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ABSTRACT 

In the past, digital maps were created using a photogrammetry framework 

where the Unmanned Aerial Vehicle (UAV) would collect the aerial images; then, 

images would be post-processed through commercial software using the Structure 

From Motion (SFM) method. Creating digital maps has been helpful for remote 

sensing, especially for studying and observing the terrain. However, one 

disadvantage of this method of creating digital maps is that it consumes more 

computational time. Although commercial solutions are widely used, they are not 

suitable in disaster-affected areas because of the long computational time. Disasters 

such as earthquakes, floods, and landslides would happen without prior notice, and 

areas affected by such a disaster would suffer heavy damage. In such a situation, the 

authorities need an instant digital map to observe the affected areas and decide. 

Hence, this study focuses on accelerating the creation of a digital map using the real-

time image stitching method. Image stitching itself can be divided into feature-based 

and region-based methods. This study uses a feature-based image stitching method to 

accelerate the map creation process. This research formulated an image stitching 

algorithm to stitch aerial images in real-time. A processing speed of 37 frames per 

second was achieved. The image stitching algorithm was optimized to stitch large 

areas captured using the multi-grid flight path; a processing speed of 2 frames per 

second was achieved. Finally, an image selection algorithm was introduced to 

improve the stitch image quality by 14% and the computational time by 2-fold for a 

multi-grid flight path. In conclusion, the developed image stitching algorithm can 

reduce the computational time needed to produce a digital map at the disaster site. 

Although the developed image stitching algorithm can stitch faster with improved 

quality, more testing needs to be conducted using aerial images from disaster sites.      
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ABSTRAK 

Pada masa lalu, peta digital dihasilkan menggunakan kerangka fotogrametri 

dengan menggunakan Unmanned Aerial Vehicle (UAV) untuk mengumpul gambar 

aerial; kemudian, gambar tersebut akan diproses melalui perisian komersial 

menggunakan kaedah Structure From Motion (SFM). Penghasilan peta digital 

membantu remote sensing terutama untuk kajian dan pemerhatian kawasan. 

Bagaimanapun salah satu kelemahan dengan kaedah ini dalam menghasilkan peta 

digital adalah ianya mengambil masa pemprosesan yang lebih. Walaupun 

penyelesaian komersial digunakan secara meluas, ia tidak sesuai digunakan untuk 

kawasan yang dilanda bencana kerana masa pemprosesan yang lama. Bencana 

seperti gempa bumi, banjir, dan tanah runtuh berlaku tanpa amaran awal, dan 

kawasan yang terkesan dari bencana tersebut akan mengalami kerosakan yang besar. 

Dalam keadaan seperti itu, pihak berkuasa memerlukan peta digital segera untuk 

memeliti kawasan terkesan dan membuat keputusan. Oleh itu, kajian ini menumpu 

kearah penghasilan peta digital pantas menggunakan kaedah berasaskan 

pencantuman imej masa-nyata. Kaedah pencantuman imej itu sendiri dapat 

dibahagikan kepada kaedah berasaskan ciri dan berasaskan wilayah. Kajian ini 

menggunakan kaedah pencantuman imej berasakan ciri untuk mempercepatkan 

proses penghasilan peta. Kajian ini merumus algoritma pencantuman imej untuk 

mencantum imej aerial dalam masa-nyata. Masa pemprosesan 37 bingkai sesaat telah 

dicapai. Algoritma pencantuman imej telah dioptimumkan untuk mencantum 

kawasan luas yang diperolehi menggunakan laluan penerbangan pelbagai grid; 

kelajuan pemprosesan 2 bingkai sesaat telah dicapai. Akhirnya, algoritma pemilihan 

