasing IP to 300 bar, retarding IT to 12ºbTDC, and PF to 100ºC, reduction of the 

BSFC was recorded from 2.1% to 5.4% meanwhile CO2 emission reduction was 

recorded from 3.79% to 10.7% and by combining three optimized parameters, it helps 

reducing BSFC, and CO2 for all blends. Among all biofuels, B100 has the lowest 

BSFC (8.8%) and CO2 (22.3%) at 3000 rpm and 3 Nm load. In conclusion, the 

objective of the research, which is to develop a reliable simulation model and improve 

the performance of a high biodiesel blend, has been achieved successfully. 
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ABSTRAK 

Dengan permintaan tenaga global yang terus meningkat sebanyak 1.2% setiap 

tahun, CO2 diramalkan akan meningkat juga. Untuk mengurangkan CO2 dalam masa 

terdekat adalah dengan beralih kepada bahan api neutral karbon dan salah satunya ialah 

biodiesel. Kelikatan biodiesel yang lebih tinggi dan nilai kalori yang lebih rendah 

berbanding diesel petroleum membawa kepada penggunaan bahan api khusus brek 

(BSFC) yang lebih tinggi. Meskipun terdapat banyak cara untuk mengurangkan BSFC, 

tetapi ianya memerlukan pengujian yang mahal dan memakan masa. Sementara itu, 

model simulasi yang boleh digunakan sebagai alternatif kepada eksperimen juga 

adalah terhad. Oleh itu, objektif penyelidikan ini adalah untuk membangunkan model 

berasaskan enjin Yanmar L70N6 menggunakan perisian simulasi GT-Suite, untuk 

meramal prestasi enjin, pembakaran, dan pelepasan. Model tersebut kemudiannya 

digunakan untuk mensimulasikan biodiesel dengan variasi pemasaan suntikan (IT), 

tekanan suntikan (IP) dan bahan api biodiesel prapanas (PF). Dalam penyelidikan ini, 

kerja eksperimen dijalankan berdasarkan penetapan lalai pengeluar IP (206 bar), IT 

(14 ºbTDC), dan suhu ambien untuk bahan api iaitu sekitar 30°C. Dalam eksperimen, 

B10 dan B30 diuji pada empat kelajuan berbeza (1500, 2000, 2500 dan 3000 rpm) 

dengan lima beban berbeza (3, 5, 7.5, 10, dan 11.5 Nm) pada setiap kelajuan. 

Kemudian, B30, B50, B70 dan B100 disimulasikan dengan variasi IP (206, 220, 240, 

260, 280 dan 300 bar), IT (10, 12, 14, 16, 18, 20, 22 dan 24 ºbTDC ) dan PF (30, 40, 

50, 60, 70, 80 dan 100°C). Untuk pengesahan model, kelajuan enjin disimulasikan 

pada 2000 rpm dengan lima beban berbeza dan perbandingan antara simulasi dan 

keputusan eksperimen menunjukkan perbezaan kurang daripada 10% dalam BSFC 

B10 (8.8%) dan B30 (5.1%). Dengan meningkatkan IP kepada 300 bar, melambatkan 

IT kepada 12ºbTDC, dan PF kepada 100ºC, pengurangan BSFC direkodkan daripada 

2.1% kepada 5.4% dan pengurangan pelepasan CO2 direkodkan daripada 3.79% 

kepada 10.7 % dan ianya juga membantu mengurangkan BSFC, dan CO2 untuk semua 

bahan api. Di antara semua biofuel, B100 mempunyai BSFC (8.8%) dan CO2 (22.3%) 

paling rendah pada 3000 rpm dan beban 3 Nm. Kesimpulannya, objektif penyelidikan, 

iaitu untuk membangunkan model simulasi yang boleh dipercayai dan meningkatkan 

prestasi biodiesel yang berbeza, telah dicapai dengan jayanya.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

 

Global energy demand keep on increasing by 1.2% every year (Lešnik et al., 

2020). Increase on global energy demand, means that it might cause increment in 

greenhouses gases (GHG) too. Research conduct by Lešnik et al. (2020), shown that 

in European countries around 33% of all the energy demand were used for 

transportation sector, and around 81.7% of it were used for road transport sector. 

