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ABSTRACT 

An intensive development of medical technologies and surgical procedures led 

to placed new and more stringent requirements on the biomaterials used. Among these 

materials are shape-memory alloys (SMAs) like Ti-Ta. Despite the excellent 

biocompatibility of Ti-Ta SMAs, certain issues like corrosion behaviour and poor 

tribological properties limit their widespread applications as biomedical implants 

which need to be resolved. Thus, this research aimed to investigate microstructures, 

corrosion, and tribological properties effect of coating materials on porous Ti-Ta SMA 

through electrophoretic deposition method (EPD). Based on this fact, some multi-

walled carbon nanotubes (MWCNT) and polyetheretherketone, PEEK/MWCNT-

coated porous Ti-30 at.%Ta SMAs were fabricated. These SMAs were prepared using 

mechanical alloying followed by microwave sintering. Electrophoretic deposition 

(EPD) at various applied voltages were performed to coat these SMAs using CNT (at 

concentration of 3 mg/mL) and MWCNT/+ PEEK (at ratio of 3 mg/mL of CNT to 3, 

4.5, 6, and 7.5 mg/mL of PEEK). The microstructures of both uncoated and coated 

SMAs were characterized using scanning electron microscopy (SEM) equipped with 

energy dispersive X-ray (EDX), and X-ray diffractometry (XRD). The pull-off test 

was used to determine the adhesion of the coating, and water contact angles were 

measured to evaluate the surface wettability, the roughness and micro-hardness of the 

surfaces were also evaluated. Potentiodynamic polarization and immersion tests (in 

Kokubo simulated body fluid) were performed to determine the corrosion behavior of 

the uncoated and coated SMAs. A linear reciprocating wear test (ball on flat) was 

conducted to record the tribology behavior of the uncoated and coated SMAs. The 

EDX and XRD results showed the successful formation of MWCNT and 

MWCNT/PEEK coating on the surface of Ti-30 at.% Ta SMAs. The adhesion strength 

of the MWCNT layer (highest value of 7.27 MPa at 40 V) was weaker than that of the 

MWCNT/PEEK layer (maximum 31.29 MPa for  6P85V). The wettability of MWCNT 

coated surface was less than both MWCNT/PEEK coated and uncoated ones. The 

hardness of MWCNT/PEEK-coated samples was decreased with the increase of EPD 

voltages and PEEK contents. The best corrosion resistance for the MWCNT-coated 

samples was achieved at 40 V and for MWCNT/PEEK-coated specimens the best 

value was observed at higher voltage and PEEK concentration. The wear resistance of 

the coated samples was increased with the increase of EPD voltages and PEEK 

concentration, wherein the highest value was obtained for the specimen prepared at 85 

V with 6 mg PEEK. Therefore, the present fabrication of SMAs, coating and 

comprehensive performance evaluation of the MWCNT/+PEEK-coated SMAs may 

constitute a basis for the development of potential biomaterials with enhanced 

biocompatibility desired for hard tissue engineering and implantations.   
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ABSTRAK 

Perkembangan intensif teknologi perubatan dan prosedur pembedahan telah 

meletakkan keperluan baru dan lebih ketat pada biobahan yang digunakan. Antara 

bahan ini ialah aloi memori bentuk (SMAs) seperti Ti-Ta. Walaupun biokeserasian 

SMA Ti-Ta yang sangat baik, isu-isu tertentu seperti tingkah laku kakisan dan sifat 

tribologi yang lemah telah menghadkan aplikasinya yang meluas sebagai implan 

bioperubatan yang mana perlu diselesaikan. Oleh itu, tujuan penyelidikan ini adalah 

untuk menyiasat kesan mikrostruktur, kakisan dan sifat-sifat tribologi bahan salutan 

pada aloi memori bentuk (SMA) berliang melalui kaedah pemendapan elekroforetik 

(EPD). Berdasarkan fakta ini, beberapa nanotiub karbon berbilang dinding (MWCNT) 

