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ABSTRACT 

Superbugs have troubled and challenged mankind since the development of 

antibiotics could not keep up with the rate of bacterial evolution. To avoid cross-

contamination, the emphasis should be placed on effective protection beginning with 

the surroundings. This study concentrated on the rapid sonochemical synthesis of 

photocatalyst sodium silicate loaded titanium dioxide and zinc oxide 

(TiO2@ZnO_Na2SiO3) composites as an antibacterial agent using short synthesis time 

and less hazardous solvents. Anatase was obtained as evidenced by X-ray diffraction 

(XRD) and high resolution transmission electron microscopy (HRTEM) analyses. 

Meanwhile, bonding present between the main element of the synthesized sample were 

confirmed by Fourier transform infrared spectroscopy (FTIR). Visible range was 

obtained for TiO2@ZnO samples while near ultraviolet range was obtained for 

TiO2@ZnO_Na2SiO3 samples as depicted by diffused reflectance ultraviolet-visible 

spectroscopy (DR UV-Vis). All TiO2@ZnO have lower recombination rate compared 

to ZnO whereas all TiO2@ZnO_Na2SiO3 samples have lower recombination rate 

compared to TiO2@ZnO (TiO2:ZnO = 1:0.1) composite as observed under 

fluorescence spectroscopy. All composites have irregular shape as noticed under 

scanning electron microscopy (SEM). Variation of ratios in TiO2:xZnO (x = 0.1, 0.2, 

0.3, 0.4, and 0.5) and TiO2@ZnO_yNa2SiO3 volume percent (y = 2, 4, 6, 8, and 10) 

were made to obtain the best ratio for highest antibacterial activity. TiO2@0.1ZnO was 

determined to be the optimal ratio by evaluating both physiochemical properties and 

antibacterial performance. TiO2@0.1ZnO had a bacteria killing efficiency (BKE) of 

78.68% against S. aureus and 99.99% against E. coli, due to its smallest crystallite size 

(55 nm), lowest band gap energy (2.68 eV), and lower recombination rate. The optimal 

ratio of TiO2@ZnO_10Na2SiO3 was obtained after further modification of 

previous ratio of TiO2@0.1ZnO with Na2SiO3, which achieved a lower band gap 

energy (3.10 eV) and the lowest rate of recombination amongst other variants, with a 

BKE of 81.36% against S. aureus and 99.99% against E. coli. As seen under HRTEM 

image and amorphous XRD pattern, the loading of Na2SiO3 outside of TiO2@ZnO was 

successful. Therefore, this study has successfully synthesised a new antibacterial agent 

TiO2@ZnO_Na2SiO3. 
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ABSTRAK 

‘Superbug’ telah mengganggu dan mencabar manusia disebabkan penemuan 

antibiotik tidak dapat mengikuti kadar evolusi bakteria. Tumpuan harus diletakkan 

pada perlindungan yang betul bermula dengan alam sekitar untuk mengelakkan 

pencemaran silang. Kajian ini tertumpu kepada sintesis sonokimia pesat fotomangkin 

TiO2@ZnO_Na2SiO3 sebagai agen antibakteria dengan menggunakan masa sintesis 

yang singkat dan pelarut yang kurang berbahaya. Anatase diperolehi seperti yang 

ditunjukkan oleh analisis pembelauan sinar-X (XRD) dan mikroskopi penghantaran 

elektron beresolusi tinggi (HRTEM). Kehadiran ikatan di antara TiO2@ZnO_Na2SiO3 

telah disahkan oleh spektroskopi infra merah transformasi Fourier (FTIR). Selain itu, 

panjang gelombang berhampiran cahaya nampak telah didapati untuk 

TiO2@ZnO_Na2SiO3 melalui spektroskopi pantulan terbaur ultralembayung-nampak 

(DR UV-Vis). Semua TiO2@ZnO mempunyai kadar rekombinasi yang rendah 

berbanding ZnO manakala semua TiO2@ZnO_Na2SiO3 mempunyai kadar 

rekombinasi yang lebih rendah berbanding TiO2@ZnO (TiO2: ZnO = 1: 0.1) seperti 

yang diperhatikan di bawah spektroskopi pendarfluor. Semua komposit mempunyai 

bentuk yang tidak sekata seperti yang diperhatikan dalam mikroskopi imbasan elektron 

