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ABSTRACT 

Lubricant additives are substances that are used in reducing friction and wear 
between two or more moving components. They are chemically, partially, or mechanically 

produced with the aim of controlling friction and wear during sliding contact. Various 
functional vegetable lubricants have been developed with narrow views of the 
environmental impact issue due to the use of fossil-based additives in the formula. These 
lubricants can be made more sustainable by using all environmentally friendly and 

renewable base stock items. However, few researchers, who took these factors into account, 
emphasised the use of biomaterials in the lubricant additive formulations mainly because 
of the challenges in their physicochemical characteristics. Eichhornia Crassipes (EC) have 
been used for industrial applications such as sorbent and bio-fuel, but application in 

lubrication additive is rarely reported in the literature.  Therefore, in this study, EC, a pure 
aqua bio-plant, was used to enhance the base lubricant performance for lubrication 
application, based on the most desirable lubricant additive qualities validated by 
characteristic tests and good compatibility due to their similar functional groups. For the 

development of EC carbon nanotubes (EC-CNT) that provide anti-wear service, the 
formulation uses a mechanical approach of ball milling and a cyclic heating method. 
Synthetic technique was used to develop the EC Carboxymethyl cellulose (EC-CMC) 
polymer. The novel EC-additives were formulated to improve to improve the tribological 

qualities and shear stability requirements of the base lubricant. The tribological studies 
were conducted using a high frequency reciprocating test rig and a unidirectional ball on 
disc tribo-tester. The final EC-additive package was chosen after optimal concentration 
study. This indicated that 1.2 wt. % EC-CNTs + 0.4 wt. % EC-CMC yielded the best 

performance. The formed nanofluid, which contains 98.4 % base lubricant and 1.6 wt.% 
EC-additives (1.2 wt.% EC-CNTs + 0.4 wt.% EC-CMC) as the additive package, has a 
coefficient of friction (COF) of 0.08 and average wear scar diameter (WSD) of 54.1 µm on 
High Frequency Reciprocating Rig (HFRR), better than unidirectional mode. EC-additive 

results under HFRR were compared to commercial Zinc Dialkyl Dithiophosphate (ZDDP) 
as a benchmark (COF = 0.07, WSD = 48.3 nm), which were found to be substantially 
similar. The good performance of EC-additive under HFRR mode was due to little 
starvation of lubricant at the contact region. Under HFRR mode, better surface protection 

was achieved while under unidirectional mode yielded severe surface wear due to much 
lubricant starvation at the contact surface. Shear stability tests of the new EC-additive and 
the commercial ZDDP were performed for a range of 10 to 1500 1/s shear rate 25oC to 
75oC temperature. The test results showed that the novel EC-additive has better shear 

stability than ZDDP, which could be attributed to the presence adequate polymer. Repassed 
oil blended EC-additives that can improve tribological performance of a vegetable 
lubricant during sliding contact lubrication have been successfully developed. This 
research proved that the performance of the base lubricant can be enhanced by using the 

novel EC-additive formulated from a pure aqua bio-plant. This means that EC-additive has 
the potential to effectively replace fossil-based additives for lubrication operation within 
the tested capacity, resulting in an ecologically sustainable, renewable and good 
tribological performance.    
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ABSTRAK 

Bahan tambah pelincir ialah bahan yang digunakan dalam mengurangkan geseran 
dan haus antara dua atau lebih komponen yang bergerak. Ia dihasilkan secara kimia, 

sebahagian atau mekanikal dengan tujuan mengawal geseran dan haus semasa sentuhan 
gelongsor. Pelbagai pelincir sayuran berfungsi telah dibangunkan dengan pandangan 
sempit tentang isu kesan alam sekitar kerana penggunaan bahan tambahan berasaskan fosil 
dalam formula. Minyak pelincir ini boleh dibuat lebih mampan dengan menggunakan 

semua item stok asas yang mesra alam dan boleh diperbaharui. Walau bagaimanapun, 
beberapa penyelidik, yang mengambil kira faktor-faktor ini, menekankan penggunaan 
bahan-bio dalam formulasi bahan tambah pelincir terutamanya kerana cabaran dalam ciri 
fizikokimia mereka. Eichhornia crassipes (EC) telah digunakan dalam industri seperti 