dan polietereterketon, PEEK/MWCNT disalut pada Ti-30 at.%Ta SMA. SMA ini 

disediakan menggunakan pengaloian mekanikal diikuti dengan pensinteran 

gelombang mikro. Kaedah pemendapan elektroforetik (EPD) telah digunakan pada 

pelbagai voltan untuk menyalut SMA ini menggunakan CNT (pada kepekatan 3 

mg/mL) dan MWCNT/+ PEEK (pada nisbah 3 mg/mL CNT kepada 3, 4.5, 6, dan 7.5 

mg/mL PEEK). Mikrostruktur kedua-dua SMA yang tidak bersalut dan bersalut 

dicirikan menggunakan mikroskop imbasan elektron (SEM) yang dilengkapkan 

dengan serakan tenaga sinar-x (EDX) dan pembelauan sinar-X (XRD). Ujian tarik- 

keluar digunakan untuk menentukan lekatan salutan, dan sudut sentuhan air diukur 

untuk menilai kebolehbasahan permukaan, kekasaran dan kekerasan mikro permukaan 

juga dinilai. Ujian polarisasi dan rendaman potensiodinamik (dalam cecair badan 

simulasi Kokubo) telah dilakukan untuk menentukan kelakuan kakisan SMA yang 

tidak bersalut dan bersalut. Ujian haus salingan linear (bola di atas rata) telah 

dijalankan untuk merekodkan tingkah laku tribologi SMA yang tidak bersalut dan 

bersalut. Keputusan EDX dan XRD menunjukkan kejayaan pembentukan salutan 

MWCNT dan MWCNT/PEEK pada permukaan Ti-30 pada.% Ta SMA. Kekuatan 

lekatan lapisan MWCNT (nilai tertinggi 7.27 MPa pada 40 V) adalah lebih lemah 

daripada lapisan MWCNT/PEEK (maksimum 31.29 MPa untuk 6P85V). 

Kebolehbasahan permukaan bersalut MWCNT adalah kurang daripada kedua-dua 

MWCNT/PEEK bersalut dan tidak bersalut. Kekerasan sampel bersalut 

MWCNT/PEEK telah berkurangan dengan peningkatan voltan EPD dan kandungan 

PEEK. Rintangan kakisan terbaik untuk sampel bersalut MWCNT dicapai pada 40 V 

dan untuk spesimen bersalut MWCNT/PEEK, nilai terbaik diperhatikan pada voltan 

dan kepekatan PEEK yang lebih tinggi. Rintangan haus sampel bersalut meningkat 

dengan peningkatan voltan EPD dan kepekatan PEEK, yang mana nilai tertinggi 

diperoleh untuk spesimen yang disediakan pada 85 V dengan 6 mg PEEK. Oleh itu, 

fabrikasi SMA sekarang, salutan dan penilaian prestasi komprehensif SMA bersalut 

MWCNT/+PEEK mungkin menjadi asas untuk pembangunan biobahan berpotensi 

dengan biokeserasian dipertingkat yang dikehendaki untuk kejuruteraan tisu keras dan 

implantasi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background  

At present times, with the rapid advancement of technology, socio-economic 

conditions, and the modernized lifestyle of people worldwide, high-performance 

biomedical devices became demanding for personalized applications, especially for 

the elderly with ever-increasing failure of bones and teeth tissues. Generally, the hard 

tissues in the human body are more susceptible to failure, causing permanent 

paralyzing and bedridden. The joints of elderly people are subjected to fast 

deterioration due to aging-related physiological conditions, biological processes, 

accidents, and degenerative diseases. The patient with such ailments may become 

impaired throughout their life, leading to unbearable pain and or even loss in the 

function of certain organs unless inhibited.  To overcome these problems, scientists 

and engineers have constantly been putting effort into getting high-performance 

implants. Researchers put considerable effort into achieving a proper biomedical 

solution to replace the damaged tissues caused by various degenerative diseases like 

arthritis and accidents. Through repeated studies over the years, it has been realized 

that various biomedical implants can be the potential solution to the tissue breakdown-

related problems in different parts of the human body, wherein surgical implantation 

of biomedical implants of customized shapes can help to revive the tasks of the 

defective structures with functional compromise [1, 2].  