imej telah diperkenalkan untuk meningkatkan kualiti imej cantuman sebanyak 14% 

dan meningkatkan masa pemprosesan sebanyak 2 kali ganda untuk laluan 

penerbangan pelbagai grid. Kesimpulannya, algoritma pencantuman imej yang 

dibangunkan dapat mengurangkan masa pemprosesan untuk menghasilkan peta 

digital di tapak bencana. Walaupun algoritma pencantuman imej yang dibangunkan 

dapat mencantum imej pada kadar yang lebih pantas dengan kualiti yang 

dipertingkatkan, lebih banyak ujian perlu dijalankan mengunakan imej aerial dari 

tapak bencana.    
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

A disaster is an unpredicted event that causes significant damage in terms of 

loss of life, destruction, and drastic environmental changes; this event can be divided 

into natural or man-made (Restas, 2015; Sathish Kumar et al., 2020). Natural 

disasters include earthquakes, floods, hurricanes, and landslides; man-made disasters 

are construction accidents, nuclear leaks, and explosions (Sathish Kumar et al., 

2020). A disaster can be scaled into different scales depending on the affected area, 

affected population, and spreading time (see Figure 1.1 and Figure 1.2) (Restas, 

2015). Between 2002 to 2011, about 107,000 people were killed, and 268 million 

people were victims of natural disasters worldwide annually (Tanzi et al., 2014). 

Hence, when a natural disaster occurs, it is necessary to quickly and effectively 

organize a disaster management operation to reduce life and economic losses; 

without such management, the disaster victims will undergo drastic losses (Sathish 

Kumar et al., 2020; Tanzi et al., 2014).   
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Figure 1.1 From the year 1900 to the year 2010, people died due to natural 

disasters. Source: Our World in Data https://ourworldindata.org/natural-disaster. 

 

Figure 1.2 Death people annually due to natural disasters. Source: Our World in 

Data https://ourworldindata.org/natural-disasters. 

  

https://ourworldindata.org/natural-disaster
https://ourworldindata.org/natural-disasters
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In the past, digital maps for remote sensing and surveillance are created using 

photogrammetric workflow (a process of developing a three-dimensional (3D) model 

using two-dimensional (2D) images), which uses the structure from motion (SFM) 

method (a technique of estimating the camera poses based on the 2D image) (Fanta-

Jende et al., 2020; Hein et al., 2019). The aerial images are acquired using an 

Unmanned Aerial Vehicle (UAV) in the photogrammetry workflow. Then the aerial 

images undergo post-processing using the commercial software after the UAV lands 

(Hein et al., 2019).  Much commercial software (Pix4d, Agisoft Metashape, and 3D 

Survey) was developed using the SFM method for creating a digital map (Fanta-

Jende et al., 2020); the disadvantage of the SFM method is that it has a prolonged 

computational time (see Table 1.1) (Bu et al., 2016; Hein et al., 2019). Besides, the 

commercial software is imposed with charges once the free trial period has ended 

(see Table 1.2) (Alidoost and Arefi, 2017).  

Since the authorities require an instant digital map to decide, the traditional 

method is unsuitable for the response stage. As a solution, image stitching has been 

used to provide a faster digital map (see Figure 1.4) (Fanta-Jende et al., 2020; Hein et 

al., 2019). Image stitching combines overlapping images with similar features into 

one large image (see Figure 1.4) (Abdelkrim et al., 2018; Nocerino et al., 2020; 

Vaidya and Gandhe, 2018; Wang and Yang, 2020). An instant observation image is 

needed for the authorities to decide and calculate the risk in the response stage. 

However, the commercial software cannot meet the computational requirement. 

Hence, in this research, the image stitching method will be deployed to produce a 

fast observation image for disaster management authorities.   
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Table 1.1 Comparison between commercial software and image stitching 

proposed by (Bu et al., 2016) .Note: The computational time is in minutes. 