bahan mengerap dan bahan api-bio, namnu penggunaan dalam bahan tambah pelincir 
sangat jarang dilaporkan dalam literatur. Oleh itu, dalam kajian ini, EC, tumbuhan bio aqua 
tulen, telah digunakan untuk meningkatkan prestasi pelincir asas untuk aplikasi pelinciran, 
berdasarkan kualiti bahan tambah pelincir yang paling diingini yang disahkan oleh ujian 

kecirian dan keserasian yang baik kerana persamaannya. kumpulan berfungsi. Untuk 
pembangunan tiub karbon nano EC (EC-CNT) yang menyediakan perkhidmatan anti-haus, 
formulasi menggunakan pendekatan mekanikal pengilangan bebola dan kaedah pemanasan 
kitaran. Teknik sintetik digunakan untuk membangunkan polimer EC Carboxymethyl 

cellulose (EC-CMC). Bahan tambah EC yan baharu telah dirumus untuk menambah baik 
kualiti tribologi dan keperluan kestabilan ricih pelincir asas. Kajian tribologi telah 
dijalankan menggunakan pelantar ujian salingan frekuensi tinggi dan bola satu arah pada 
penguji tribo cakera. Pakej bahan tambah EC akhir telah dipilih selepas kajian kepekatan 

optimum. Ini menunjukkan bahawa 1.2 wt. % EC-CNTs + 0.4 wt. % EC-CMC 
menghasilkan prestasi terbaik. Bendalir nano yang terbentuk, yang mengandungi 98.4 % 
pelincir asas dan 1.6 wt.% bahan tambah EC (1.2 wt.% EC-CNTs + 0.4 wt.% EC-CMC) 
sebagai pakej bahan tambah, mempunyai pekali geseran (COF) sebanyak 0.08 dan purata 

diameter parut haus (WSD) sebanyak 54.1 µm pada Rig Salingan Frekuensi Tinggi 
(HFRR), lebih baik daripada mod satu arah. Kekurangan bahan tambah EC di bawah HFRR 
dibandingkan dengan Zinc Dialkyl Dithiophosphate (ZDDP) komersial sebagai penanda 
aras (COF = 0.07, WSD = 48.3 nm), yang didapati hampir sama. Prestasi baik bahan 

tambah EC di bawah mod HFRR adalah disebabkan oleh sedikit kekurangan pelincir di 
kawasan sentuhan. Di bawah mod HFRR, perlindungan permukaan yang lebih baik telah 
dicapai manakala di bawah mod satu arah menghasilkan kehausan permukaan yang teruk 
akibat kekurangan pelincir pada permukaan sentuhan. Ujian kestabilan ricih bagi aditif EC 

baharu dan ZDDP komersial telah dilakukan untuk julat 10 hingga 1500 1/s kadar ricih 
25oC hingga 75oC suhu. Keputusan ujian menunjukkan bahawa bahan tambah EC baharu 
mempunyai kestabilan ricih yang lebih baik daripada ZDDP, yang boleh dikaitkan dengan 
kehadiran polimer yang mencukupi. Bahan tambah EC campuran minyak yang dilalui 

semula yang boleh meningkatkan prestasi tribologi pelincir sayuran semasa pelinciran 
sentuhan gelongsor telah berjaya dibangunkan. Penyelidikan ini membuktikan bahawa 
prestasi pelincir asas boleh dipertingkatkan dengan menggunakan bahan tambahan EC 
baharu yang dirumus daripada tumbuhan bio akua tulen. Ini bermakna bahan tambah EC 

mempunyai potensi untuk menggantikan bahan tambahan berasaskan fosil dengan 
berkesan untuk operasi pelinciran dalam kapasiti yang diuji dalam menghasilkan prestasi 
tribologi yang mampan dari segi ekologi, boleh diperbaharui dan baik. 