Generally, biomedical implants are made of metallic, ceramic, and polymeric 

biomaterials. Biomaterials are particular kinds of biocompatible and bioactive 

materials that can be used and adapted customized for diverse need-based medical 

applications. The biomedical implants made of metallic materials are estimated to be 

approximately 70 to 80%, and the market consequence rate stays at around 20 to 25%. 

Certainly, these materials are exceptionally valuable for reconstructing failed hard 
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tissues in humans [3, 4]. Numerous factors can affect the metallic materials' suitability 

for bone replacement or fixation components such as screws, pins, and plates. First, 

the biomaterial must have excellent osteointegration ability with the bone cell, playing 

a significant role in the fixation or strength of the bonding between the implant and the 

bone. Second, releasing dangerous metallic ions towards the body system that may 

lead to allergic and carcinogenic influences must be minimized. Third, the difference 

or mismatch of the strength between bone and metallic or alloy component used as 

implant should be minimal, wherein such mismatch may encourage the effect of stress-

shielding, subsequently the degradation of bones [5]. 

The metallic biomaterials such as Co-Cr, stainless steel, commercially 

available pure titanium (CP Ti), and its alloys have emerged as potential implants due 

to their superior mechanical characteristics. Essentially, the toughness and strength of 

these biomaterials are indispensable safety issues under various load-bearing 

conditions, determining their long-term durability and performance. The evolution 

must be achieved based on metallurgy, thus resulting in alloys with a serviceable 

equilibrium between the corrosion resistance and mechanical attributes. In this regard, 

titanium and its alloys are superior because titanium and its alloys meet the materials 

implantation requirements compared to other materials competing. Therefore, Ti-

based alloys are preferred for most biomedical applications [6, 7]. Yet, the mechanical 

traits of CP Ti cannot meet the biomaterials requirements in some situations where 

high strength is required, like replacement of hard tissue or below intense wear uses 

[8]. To surmount this limitation, the CP Ti was replaced with Ti-based alloys (α + β-

type) called Ti-6Al-4V alloy [9]. 

Despite its many interesting mechanical attributes, the Ti-6Al-4V alloy made 

from cytotoxic elements like V and Al suffers from some issues when implanted within 

the human body, where the vanadium has an a toxicity on gastrointestinal, reproductive 

and urinary system, and its effect on fertility and the malformations of foetuses [10]. 

To overcome the toxicity effects of V on humans, the shape memory alloys (SMAs) 

of Ti-Nb and Ti-Ta based have been introduced [5]. Both alloys show outstanding 

metallurgical and mechanical characteristics comparable to those of Ti-6Al-4V alloys. 

The Ti-Nb [11, 12] and Ti-Ta-based alloys [13] with certain β-Ti alloys display both 
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shape memory effect (SME) and superelasticity (SE) [14]. Furthermore, the critical 

stress of  Ti-Nb alloys is very low for a slip, leading to difficulty obtaining a favorable 

SME [12]. 

Conversely, the Ti–Ta alloys owing to their excellent SME, low modulus of 

elasticity, and high corrosion resistance, are preferred for various biomedical 

applications [13, 15-18]. For load-bearing orthopedic applications, the element 

Tantalum (Ta) is confirmed to be bioactive and thus recommended as a promising 

metal for various novel studies (for example, in vivo, in vitro, and clinical applications) 

[19]. Tantalum is hard, ductile, and possesses good apposition to human bones with 

strong resistance against chemical attacks or corrosion. It can directly form a layer of 

passive oxide with excellent adherence for metal, simplifying the bone in-growth 

below in vivo conditions through the development of bone-like apatite and thus 

encouraging soft- and hard -tissues adhesion [20, 21].  