 

Sequence Id Frames Keyframes Bu & Co-workers Pix4D Photoscan 

1 28493 337 15.84 107.05 153.62 

2 18869 395 10.49 52.62 334.73 

3 19371 482 16.44 83.75 683.98 

4 13983 457 9.32 140.08 532.38 

5 12744 471 8.49 127.73 563.57 

6 4585 648 2.39 154.77 999.67 

7 16969 406 11.31 132.07 360.70 

8 16292 221 10.86 72.13 145.52 

9 14776 393 10.36 102.83 462.32 

Table 1.2 Comparison between trial duration between commercial software 

(Alidoost and Arefi, 2017) 

Software Trial License Validation (day) 

3D Survey 15 

Agisoft 30 

Pix4Dmapper 7 

SURE 4 

 

 

Figure 1.4 Process of Image stitching (registration, reprojection, and stitching). 

„H01‟ and „H12‟ refer to homography estimation (Ghosh and Kaabouch, 2016). 
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1.2 Problem Statement  

Currently, digital maps are generated using commercial software such as 

Pix4D and Agisoft(Fanta-Jende et al., 2020). This commercial software generates a 

digital map using the photogrammetry framework; one drawback of using the 

commercial software is that it consumes prolonged computational time depending on 

the area size and resolution of aerial images (Bu et al., 2016; Hein et al., 2019). Since 

the commercial software needs a prolonged time to generate a digital map, it is not 

suitable to be deployed in disaster areas because at the disaster site; the disaster 

management authorities require a real-time digital map or observatory image to plan 

the intervention during the response stage (Bu et al., 2016; de Lima et al., 2020; 

Fanta-Jende et al., 2020). Hence, to solve this problem, Bu and co-workers suggested 

deploying the image stitching algorithm to generate the digital map faster (see Table 

1.1) (Bu et al., 2016).  

Although many studies have been conducted on the photogrammetry 

workflow, scant attention has been given to producing a faster digital map using the 

image stitching method. A few works have been conducted to create digital maps 

using the image stitching method.  

Since aerial image stitching is still an emerging research niche, previous work 

has identified a few gaps. Fanta and co-workers established a near real-time image 

stitching algorithm, but the authors found that stitch quality and processing time need 

improvement (Fanta-Jende et al., 2020). A similar problem was faced by Hein and 

co-workers, where the quality of the stitch map needs to be improved by improving 

the stitch quality and positional accuracy by geo-referencing (Hein et al., 2019).  De 

Lima and co-workers created a real-time image stitching algorithm; however, the 

algorithm consumes more time with the high-resolution image (4MP) in real-time 

(De Lima and Martinez-Carranza, 2017). Besides, the authors also suggested that 

real-time image stitching can be improved by incorporating GPS coordinates in 

image registration to avoid drift error(change of flight trajectory due to crosswind) 

(de Lima et al., 2020).   
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By reviewing the gaps in the literature, this research will focus on developing 

an algorithm to stitch aerial images in real-time and improve the visual quality of 

stitched images to aid the disaster management authorities. Real-time image 

processing is the image processing speed equivalent to the source (video) speed. For 

example, if the video has 25 fps, each frame must be processed within 0.04s to 

achieve real-time speed (Burgos-Artizzu et al., 2011). Disaster management 

authorities can plan the intervention route faster by deploying a real-time image 

stitching algorithm. 

1.3 Purpose Statement 

This research aims to formulate an algorithm to stitch aerial images faster and 

improve the stitch quality.  A faster image stitching algorithm will be developed to 

reduce computational time. The quality of the stitched image will be assessed and 

improved to optimize the quality. 

1.4 Objectives 

This research aims to reduce the computational time of creating an 

observatory image for disaster-affected areas.   