vii 



vi 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v  

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xiv 

LIST OF FIGURES  xv 

LIST OF ABBREVIATIONS xix 

LIST OF SYMBOLS xx 

LIST OF APPENDICES xxi 

CHAPTER 1 INTRODUCTION 1 

1.1 Introduction 1 

1.2 Background of Study 1 

1.3 Problem Statement 5 

1.4 Objectives of the Study 6 

1.5 Research Questions 7 

1.6 Scope of the Study 7 

1.7 Significance of the Study 8 

1.8 Outline of Thesis 9 

1.9 Summary 10 

CHAPTER 2 LITERATURE REVIEW 11 

2.1 Introduction 11 

2.2 Friction Mechanisms 11 

2.3 Base Lubricants and Additives Impact 13 

2.3.1 Major Properties of Lubricating Oils  15 

viii 



vii 

2.3.1.1 Viscosity 16 

2.3.1.2  Viscosity Index 18 

2.3.1.3 Pour Point and Cloud Point 19 

2.3.1.4 Volatility and Evaporation 20 

2.3.1.5 Elastomer Compatibility 20 

2.3.1.6 Thermal Stability 21 

2.4 Lubricant Additives 21 

2.4.1 Anti-wear Additives 22 

2.4.2 Friction Modifiers (MFs) 24 

2.4.3 Viscosity Index Improvers 25 

2.4.4 Extreme Pressure Additives (EP) 26 

2.4.5 Surfactant Operations in Oil Lubricant 28 

2.4.6 Oxidation Inhibitors  29 

2.4.7 Corrosion Inhibitor and Rust Preventive  29 

2.5 Bio Additives Formulation 31 

2.5.1 Surface Protection Additives 31 

2.5.2 Performance Additives or Rheological-Improvers 32 

2.5.3 Oil protection or Maintainers Additives 32 

2.6 Bio-Additives as Alternative to Synthetic/mineral Base 
Additives 33 

2.6.1 Eichhornia Crassipes Nanoparticles as Additives 
Source for Oil Lubricants  35 

2.7 Interaction Between Additives 38 

2.7.1 Additive Compatibility and Solubility in Lubricant 38 

2.7.2 Nanoparticle Additives and its Properties 39 

2.8 Formulation of Lubricants and its Lubrication 40 

2.9 Nanoparticles Additive Lubrication Mechanisms  43 

2.9.1 Wear and Wear Mechanism in Sliding Lubrication 47 

2.10 Boundary Theory Lubrication 49 

2.11 Lubrication phases: Stribeck Curve and Lambda Parameter
 51 

2.12 Summary 54 

ix 



viii 

CHAPTER 3 RESEARCH METHODOLOGY 57 

3.1 Introduction 57 

3.2 Operational Framework of the Research 57 

3.2.1 Materials 59 

3.2.2 Equipment 59 

3.3 Synthesizing and Characterization of the EC-CNT and EC-

CMC Additives 61 

3.3.1 Formulation of EC-CNTs from EC-NPs 62 

3.3.2 Formulation of EC-CMC Polymer (Viscosity 
Improver) from EC-NPs 63 

3.3.3 SEM Characterization of EC-CNTs and EC-CMC 
Additives 65 

3.3.4 Raman Spectroscopy and Thermo-Gravimetric 
Analysis (TGA) Study 65 

3.3.5 Determination of Kinematic Viscosity, Viscosity 
Index and Specific Gravity of EC-CMC Blended 65 

3.3.6 FT-IR Spectroscopy Analysis  66 

3.4 Formulation of EC-CNT and EC-CMC Additives in 

Rapeseed Oil Separately under reciprocating (HFRR) 
sliding motion 67 

3.4.1 The Ball and Flat Specimen Description 68 

3.4.2 Experimental Procedure for Ball on Flat  69 

3.5 Analysis of the Tribological Performance of the Optimal 
Formulated EC-Additives in Rapeseed oil under 
Reciprocating Sliding Motion 71 

3.5.1 Tribological Effect of Optimal Formulated EC-

Additives on Rapeseed and Mineral Oil compared 
to ZDDP under Boundary Condition 72 

3.6 Determination of the Analysis Parameters 73 

3.6.1 Determination of the Contact Pressure 73 

3.6.2 Minimum Film Thickness Analysis  75 

3.6.3 Lambda Ratio Analysis 77 

3.7 Propose the frictional wear Mechanisms (Based on Surface 
Observations and Quantity Analysis) of the Optimal 

Formulated EC-Additives in Rapeseed Oil Under 
Reciprocating and Unidirectional Sliding Motion 78 