In recent years, numerous studies have been conducted to accurately determine 

the young’s modulus of human bone, indicating its much lower value than some α + 

β-type and α-type Ti-based alloys [4, 5, 7]. This observation may lead to stress 

shielding effects [5] desirable for an effective biomedical implant. Meanwhile, diverse 

porous materials have been synthesized to lower the young modulus of Ti-based alloys 

further. The main reason for highlighting the porous materials research is that the 

quantity of raw matter required to produce the same cross-section as that of bulk 

materials is much lower, often leading to superior traits to their bulk counterparts. In 

addition, the stiffness is weaker for porous materials, and deformation is higher under 

increasing stress levels. The main concept behind the porous alloys-based implants is 

to reduce the stiffness considerably, thus encouraging the bone tissue in-growth into 

the pores of the implants. Definitely, the porous materials can provide exceptional 

biological fixation, enabling homogeneous stress transfer among the implants and 

bone tissues [8, 9, 22]. 

Conversely, the existence of porous spaces on the surface of Ti-based alloys 

may increase the surface roughness [23], indicating the availability of a large surface 

area effective for the contact of an implant, thereby increasing the corrosion rate and 
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reducing the wear resistance [24, 25]. Additionally, some systematic studies [1, 26, 

27] revealed that a weak resistance to plastic shearing of the Ti alloys and low 

protection against more oxidation exerted by a thin surface oxide layer could lead to 

their poor tribological properties. Hence, implementing Ti alloys as biomedical 

implants possessing wear and friction (in the case of acetabulum and head of hip 

endoprostheses) can lead to significant clinical issues unless inhibited.  

It is established that Ti alloys enable close apposition to the bone tissues under 

suitable conditions with surface treatments wherein the following attributes are 

essential [28]: 

(a) High mechanical strength, strong corrosion resistance, and low elastic 

modulus, wherein high wear resistance are required to avoid mechanical 

failures. 

(b) To avoid the biological failures, it must have better biocompatibility without 

allergic reactions, carcinogenicity, and cytotoxicity. 

(c)  For improved and faster osteointegration, more bioactive surfaces are 

required. 

(d) To lower the infection-related failures, the antimicrobial properties of the 

implants must be improved. 

Based on the abovementioned limitations regarding the existing biomedical 

implants and the ever-growing demand for efficient implants, this study intended to 

develop some new types of multi wall carbon nanotube (CNT) and 

Polyetheretherketone (PEEK Plastic, a polymer)/MWCNT-coated porous Ti-Ta shape 

memory alloys (Ti-30 at. % Ta SMA) beneficial for diverse biomedical applications. 

The as-prepared alloys (without and with coating) were characterized using various 

techniques to determine their microstructures, corrosion, and tribological properties. 

The surface properties of the alloys were enhanced via the surface coating, wherein 

the electrophoretic deposition (EPD) method was employed to deposit the 

biocompatible layers like MWCNT/+PEEK. The impact of various coating 
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parameters, including EPD voltages and suspension concentration, on the adhesion 

strength, corrosion resistance, wettability, microstructural, mechanical, and 

tribological properties of the proposed SMAs were evaluated. The obtained results 

were analyzed, interpreted, discussed, and compared with other state-of-the-art 

findings to accomplish the proposed research objectives, thus making a major 

contribution to the field of novel biomedical implant developments for upcoming 

applications. 

1.2 Problem Statement 

As aforementioned, titanium and its alloys are highly compatible materials for 

biomedical applications because of their excellent traits that fulfill the main 

requirements of implants in hard tissue engineering. In this view, more systematic 

research is needed to improve the properties of titanium and its alloys, making them 

advantageous for high-performance biomedical implants. Nevertheless, several studies 

have recently been conducted to reduce the elastic modulus of Ti-based alloys, which 

is much higher than that of human bone, thus leading to the stress shielding effect. To 

overcome this drawback, dedicated efforts must be made to lower the elastic modulus 

and stiffness of Ti-based alloys, initiating active research on porous Ti-based alloys. 

The porous Ti-based alloys not only require a lower amount of raw materials than their 

bulk counterparts but also attains superior biological stability by promoting the growth 

of bone tissues through the pores of the implants. This, in turn, enables the transfer of 

homogeneous stress between implants and bones, promoting faster osseointegration 

and healing of the damaged tissues.  