Therefore, many governments around the world are pushing their road 

transport sector especially in private transportation (i.e. cars) to be electrified 

(Shammut et al., 2019). Electrification of cars doesn’t stop only in Hybrid or Plug-in 

Hybrid electric vehicle, but it will push to all electric vehicle, whether it will be battery 

electric vehicle (BEV) or hydrogen powered electric vehicle. For Example, Britain are 

planning to ban new car sales solely powered by Gasoline or Diesel in 2030 and Hybrid 

vehicle will be banned in 2038 onwards. 

Study shown by Hu (2020) hydrogen might be another alternative than BEV, 

China already made plans for 2025 and 2030 for hydrogen fuel cell. The government 

of China sees hydrogen as future fuel. Even though hydrogen could be the future fuel, 

with the current price of manufacturing the fuel cell and hydrogen it self it can not 

compete with BEV. Hydrogen fuel cell needs to be cheaper and have a break through 

technologies to be able to compete against BEV and vehicle with internal combustion 

engine. 
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1.1.1 Challenge to Reduce Green House Gas 

To achieve greenhouse gases reduction in developing or under developing 

countries, the ICE automobiles manufacturer needs to do something to reduce the 

greenhouse gases. There are two ways to reduce it, the first one is to improve the 

combustion efficiency and the second one is switching to carbon neutral fuel. Recent 

study shown by Ayompe et al. (2021) and Wahyono Y (2020) for countries like 

Indonesia and Malaysia, it will be easier to switch to carbon neutral fuel such as 

biodiesel. Both countries are the major palm oil production in the world (Ayompe et 

al., 2021). Study shown by Khalid et al. (2017) using palm oil as biodiesel feedstock, 

considered as one of the best biodiesel feed stock. Palm oil derivatives also considered 

as one of the best biodiesel feed stock, one of them is waste cooking oil (Priyadarshi 

& Paul, 2018). Based on the fact mentioned above, it is easier for both countries to 

switch to biodiesel. As shown on Figure 1.1, using biodiesel will reduce greenhouse 

gases. 

 

 
Figure 1.1. GHG emissions comparison (Lešnik et al., 2020). 
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1.1.2 Biodiesel Challenges 

Using biodiesel to reduce greenhouse gases will be beneficial, because diesel 

engine is widely use in transportation sectors (Fridstrøm & Østli, 2021). Truck, bus 

and marine vehicle use diesel engine as their main propulsion. Therefore, usage of 

biodiesel as fuel will reduce greenhouse gases in transportation sector. Studies shown 

by C H et al. (2020), Abed et al. (2018) and Tziourtzioumis and Stamatelos (2017) 

shown clear benefits of using lower biodiesel blend as diesel engine fuel. There are 

clearly some reductions on greenhouse gases but, it might lead to reduce engine power 

output and tend to increase NOx emission. Power decrease mainly caused by lower 

calorific value compared to petroleum diesel. To maximize greenhouse gas reduction 

in diesel engine, there are several things to do such as using high biodiesel blend fuel 

and optimized the overall engine performance to reduce power gap between petroleum 

diesel fuel and biodiesel fuel but still maintain reduction of overall emission. 

 

Study shown by (Setiawan, 2019), using Mitsubishi 4D56 common-rail and 

biodiesel fuel between B0 to B50 using 100% load. It is clearly seen that higher 

biodiesel blend, tend to reduce power and torque output, especially on B50. Overall, 

B50 has the biggest power and torque reduction. B50 has 12.48% power reduction and 

9.74% torque reduction. 

 

 

1.2 Problem Statement 

Diesel engine widely use in buses and trucks, recent study already shown 

several benefits of using biodiesel as diesel engine fuel, there are still some drawbacks 

of using biodiesel. In example, the power and torque from the engine might decrease 

as biodiesel blend get higher due to lower calorific value and even though biodiesel 

reduce CO, HC and CO2, but NOx emissions tend to be higher than petroleum diesel 

when it could be compared. In terms of heat release rate and ignition delay, biodiesel 

tend to have later ignition delay and lower heat release rate as shown by Azad et al. 