3.7.1 Tribological Performance (under the Reciprocating 
Sliding Motion) of the Optimal Formulated EC-

x 



ix 

Additives in Rapeseed Oil with the Mineral Oil and 
ZDDP Additives under Boundary Lubrication 

Regime 78 

3.7.1.1 Wear and Surface Chemical Analysis  79 

3.7.2 Tribological Performance (under Unidirectiona l 
Sliding Motion) of the Optimal Formulated EC-
Additives in Rapeseed Oil with the Mineral Oil and 
ZDDP Additives under Boundary Lubrication 

Regime. 79 

3.7.2.1 The Ball and Disc Spacemen 80 

3.7.2.2 The Lubricant, Composition Code and 
Temperature 81 

3.7.2.3 Ball on disc Friction Test 81 

3.7.2.4 Wear Analysis on Ball and Disc Tribo-
Test 82 

3.8 Propose EC-Behavior Mechanisms (Based on Surface 
Observations and Quantity Analysis) of the Optimal 
Formulated EC-Additives in Rapeseed oil under HFRR and 
Unidirectional Sliding Motion 83 

3.9 Investigate the Shear Stability of the Optimal 
Formulated EC-Additives in Rapeseed oil.  84 

3.10 Assumptions and Limitations 85 

3.11 Summary 85 

CHAPTER 4 RESULTS AND DISCUSSION 87 

4.1 Introduction 87 

4.2 Characterization (Morphology, Elemental 
Composition, Particle Size Distribution, Raman 
Spectroscopy, TGA, Viscosity and FT-IR Spectra) of the 
EC-CNTs and EC-CMC Additives in Rapeseed Oil 87 

4.3 Individual Additives and Optimal Analysis to Determine 

the Best Formulation of EC-CNTs and EC-CMC Additives 
in Rapeseed Oil, in Terms of their Tribological 
Performance under Reciprocating Sliding Motion 93 

4.3.1 Separate Additives Analysis in Rapeseed Oil, in Terms of 

their Tribological Performance under Reciprocating Sliding 
Motion 93 

4.3.2 Optimal Concentration Analysis of EC-CNTs and EC-
CMC Additives in Rapeseed Oil, in Terms of their 

Tribological Performance under Reciprocating Sliding 
Motion 95 

xi 



x 

4.3.3 Boundary Regime: Lambda Ratio and Minimum 
Film Thickness 100 

4.4 Distinguish the Tribological Performance (both under the 
eciprocating and Unidirectional Sliding Motion) of the  
Optimal Formulated EC-Additives in Rapeseed oil with the 
Mineral oil and ZDDP Additives under Boundary 

Lubrication Regime 101 

4.4.1 Tribological Performance of the new EC-Additive 
under Reciprocating Motion 101 

4.4.1.1 Wear Analysis 105 

4.4.1.2 Surface Wear Profile and 3D Image 106 

4.4.1.3 Wear and Surface Chemical Analysis  109 

4.4.2 Tribological Performance of the new EC-Additive 
under Unidirectional Motion 113 

4.4.3 Surface Wear Analysis  116 

4.5 Propose Mechanisms Behavior of the Optimal Formulated 
EC-Additives in Rapeseed oil under Reciprocating and 
Unidirectional Motion 119 

4.5.1 Mechanisms Behavior of the Optimal Formulated 
EC-Additives in Rapeseed oil under Reciprocating 119 

4.5.2 Mechanisms Behavior of the Optimal Formulated 
EC-Additives in Rapeseed oil under Unidirectiona l 

Motion 122 

4.6 Results of Shear Stability Test 123 

4.6.1 Shear Stress Against Shear Rate at Varying 
Temperatures 123 

4.6.2 Viscosity Versus Shear Rate at Varying 
Temperatures 125 

4.6.3: Shear Stress - Shear Rate Test at Constant 
Temperatures 126 

4.6.4: Viscosity - Shear Rate at Constant Temperatures 127 

4.7 Summary 128 

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 131 

5.1 Conclusions 131 

5.3 Contributions 132 

5.4 Limitations of the Study and Future Works 
Recommendations 133 

xii 



xi 

REFERENCES 135 

LIST OF PUBLICATIONS 163 
 

  

xiii 



xii 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1 Lubricant API base oil group classifications [86]  13 