(SEM). Variasi dalam nisbah komposit TiO2@xZnO (x = 0.1, 0.2, 0.3, 0.4, dan 0.5) 

dan TiO2@ZnO_yNa2SiO3 peratus isipadu (y = 2, 4, 6, 8, dan 10) telah dibuat untuk 

mengoptimumkan bahan ini. TiO2@0.1ZnO telah ditentukan sebagai nisbah optimum 

dengan menilai kedua-dua sifat fisiokimia dan prestasi antibakteria. Nisbah ini 

mempunyai kecekapan membunuh bakteria (BKE) sebanyak 78.68% terhadap S. 

aureus dan 99.99% terhadap E. coli, serta sifat fizikalnya seperti saiz kristal yang 

terkecil (55 nm), tenaga jurang jalur yang terendah (2.68 eV) dan kadar penggabungan 

semula yang lebih rendah. Nisbah optimum TiO2@ZnO_10Na2SiO3 diperolehi selepas 

pengubahsuaian dengan nisbah komposit TiO2@0.1ZnO. Ia mencapai tenaga jurang 

jalur yang lebih rendah (3.10 eV), kadar penggabungan semula yang paling rendah di 

antara varian lain dan BKE 81.36% terhadap S. aureus dan 99.99% terhadap E. coli. 

Seperti yang ditunjuk oleh HRTEM dan XRD, penempatan Na2SiO3 di bahagian luar 

TiO2@ZnO adalah berjaya. Oleh itu, kajian ini telah berjaya mensintesis agen 

antibakteria TiO2@ZnO_Na2SiO3 yang baharu.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

People were made aware of the existence of the virus by the epidemic of 

coronavirus disease, or COVID-19, which began in early 2020. Based on a survey poll 

done with citizens from 11 countries, the majority of them believe that protect 

themselves with good hygiene could prevent themselves from infected (Company, 

2020). In fact, dangerous microorganisms including bacteria, fungus, protozoa, and 

helminths are all around us in addition to viruses. (Madeline, 2010). Hospital-acquired 

infections caused by gram-positive and gram-negative bacteria had been infected more 

than 2 million people and contribute to 23,000 deaths or even more in developing 

countries. This also caused huge economic losses in terms of medicines, therapies, and 

maintaining a safe environment in the hospital that propitious to the growth of 

microorganisms (Bianca et al., 2022). Microbes tend to form biofilm on surface and 

they are 1000-fold more resistance towards antibiotics which poses a challenge on 

medical field (Hans-Curt et al., 2019). Some bacteria could survive at room 

temperature such as Mycobacterium tuberculosis and Escherichia coli for hours to 

weeks while some could even withstand extreme temperature and humidity like 

Staphylococcus aureus (Fazilet et al., 2019). Other than vaccines and medicines, some 

precautionary habits have been developed or educated to prevent or treat infectious 

diseases. 

There are few existing antibiotics target certain bacteria but overuse of the 

antibiotics has caused the emergence of ‘superbugs’, multi-drug resistance 

microorganisms. As a result, at least 700,000 deaths per year and was projected to rise 

to 10 million by the year 2050. Concerns arise when the creation of antibiotics does 

not reach the speed of microorganism mutation, especially in the hospital where 

vulnerable patients were in their recovering stages and could be danger by these 
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superbugs. New antibacterial materials that provide long-lasting, resilience and are 

effective in antibacterial activities are gaining interest (McCulloch et al., 2022; Zhe et 

al., 2022). Some cleaning products that contain alcohol, bleach or ammonium 

compounds could reduce almost 99.9% of the bacteria on household surfaces through 

disinfection however care should be taken when using these products to maximize 

their effect. Disinfectants or organic biocides usually provide short-term effects, 

harmful to human and the environment, and also, potentially build an environment that 

bacteria resist due to mutagenesis. Inorganic materials were found to be a more 

effective approach for antimicrobial (Maya et al., 2018; Zhe et al., 2022). The 

morphological and physicochemical properties of inorganic particles such as close 

interaction with microbial membranes had supported it to be an effective antimicrobial 

applications (Emmanuel et al., 2020).  