The presence of excess porosity on the surface of various Ti-based alloys can 

lead to increased surface roughness, imparting a larger contact surface area of an 

implant. Consequently, it increases the corrosion rate and reduces wear resistance, 

which is detrimental for the injured bone tissue recovery unless reversed. In addition, 

the load-bearing capacity of the orthopedic implants (especially for the acetabulum 

and head of hip endoprostheses) must provide a bearing surface with low friction and 

wear, thus coordinating the distribution of the loads between the parts in an implanted 
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joint. Therefore, the poor tribological properties associated with the existing Ti-based 

alloys that cause a significant clinical problem and result in the reduction of the plastic 

shearing resistance and low protection against additional oxidation exerted by a thin 

surface oxide layer must be addressed. For these considerations, The surface finish is 

a necessary aspect to be considered to maximize both the corrosion and wear resistance 

of the implant while insuring its biocompatibility. This can be achieved through the 

surface coating of the Ti-based alloys with appropriate biocompatible and bioactive 

materials. Therefore,  a HA,  polymer, CNT, PEEK, etc., is considered a good choice 

In this aspect, However, It was clearly highlighted that the main drawback in HA 

coatings is their poor adhesion to the implants. Moreover, wear of the polymeric 

component constitutes a major obstacle limiting the longevity of the implants, where 

it is flexible and weak to meet the mechanical demands. 

Considering the fundamental and applied significance of MWCNT and PEEK 

/MWCNT-coated porous Ti-Ta SMAa (Ti-30 at.% Ta) as high-performance 

biomedical implants, it became vital to prepare such alloys without and with coating 

and then characterize them systematically using various analytical techniques. 

Because the efficiency and functionality of these alloys depend on their corrosion 

resistance, wettability, microstructures, and mechanical and tribological 

characteristics, these properties must be improved before successful applications as 

biomedical implants. In addition, the surface finish is a crucial aspect that must be 

considered to optimize the implant's corrosion and wear resistance while ensuring its 

biocompatibility. On top, it is essential that the biomaterials’ coatings must have 

excellent mechanical and metallurgical bonding with the metal substrates. Eventually, 

the interfacial strength often poses a significant problem that must be addressed to 

achieve high-performance biomedical implants. Based on these existing research gaps, 

the following questions are posed with specific goals to attain. 
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1.3 Research Questions 

1. Is it possible to achieve homogenous MWCNT/+PEEK coating on the surface 

of Ti-Ta SMA substrate for improved properties needed for biomedical 

implantation? 

2. How can different coating compositions of MWCNT/+PEEK and the applied 

voltage of EPD influence the microstructure, corrosion and tribological 

characteristics (wear and friction behaviour), of the Ti-Ta SMA? 

3. Can the MWCNT and MWCNT/+PEEK layer adhere well to the metal 

substrate? 

4. How tribological behavior of the MWCNT/+PEEK-coated porous SMAs will 

be with the other properties corresponding to coating parameters. 

 

1.4 Objectives of the Study 

Based on the abovementioned research questions, the following objectives are 

set: 

1. To produce a homogeneous coating of MWCNT/+PEEK on the Ti-Ta SMA 

substrate using the EPD technique at different EPD applied voltages (30-85V) 

and PEEK contents (3-7.5 mg). 

2. To determine the microstructural, corrosion, and tribological attributes of the 

coated and uncoated Ti-Ta SMA through various characterizations. 

3.  To evaluate and establish better adhesion properties of the MWCNT/+PEEK 

coatings using varied EPD applied voltages and PEEK contents. 
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4. To evaluate in vitro the relationship between the tribological behavior with the 

other properties of the MWCNT/+PEEK-coated porous SMAs corresponding 

to coating parameters. 

 

1.5 Hypothesis of the Study 

1. The MWCNT/+PEEK coating layer is expected to deposit homogeneously on 

the surface of porous Ti-Ta SMA substrate. 

2. The proposed coating can improve the microstructural, corrosion, and 

tribological properties of the porous Ti-30 at. % Ta SMA and it is advantageous 

for high-performance biomedical implant applications. 

3. The obtained adhesion strength between the coating and titanium alloy 

substrate may be sufficient for the biomedical implant applications 

requirements. 