1. To formulate an algorithm for real-time aerial image stitching.   

2. To optimize the algorithm to stitch aerial images in a multi-grid flight path. 

3. To quantify the visual quality of the stitched image and optimize the quality 

of the stitched image.  
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1.5 Scope and Limitation 

The research focuses on feature-based image stitching. Hence image stitching 

requires areas rich with features (a feature is a distinct pattern in an image, such as 

corners, blobs, and edges)(Szeliski, 2007; Wang and Yang, 2020). The maximum 

distance covered in this research is 150m only from the UAV lab at UTM due to the 

limitation of the communicational link between the UAV and the ground station. In 

addition, the mobility of the ground station is limited; hence the research is 

conducted at a 150m distance radius from the UAV lab. Besides rules from the Civil 

Aviation Authorities of Malaysia (CAAM), rules limit that UAVs should not fly 

beyond the visual line of sight (CAAM: UAS 02/2019 

(https://www.caam.gov.my/wp-content/uploads/2021/03/CAAM-

Drone_Requirement_2020.pdf)). 

On the other hand, a maximum altitude of 120m will only be tested in this 

research because CAAM does not allow the flight of UAVs more than 400 feet 

(121.92m) from the earth‟s surface. A commercial UAV (DJI mini 2) was utilized in 

this research because the custom-made drone requires a special permit to fly. In 

addition, UTM is located in a no-fly zone due to the presence of Senai International 

Airport.  

Besides, this research focuses on capturing aerial images by facing the 

camera at the nadir line to maintain a constant Ground Sample Distance (GSD) (not 

including terrain relief). In the research, only one camera is used for real-time image 

stitching. This research does not include multi-camera image stitching because of 

increased payload and cost. Latency by communicational link is not covered in this 

research because the speed and strength of the communicational link depend on the 

distance from the cellular tower. Besides, this research intends to speed up the image 

processing time. Since this research intends to create an observation image for the 

authorities, geo-referencing and geo-rectification are omitted. 

  

https://www.caam.gov.my/wp-content/uploads/2021/03/CAAM-Drone_Requirement_2020.pdf
https://www.caam.gov.my/wp-content/uploads/2021/03/CAAM-Drone_Requirement_2020.pdf
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In addition, the OpenCV library in a python environment was deployed to 

formulate the algorithm in this research. The OpenCV library was deployed because 

it was equipped with tools for image processing. Besides, the python environment 

was able to import the OpenCV library.  

1.6 Research Contribution   

A real-time image stitching algorithm for observing the disaster-affected 

areas was developed to solve the computational complexity in commercial software. 

The significance and contribution of this research are listed :   

1. Developed an image stitching algorithm for disaster-affected areas.  

2. Proposed an image selection algorithm to optimize the visual quality of stitch 

images.  

3. Stitched aerial images with a multi-grid flight path at a processing speed. 

1.7 Significance of Research  

This research developed a faster observation image through the image 

stitching method; this would help the authorities, such as NADMA, to make the 

decision easier and faster. Since the visual quality of the observatory image was 

improved, it helped the authority's decision-making process more manageable. The 

outcome of this research can also be applied in other fields, such as forest monitoring 

and surveillance, by easing the forest inventory update process. In addition, the 

proposed method will be helpful for a country like Malaysia (especially the Kelantan 

river basin)  since frequent flooding occurs due to monsoon winds and heavy rains  

(Chan et al., 2016).   In addition, this research is multidisciplinary by consisting of 

many fields together (computer vision, drone technology, and remote sensing) 
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1.8 Research Flowchart 

The following is the workflow of the research to achieve the respective 

objective.  

 

Figure 1.5 Flowchart representing the workflow to achieve the respective 

objective. 

1.9 Organization of Thesis 

The organization of the thesis are as follows: 

(a) Chapter 2: The material for image stitching, algorithm, and quality 

assessment of stitched images will be discussed in detail using prior work 

from other authors as a reference in this chapter.  

(b) Chapter 3: A detailed discussion of the image stitching methodology will be 

discussed in this chapter. This section will be subdivided into a research 

procedure flowchart, experimental setup, and research timeline. 
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(c) Chapter 4: In this chapter, a discussion on the results from the image stitching 

algorithm for a straight-line trajectory are discussed in depth. Then, the 

results from the image stitching algorithm for the multi-grid flight path are 

discussed in this chapter. 

(d) Chapter 5: The conclusion and future works for the research are discussed in 

this chapter. 
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