The protective coating, paint was innovated in ancient times as cave painting 

which is now the coating on walls of hospitals, commercial buildings, or houses. It is 

composed of pigments, resins, solvents, and additives that contribute to its color, 

adhesion to walls and functionalities (Khanna, 2015; Pilotek et al., 2005). The 

existence of microbes not only harms human but also leads to biodeterioration of 

building materials through their complex metabolic activities. For instance, organic 

acid produced by Fusarium oxysporum could deteriorate concrete and weaken its 

lifespan (Farooq et al., 2015). Of late, the development of antibacterial paint started to 

add organic or inorganic biocides as an additive in paint to reduce or control the effect 

caused by microbes including bacteria, fungi, and viruses. Organic biocides such as 

alcohols or quaternary ammonium do not last long and could be the nutrient source of 

microbes that attributes to their growth and developed resistance (Mian et al., 2019). 

Modification of physical properties including surface wettability and morphology had 

been done to discover a better photocatalyst as the additive in antimicrobial paint 

(Gibyoung et al., 2017; Sudipto Pal et al., 2016; Suélen et al., 2019).  

An example of inorganic biocides, titanium dioxide or titania (TiO2) is 

normally known to be non-toxic, highly durable with a high refractive index and low 

cost (Mantravadi, 2017; Prashant, 2002). In industries, TiO2 has been commonly used 

as a pigment in paint manufacturing, production of sunscreen, toothpaste, and coloring 
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agent (Philippe, 2018). Also, several metals and metal oxides such as Ag, Au, SiO2, 

and ZnO have been doped into/onto TiO2 in order to improve the photocatalytic 

efficiency of the materials (Trilok et al., 2019; Verma et al., 2020). Zinc oxide (ZnO) 

is easy to be synthesized, inexpensive, and is known to have a band gap energy of 3.37 

eV and is approved to use under recommended amount by Food and Drug 

Administration (Al-Tayyar et al., 2020). Rubber, paint, coating, concrete production, 

electronics, and cosmetics are examples of its industrial applications due to their 

diverse function from durability, antimicrobial, ultraviolet, and visible light resistance 

(Jinhuan et al., 2018). Previous studies documented that ZnO portrayed low toxicity 

and a good antimicrobial property due to hydrogen peroxide generated and cell 

membrane destruction by Zn2+ (Mastan et al., 2020). Similar to TiO2, ZnO also could 

perform antibacterial activities under light irradiation which its product reactive 

oxygen species (ROS) could not only attack bacteria but also the organic components 

in paint such as organic binder (Arekhi et al., 2018). 

Silicate binders like sodium silicate (Na2SiO3) was proven to be a good 

replacement for the organic binder that was able to cure by the evaporation of water 

(Gettwert et al., 1998; Parashar et al., 2003). It served to reduce the effects of 

photocatalysts on all organic components due to antibacterial activities that 

deteriorated the essential elements in paint. Sodium silicate is cheap, non-toxic, 

available, and has been used to support metal nanoparticles in many coating 

applications such as paint and face masks (Askwar et al., 2012; Bassi et al., 2018; 

Parashar et al., 2003; Sri Bala Jeya et al., 2022). It has stupendous advantages such as 

promoting photoactivities and pollutants absorption, however, the optimum dosage 

should be controlled to avoid some disadvantages such as agglomeration which 

retarded the photoactivities (Arekhi et al., 2018; Petržílková, 2019).  

Numerous synthesis methods such as sol-gel, hydrothermal, and pulsed laser 

ablation have been used to synthesize the photocatalyst. These synthesis methods, 

however, give certain undesired disadvantages such as the usage of toxic solvent, long 

synthesis duration, and small product yields. Thereby, sonochemical synthesis could 

be served as a promising approach to synthesizing materials with high homogeneity, 

phase purity, and small size (Chitra et al., 2018). 
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Due to the potential of both TiO2 and ZnO as photocatalysts and Na2SiO3 as 

the inorganic binder that makes them suitable as the antibacterial additive for paint. 

Therefore, this research aimed to synthesize a novel photocatalyst that involved the 

composites of TiO2 and ZnO (TiO2@ZnO) with the synergy of inorganic binder, 

Na2SiO3 as a durable antibacterial additive in paint. Although TiO2@ZnO 

photocatalysts have been widely developed, based on current knowledge, there are less 

research has combined inorganic binder Na2SiO3 in the photocatalyst composite of 

TiO2 and ZnO in paint application yet. On top of that, the efficient sonochemical 

synthesis method could help to synthesize the photocatalyst composite in shorter 

duration and much more environmental-friendlier experimental conditions. An attempt 

was made in this work to synthesize TiO2@ZnO_Na2SiO3 via the sonochemical 

method.  