Table 2.2  Summaries of some lubricant tribological performance  46 

Table 3.1     List of Equipment 60 

Table 3.2 Ball and flat specimen’s material properties  69 

Table 3.3 Ball-on-flat tribo-meter Experiments Tests Conditions  70 

Table 3.4 Ball-on-flat operational condition Test 72 

Table 3.5  Tribo test specifications (lubricant, composition code and 
temperature) 73 

Table 3.6  Various operating conditions for the ball-on-flat tribo-meter.  78 

Table 3.7  Tribo test specifications (lubricant, composition code and 
temperature) 81 

Table 3.8 Test conditions for the pin-on-disc analysis 82 

Table 4.1 EDX elemental composition in EC-CNT and EC-CMC Samples
 88 

Table 4.2 Viscometric properties of the lubricant oils  91 

Table 4.3 Percentage reduction in Ra, Rq and Rz on the worn surfaces of 
the steel flat lubricated by different EC-additive concentrations 
against base rapeseed oil. 100 

Table 4.4 Calculated WSD, Wear volume, Wear rate and Wear loss of the 
disc 119 

 

  

xiv 



xiii 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 2.1 Possible elements that influences lubrication system in sheet 
metal forming. Ultimate tensile strength (UTS) [66].  12 

Figure 2.2 Major Properties of good oil lubricant [77,91].  15 

Figure 2.3 Illustration of Lubricant as separation medium 17 

Figure 2.4 Structure of Zinc Dialkyldithiosphate (ZDDP) [32] 23 

Figure 2.5 Anti-wear additives mechanism [48,128] 23 

Figure 2.6 Organic FMs surface protection mechanisms (A) [132][133] 

and Mechanism of FM by organomolybdenum FMs (B) 
[96,134] 25 

Figure 2.7 Viscosity modifier (VM) mechanism in lubricant during service 
[8] 26 

Figure 2.8 Extreme pressure additives mechanisms [8]  27 

Figure 2.9 Solubilisation of a soot and oxidation by-products contaminant 
by surfactant molecules in oil [148,149]  28 

Figure 2.10 Corrosion of metal and the working mechanism of corrosion and 
rust inhibitors [8,90,147,160] 30 

Figure 2.11 Triglyceride/Alcohol reaction for formation of Ester and 
Glycerol [155,177] 34 

Figure 2.12 Triglyceride structure of lipid as found in water hyacinth 
indicating components in chemical reaction [62]  34 

Figure 2.13 Image of fresh Eichhornia Crassipes in the water body 35 

Figure 2.14 Schematic potentials of Eichhornia Crassipes for Lubricant 
Additives 37 

Figure 2.15 Complete lubricant formulation (Base oil + Additives)  41 

Figure 2.16 Functional sequence of fully blended engine oil 42 

Figure 2.17 (a-d)Possible NPs lubrication mechanisms in a lubricant 
[216] 44 

Figure 2.18: Presentation of the different damage formation activated at 
sliding contact [227].  49 

xv 



xiv 

Figure 2.19 System friction regimes categorization by Stribeck curve in 
conformal contacts [207].  53 

Figure 2.20 Mind map on the EC-additive actualization 55 

Figure 3.1 Experimental stages of the research 58 

Figure 3.2 Processing of EC-NPs additives for lubricants application 61 

Figure 3.3  Production steps (a1) and pictorial image of EC-CNTs additives 
(a2) 62 

Figure 3.4 Flow diagram for formulation of Carboxymethyl Cellulose 

Polymer (b1) and pictorial image of the formulated EC-CMC 
polymer (b2). 64 

Figure 3.5 Additives candidate’s selection 67 

Figure 3.6 Images of HFRR components; (a), ball with rigid holder; (b), 
holder and ball coupled and (c), steel flat sample.  68 

Figure 3.7      Image of the HFRR tribo-meter 68 

Figure 3.8 Optimal formulation of EC-additive using mixing strategy 71 

Figure 3.9 Ball on Flat contact during sliding 73 

Figure 3.10 Ball-on-disc tribo-test set-up 80 

Figure 3.11 Layout monitory of nanoparticle mechanism during lubrication 
(in-situ approach).  84 