4. The addition of PEEK to MWCNT coating together with different deposition 

parameters (varied EPD applied voltages (30-85V) and PEEK contents (3-7.5 

mg)) can further enhance the adhesion strength of the modified coating, 

beneficial for biomedical implants in hard tissue engineering. 

 

1.6 Scope of the Study 

To fulfill the proposed research objectives and attain the set goals, this study 

covered the following aspects called the scope of the research: 

1. Preparation of the samples by a powder metallurgy technique from 

commercially available high purity powders of Ti (99.99%) and Ta (99.99%) 

followed using the microwave furnace for the sintering process.  
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2. The optimized coating on the proposed Ti-Ta SMA was achieved using the 

standard EPD method with different voltages and concentrations of MWCNT 

and PEEK on the powdered sintered samples made of porous Ti-30 at.% Ta (as 

substrate materials).  

3. The microstructural analysis of the coated and uncoated samples of Ti-30 at.% 

Ta SMA was performed using optical microscopy (OM), scanning electron 

microscopy (SEM), atomic force microscopy (AFM), transmission electron 

microscopy (TEM), X-Ray diffraction (XRD) measurement, and 

Raman spectroscopy.  

4. The adhesion tests for the coating were conducted using the Pull–off adhesion 

test to evaluate the adhesion strength of the coated layer. 

5. Selected optimum coating parameters were chosen and assessed in terms of 

adhesion strength (with the range of more than 15 Mpa). 

6. A surface roughness tester performed surface roughness evaluation of the 

coated and uncoated samples. 

7. Vickers micro-hardness was conducted to evaluate the hardness properties of 

the uncoated and coated samples. 

8. The tribological characteristics of the uncoated and coated samples were 

determined using the combination of a Linear Reciprocating Ball-on-Flat wear 

test followed by microscopic characterization.  

9. The simulated body fluid (SBF) test was conducted to evaluate the corrosion 

properties of the SMAs, wherein the potentiodynamic polarization (PDP) 

method was used.  

10. The corroded and worn surfaces of the coated SMAs were analyzed using the 

SEM equipped with energy dispersive X-Ray (EDX) spectroscopy. 
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1.7 Significance of the Study 

This research aimed to gain in-depth knowledge of the microstructural, 

tribological, and corrosion properties of porous Ti-30 at.% Ta SMA coated with 

MWCNT and MWCNT/+PEEK is useful for high-performance biomedical implant 

applications. The proposed Ti-30 at. % Ta SMA as a substrate material with 

appropriate coating by biocompatible and bioactive materials contributed to 

developing future functional biomedical implants. It was affirmed that the 

microstructures, tribological, and corrosion behaviors of the porous Ti-30 at.% Ta 

SMA coated with MWCNT and MWCNT/+PEEK can be customized by varying the 

coating and deposition parameters. In short, the obtained findings of this research are 

expected to provide immense benefits in biomedical implants made from porous shape 

memory alloys materials coated with MWCNT/+PEEK. In addition, the optimum 

coating was shown to improve the proposed implants' overall properties (mechanical, 

wear, and corrosion resistance). 

Moreover, it is expected to allow these materials to be used for wear and 

corrosion environmental without degradation and losing their properties. The 

optimized MWCNT/+PEEK coating on the porous Ti-30 at. % Ta SMA surface must 

be investigated using various other material characterization techniques before the 

clinical bedside from the laboratory environment. 

1.8 Thesis Organization 

This thesis consists of five chapters: Chapter one briefly discusses the problem 

background, problem statement, research questions, research objectives, research 

hypotheses, research scopes, research significance, and thesis organization. The 

literature review of this study is introduced in Chapter Two. Where it presents the 

background of biocompatible materials and recent progress in using Ti-based alloys 

for biomedical applications. Moreover, the EPD fundamentals and approaches with its 

literature also are clarified. Chapter three describes the research methodology utilized 

in conducting this research. The steps of experimental work will be described in detail 
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and how the experiments will be performed, substrate and coating material 

preparation, and coating and substrate testing. Chapter four relates to experimental 

work results and discusses the experimental tests' findings. Finally, Chapter five 

summarizes the research conclusions and ends with future work recommendations. 
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