1.2 Problem Statement 

Superbugs had alarmed people to create new resilience materials to deal with 

them. Despite the presence of antibiotics and disinfectants, inorganic materials are the 

potential to tackle this issue and thus produce a safe environment with safe surfaces. 

TiO2 and ZnO are examples of inorganic photocatalysts which have been proven for 

their efficient photocatalytic activity. Under light irradiation, the photogenerated 

electron hole pairs could generate reactive oxygen species (ROS) to kill bacteria.  

However, the broad bandgap of both TiO2 and ZnO at 3.2 eV only allows them 

to be active in the ultraviolet region. Moreover, both photocatalysts suffer from high 

recombination rates and short lifetime of charge carriers if without any modifications. 

It was suggested that the combination of them could reduce the recombination rate by 

improving the charge separation efficiency. The synergy of TiO2 and ZnO could also 

improve the performance of the composites under visible light. The durability of paint 

here could be also understood as the paint’s appearance long-lastingness. Short 

lifespan was observed when antibacterial paint did not optimize their poor durability 

caused by the deterioration of organic compounds such as binder and additives in paint 

that resulted from photocatalysis.  
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It was claimed previously that the combination of TiO2-ZnO provided 

enhancement on antibacterial performance for coating when the dopant ratio of ZnO 

increased. However, studies usually focused on antibacterial performance instead of 

the photodegradation issue of organic binder (Yusliza et al., 2020). Of late, inorganic 

binders such as lime, organosilane, silica sol-gel and water glass had been researched 

to provide the solution for the organic binder degradation issues. The presence of 

Na2SiO3 was believed to act as a barrier between TiO2@ZnO and organic components 

in paint which thus retards the photodegradation of organic components effectively. 

To ensure effectiveness, the optimum dopant ratio of ZnO and Na2SiO3 was studied in 

this work to achieve a balance between antibacterial and durability. 

 Some studies reported the various fabrication of TiO2@ZnO with different 

synthesis methods like sol-gel, hydrothermal and laser ablation requires a long 

synthesis duration, more toxic solvents, and expensive advanced instrument 

(Kalimuthu et al., 2018; Singh et al., 2020). In contrast, the efficient sonochemical 

synthesis method requires a remarkably shorter synthesis duration, a lesser toxic 

solvent used, and promote better material phase purity. Specifically, the fabrication of 

TiO2@ZnO modified with Na2SiO3 through the sonochemical synthesis method has 

not been reported. Furthermore, the physicochemical properties of synthesized 

products and their antibacterial performance against selected gram-positive and gram-

negative bacteria were worthy of exploration.  

In addition, the current reported antibacterial testing methods such as disk 

diffusion, agar well diffusion, or minimum inhibitory concentration were designed for 

antibiotics. These methods could not project the antibacterial performance of 

photocatalysts well as their antibacterial mechanism. Thus, an antibacterial testing 

method that evaluated the performance of the designed antibacterial agent through 

surface contact under light irradiation was suggested in this work.  

To top it off, despite different combinations of TiO2 or ZnO with Na2SiO3 have 

been researched before but the previous studies focused solely on antimicrobial 

applications of the coating. The combination of TiO2@ZnO with Na2SiO3 was 

therefore an interesting direction to research further to create an antibacterial additive 
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that was potent to have antibacterial function in paint applications. This work 

particularly researched the sonochemical synthesis of TiO2@ZnO with Na2SiO3 and 

its optimum dopant ratios of ZnO and Na2SiO3 for best surface contact antibacterial 

performance which has not been reported before.  

1.3 Objectives of Study 

The objective of this study were: 

i. To synthesize titanium dioxide doped with zinc oxide modified with 

sodium silicate (TiO2@ZnO_Na2SiO3) through sonochemical method; 

ii. To characterize the physical and chemical properties of 

TiO2@ZnO_Na2SiO3 samples; 

iii. To optimize the dopant ratio of ZnO and Na2SiO3 in 

TiO2@ZnO_Na2SiO3; 

iv. To evaluate the antibacterial properties of TiO2@ZnO_Na2SiO3.  