Figure 4.1 SEM images of high resolution (a) EC-CNT additives; (b) EC-
CMC; and (a1), (b1) low resolution 88 

Figure 4.2 Particle size distributions of EC-CNT and EC-CMC polymer 
additives 89 

Figure 4.3 Results of Raman spectroscopy of EC-CNTs and EC-NPs 

showing D and G bands (a), and TGA of EC-CNT, EC-CMC, 
and EC-NPs showing the weight loss over temperature (b)  90 

Figure 4.4 Lubricants viscosity versus temperatures as used in the study 91 

Figure 4.5 FT-IR spectra study of EC-CNTs and EC-CMC polymer 
additives 92 

Figure 4.6 Reduction in COF by EC-CNTs and EC-CMC polymer 

nanoparticles observed in a base lubricant condition (100 N, 75 
°C, 5 Hz, 15 min) 94 

Figure 4.7 Reduction in WSD by EC-CNTs and EC-CMC polymer 
nanoparticles. The results are expressed in percentages for the 
WSD observed in a base lubricant condition. Positive values 
imply enhancement, while negative means more unsatisfactory 
performance (under 100 N, 75 °C, 5 Hz, 15 min).  95 

xvi 



xv 

Figure 4.8 Friction coefficients of the base rapeseed oil and  candidates (1.6 
wt.% A + 0.6 wt.% B, 1.6 wt.% A + 0.4 wt.% B, 1.6 wt.% A + 

0.2 wt.% B, 1.2 wt.% A + 0.6 wt.% B, 1.2 wt.% A + 0.6 wt.% 
B, 1.2 wt.% A + 0.4 wt.% B, 0.8 wt.% A + 0.6 wt.% B, 0.8 wt.% 
A + 0.4 wt.% B and 0.8 wt.% A + 0.2 wt.% B) (under 100 N, 75 
oC, 5 Hz, 15 min). 96 

Figure 4.9 SEM images of the surfaces lubricated by the various lubricants: 
(a) base rapeseed oil and EC-optimized (b) 1.6 wt.% A + 0.6 

wt.% B; (c) 1.6 wt.% A + 0.4 wt.% B; (d) 1.6 wt.% A + 0.2 wt.% 
B; (e) 1.2 wt.% A + 0.6 wt.% B; (f) 1.2 wt.% A + 0.4 wt.% B; 
(g) 1.2 wt.% A + 0.2 wt.% B; (h) 0.8 wt.% A + 0.6 wt.% B; (i) 
0.8 wt.% A + 0.4 wt.% B and (j)0.8 wt.% A + 0.2 wt.% B) (under 
100 N, 75 oC, 5 Hz, 15 min).  98 

Figure 4.10 Profile graphs of the surfaces lubricated by the various 

lubricants; (a1) base rapeseed oil and EC-additives (b1) 1.6 
wt.% A + 0.6 wt.% B; (c1) 1.6 wt.% A + 0.4 wt.% B; (d1) 1.6 
wt.% A + 0.2 wt.% B; (e1) 1.2 wt.% A + 0.6 wt.% B; (f1) 1.2 
wt.% A + 0.4 wt.% B; (g1) 1.2 wt.% A + 0.2 wt.% B; (h1) 0.8 

wt.% A + 0.6 wt.% B; (i1) 0.8 wt.% A + 0.4 wt.% B; and (j1) 
0.8 wt.% A + 0.2 wt.% B) (under 100 N, 75 oC, 5 Hz, 15 min). 99 

Figure 4.11 Calculated values for Lambda ratio and minimum film thickness 
under Load, 100 N at 75 oC 101 

Figure 4.12 Coefficient of Friction for the various lubricants (100 N, 75 oC)
 102 

Figure 4.13 Average coefficient of friction for various lubricants under 
different temperatures (40, 75, 100 and 120 oC) at constant load 
100 N for 15 min.  103 

Figure 4.14 Average coefficient of friction for various lubricants under 
different load (60, 100 and 120 N) at constant temperature 75 oC 
for 15 min. 104 

Figure 4.15 WSD of the flat spacemen used in the ball-on-flat analysis at 75 
oC (a) and WSD of the flat lubricated by the various lubricants 
under different temperatures at constant load 100 N (b)  106 