(2019). From brief literature review, some of the method of preheat fuel, variation of 

injection timing and injection pressure still use lower biodiesel blend in example they 
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usually use between B20 and B50. Even though it is known that higher biodiesel blend 

decreasing engine performance, certain country for example Indonesia are pushing to 

increase biodiesel percentage to B100. Therefore, it is necessary to develop this 

research with higher biodiesel blend and optimize the performance, combustion and 

emissions of each biodiesel blend using variation of injection timing, injection pressure 

and preheat biodiesel fuel using GT-Suite software. 

 

 

1.3 Purpose Statement 

The purpose of this study is to determine the effect of using high biodiesel 

blend on diesel engines and optimize it with variation of injection timing, injection 

pressure and preheat biodiesel fuel and perform 1-D modelling simulation with GT-

Suite. Optimization is done to get the optimum power and torque but can reduce NOx 

emissions as well. 

 

 

 

1.4 Research Question 

1. How to simulate single cylinder diesel engine performance, combustion and 

emissions using high biodiesel blend from Palm Oil Methyl Ester? 

2. How to improve engine performance, combustion and emissions using high 

biodiesel blend from Palm Oil Methyl Ester? 

 

 

1.5 Objectives 

OBJ1. To develop a validated single cylinder diesel engine model for the prediction 

of engine performance, combustion, and emissions. 
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OBJ2. To improve engine performance, combustion and emissions of high biodiesel 

blend on diesel engine with variation of injection timing, injection pressure, 

preheat biodiesel fuel. 

 

1.6 Scope 

This research was conducted in a single cylinder diesel engine with B10 and 

B30 as baseline data. Then a model of a single cylinder diesel engine was developed 

in 1-D simulation software. The simulation was carried out in GT-Suite, GT-Suite was 

chosen because it has met international standards. 

 

Simulation was conducted in GT-Suite using B10 and B30 as baseline data and 

validation for the model. Biodiesel that was used is B50, B70, and B100. These 

biodiesel blends were chosen because the blend will soon be used in Indonesia. 

Currently Indonesia is using B30 as the diesel fuel and Indonesian government are 

ready to implement B40 by 2023. It is also known that Indonesian government are 

pushing to use B100 in the next 5 years. Palm Oil Methyl Ester (POME) will be used 

in this research because palm oil is the main biodiesel feedstock in Malaysia and were 

provided by Malaysia Palm Oil Board. Biodiesel from MPOB has already met the MS 

2008: 2008. In the future, palm oil might be substitute with waste cooking oil or other 

waste oil to avoid food fuel competition.  

 

Performance parameters were brake thermal efficiency, brake specific fuel 

consumption, brake mean effective pressure, brake power, and brake torque. The 

combustion parameter was heat rate release. Meanwhile, emissions parameters were 

CO2 and NOx. To improve the engine performance, variation of injection timing, 

injection pressure, preheat biodiesel fuel were used to explore the engine potential. To 

validate the result of simulation, validation was done by reviewing other papers and 

journals. 
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1.7 Expected Project Outcome 

This research is expected to overcome several issues of using higher biodiesel 

blend, especially for blend more than B50. Based on study by Churkunti et al. (2016), 

Said et al. (2018), Kaya and Kökkülünk (2020), and Lewiski et al. (2017) usage of 

high biodiesel blend in diesel engines leads to decrease power and torque output, but 

on the other sides CO2, HC, and CO is decreasing. Therefore, it is needed to do 

optimization of diesel engines to have optimum power and torque output while still 

reducing the overall emissions. Result of this project could bring some idea on 

developing next generation of diesel engines and might reduce the cost of conducting 

engine research by doing simulation works. 

 

 

 

1.8 Significant of Study 

After this research was completed, it was expected to help eliminate diesel 

engine vehicle users who feel the vehicle is underpowered due to the higher biodiesel 

blend used for their vehicle so that the implementation of biodiesel can be applied 

more broadly. 

 

This research does not require or require minimal changes to the components 

on the engine therefore, it could be easily implemented into the automotive industry. 

This study will not require any changes toward engine geometrical. One of the reasons 

is, generally, modern diesel vehicles already use ECUs in managing fuel injection to 

the combustion chamber. So, there is no need to modify engine components, by merely 

remapping the ECU it might increase the overall performance and emissions of the 

vehicle. 

 

With the end of this research, it is also hoped that the use of biofuels as a 

renewable energy, specifically in Malaysia and Indonesia can be further developed, 

especially in land transportation and in maritime which use diesel engine. 
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