1.4 Scope of Study 

This research focused on synthesis, optimization of synthesis parameters, 

characterizations and evaluation of antibacterial activities of TiO2@ZnO_Na2SiO3. To 

achieve the first objective, all the samples were synthesized via sonochemical method. 

For this purpose, precursor of titanium isopropoxide was mixed with ethanol, acetic 

acid, propylene glycol and ultrapure water then subjected under sonication for minutes 

at room temperature. It was modified with purchased ZnO under same pot. Different 

ratio of ZnO to TiO2 was used to study their differences in antibacterial efficiency. 

Sodium silicate was mixed with TiO2@ZnO synthesized earlier in different amount 

with propylene glycol as dispersing agent and subjected under sonication for another 

round of minutes.  
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Afterwards, the surface morphology and particle size of synthesized samples 

was examined by using Scanning Electron Microscopy (SEM). The atomic structure 

of the samples was verified by High Resolution Transmission Electron Microscopy 

(HRTEM).  Meanwhile, crystalline phases and band gap energy of the samples were 

determined by X-ray Diffraction (XRD) and Diffuse Reflectance Ultra-Violet 

Spectroscopy (DR UV-VIS), respectively.  The functional group present within the 

samples were examined using Fourier Transform Infrared Spectroscopy (FTIR). 

Lastly, the recombination rates were defined by Fluorescence spectroscopy and 

elemental analysis was obtained from Energy Dispersive X-ray Spectroscopy (EDX).  

To achieve Objective 3, dopant ratios of ZnO and Na2SiO3 were controlled to 

optimize antibacterial performance of the designed photocatalysts. A series of 

TiO2@ZnO composites of Ti:Zn ratios 1:0.1, 1:0.2, 1:0.3, 1:0.4, 1:0.5 was prepared. 

The optimum TiO2-ZnO was chosen based on best physiochemical properties and 

antibacterial performance. Then, Na2SiO3 was added into the best TiO2@ZnO to form 

TiO2@ZnO:Na2SiO3 (2v/v%, 4v/v%, 6v/v%, 8v/v%, 10v/v% Na2SiO3) under same 

sonochemical synthesis method as aforementioned. 

The antibacterial performance of the synthesized composites was tested 

according to surface contact antibacterial test under visible light irradiation for 4 hours 

against gram positive bacteria Stapylococcus aureus and gram negative bacteria 

Escherichia coli under visible light irration. The bacteria killing efficiencies (BKE) of 

the samples were calculated.  

1.5 Significance of Study 

The invasion of bacteria and superbugs has brought the concern to people and 

hence innovations are needed urgently to prevent and protect their life. Otherwise,  

infectious diseases will disrupt of daily activities, then a raising in the death rate which 

in turn affects the economy of a nation. Paint as a coating is potential to be researched 

more on its antimicrobial properties so that it could hinder the growth of bacteria on it 

which might turn it into a ‘home’ for microorganisms. Cross-contamination might 
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occur when humans get in touch with the microbial on the wall and then to other areas 

which humans contacts often. Therefore, it is always better to reduce the chances of 

getting an infection instead of relying on antibiotics which might not be effective after 

the mutagenesis of microbes. If microbes are not removed from the surface, they might 

deteriorate the concrete and attributes to the weakening of coating durability.  

As a pigment within the paint, titanium dioxide and zinc oxide are well-known 

for their potential as a photocatalyst and effective antimicrobial properties whereas the 

combination of these photocatalysts not only could kill bacteria but also slowed the 

recombination rate through the formation of nanoheterojunction which boost up the 

photocatalytic efficiency. Inorganic binder, sodium silicate had opened up new 

opportunities as an alternative for organic resin binder which then makes a more 

durable paint that resists the attacks from reactive oxygen species which subsequently 

deteriorate the paint, causing a shorter lifespan.  

An environmental-friendlier synthesis method such as the sonochemical 

method that uses less toxic solvent and gives good phase purity under low temperatures 

could be explored for novel photocatalyst design. Efficient and effective sonochemical 

method helps to synthesize photocatalysts in a shorter time frame and could be applied 

to mix and disperse paint components, forming paint coatings with different properties. 

Hence, this study could explore the invention of antibacterial additives with efficiency 

and durability that not only could enhance the fundamental knowledge of efficient 

sonochemically synthesized material and coating field but also protect the human 

being and their daily lives by building a safe environment.  
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