Figure 4.16 Percentage wear depth reduction of the individual lubricants 

results (Base rapeseed oil (B1); Base mineral oil (B2); EC-
blended rapeseed oil (A1), EC-blended mineral oil (A2) and 
ZDDP blended rapeseed oil (A3) (100 N, Tempt., 75 °C; stroke, 
10 mm; 5 Hz) 107 

Figure 4.17 Sliding surface wear image and profile graph of the flat sample 
lubricated with: Rapeseed oil only (a-a1); Mineral oil only (b-

b1); Rapeseed oil + EC-additive (c-c1); Mineral oil + EC-
additive (d-d1) and Rapeseed oil + ZDDP (e-e1) under 100 N 
load at temperature of 75 oC.  108 

xvii 



xvi 

Figure 4.18 Lubricated Wear surface morphology and elemental distribution 
for the tested lubricants using 100 N at 75 oC: (a-a1) Rapeseed 

oil (B1); (b-b1) Mineral oil (B2); (c-c1) EC-additive +Rapeseed 
(A1); (d-d1) EC-additive + Mineral oil (A2); (e-e1) Rapeseed 
oil + ZDDP additive (A3).  111 

Figure 4.19 XPS spectra of the lubricated surface using rapeseed blended 
EC-additive focusing on element Fe, C, O, Mo and Si under 100 
N at 75 oC. 113 

Figure 4.20 Coefficient of Friction for various lubricants under 100 N at 75 
oC 114 

Figure 4.21 Average COF of the various lubricants (base rapeseed oil (B1); 
base mineral oil (B2); rapeseed oil + EC-additive (A1); mineral 

oil+ EC-additive (A2) and rapeseed oil + ZDDP (A3) under 
different temperatures (40, 75, 100 and 120 oC) at constant load 
100 N. 115 

Figure 4.22 Average COF of the various lubricants (base rapeseed oil (B1); 
base mineral oil (B2); rapeseed oil + EC-additive (A1); mineral 
oil+ EC-additive (A2) and rapeseed oil + ZDDP (A3) under 

different loads (60, 80, 100 and 120 N) (Tempt. 75 oC, stroke 10 
mm). 116 

Figure 4.23 Optical Disc/ball images utilized for wear scar diameter and 
calculation of wear rate. Used lubricants: (a) Base rapeseed oil 
only, (C1); (b) Base mineral oil only (C2); (c) Rapeseed oil + 
EC-additive (D1); Mineral oil + EC-additive (D2) and (d) 
Rapeseed oil + ZDDP (D3) 118 

Figure 4.24 EC-Nanoparticle behavior at the contact front and back (a); 
crushing of particles (b); film growth (c) under 100 N at 75 oC. 121 

Figure 4.25 EC-additive accumulation, crushing of nanoparticle and 

tribofilm formation on the substrate surface under 100 N and 75 
oC 121 

Figure 4.26 Nanoparticle accumulation behavior at the contact front (a) and 
film growth (b) under unidirectional mode  123 

Figure 4.27 Shear stress against shear rate of EC-additive at varying 
temperatures 125 

Figure 4.28 Viscosity versus shear rate of the EC-additive at varying 
temperatures 126 

Figure 4.29 Shear stress against shear rate of EC-additive at constant 
temperatures 127 

Figure 4.30 Viscosity versus shear rate of the EC-additive at constant 
temperatures.  128 

 

xviii 



xvii 

LIST OF ABBREVIATIONS 

EC - Eichhornia crassipes 

EC-NPs  Eichhornia crassipes nanoparticles  

EC-CNTs - Eichhornia Crassipes carbon nanotubes 

EC-CMC - Eichhornia Crassipes Carboxymethyl cellulose 

RO - Rapeseed oil 

MO - Mineral oil 

ZDDP  Zinc dialkyldithiophosphates 

WSD - Wear surface diameter 

COF - Coefficient of friction 

AFM - Atomic force machine 

SEM - Scanning Electron Microscopy 

EDX -  Energy-dispersive X-ray 

XPS  X-ray photoelectron spectroscopy 

   

   

   

   

   

  

xix 



xviii 

LIST OF SYMBOLS 

µ - Coefficient of friction 

,D d  - Diameter 

F  - Force 

L - Load 

 a -  Contact area 

 δ -  Maximum deflection  

r  - Radius 

R/  Radius of the curvature 

E/  Reduced young modulus 

λ  Lambda 

Ra - Surface roughness 

Rz  Roughness depth 

Rq  Root mean square 

B1  Rapeseed oil  

B2  Mineral oil 

A1  RO + EC-bio-additive 

A2  MO+ EC-bio-additive 

A3  RO + ZDDP 

   

   

   

   

   

  

xx 



xix 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A Cyclic heating steps for the formulation of EC-CNTs 190 

Appendix B Processes in the formulation of EC-CMC from EC-cellulose 191 

Appendix C Contact pressure calculated, the materials parameters and 
properties (load of 60 N, 80 N, 100 N and 120 N at 75 oC) 192 

Appendix D Parameters and calculated minimum film thickness and Lambda 
ratio for the base lubricants used under the load of 100 N at 75  

oC 193 

 

 

 

 

 

xxi 



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The study on the tribological performance enhancement of bio lubricant 

(rapeseed oil) using eichhornia crassipes nanoparticles (EC-NPs) bio-additives is 

introduced in this chapter. The overall background describes the operation and 

function of lubricant action, the impact of bio-additives as substitute to synthetic and 

inorganic based additives on living health, and climatic effect. Other related issues on 

conventional petroleum derived lubricant application in mechanism sliding contact 

were explained. The idea to propose eichhornia crassipes as lubricant additives both 

for synthetic and bio-lubricants for contact lubrication is based on it potentials towards 

world sustainability strive [1,2]. Thus, this chapter also includes the research problem 

statements, research objectives, research questions, scope of the work. The significant 

of the research with critical understanding on the tribological behavior of bio additives 

(eichhornia crassipes) in lubricants for sliding contact are elucidated.  

1.2 Background of Study 

Lubricating oil and grease grant protection to the rubbing machine components 

against friction and wear. The operation and functions are not limited to cooling and 

lubrication, but they also contribute in extending the lifespan of the components in 

contact with the fluid. Almost all moving engine components needs lubrication to 

minimize and maintain temperature required. Tribological improvement on lubricants 

has been a serious concern in the automobile industry. The engineer responsible for 

developing low friction lubricants requires knowledge of the engine as a whole [3–6], 

its subsystems and constituent components. The mechanism of sliding contacts 

generates great chemical energy (heat) which further converted into rotary motion via 
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mechanical energy, thus needs adequate cooling medium [7–9]. In doing this, it is 

important to adopt system that will not affect the operation of the machine, 

environment as well as to maintain the ecosystem. 

Today, most of lubricants together with its additives applied in most sliding 

mechanisms are petroleum (synthetic) derived products [10–12]. The product 

generated during the mechanical operation of these lubricants and additives 

(petroleum), turns to be a serious threat to our ecosystem through their emission, 

especially the greenhouse gas [4,13–15]. Green technology appears to be a viable 

alternative to this environmental threat. These bio lubricants and additives, which are 

carefully prepared for existing engines with or without modifications, considerably 

exhibit good lubrication in hopes of helping the world's sustainability initiat ive 

[13,16,17]. It is a serious concern in the industry that the purpose of inclusion of 

additive to overcome friction and the expected engine output are not fully achieved, 

perhaps due to poor or inadequate additive/lubricant applied [3,18–20].  

Friction therefore, is the resistant force of relative motion of solid surfaces, 

fluid layers, and metal elements under an applied load. In thermodynamics, the amount 

of energy utilized to overcome friction is not available for useful work [3]. Bio-

additives and bio-lubricants have better affinity to metal surfaces in terms of 

tribological performance, provides better anti-corrosion than petroleum derived type 

[21,22]. Bio-additives are active green substitute to toxic inorganic compound 

constitutes like sulphur (S) and Phosphorus (P) based additives. It also has capacity in 

synergetic enhancement with conventional ZDDP and other high additives [23,24]. 

Global warming, in general, is a disaster produced by human activities as a 

result of rising global temperatures, primarily due to high levels of carbon dioxide and 

other greenhouse gases in the atmosphere [4,25,26]. It is an established fact that 

additives influence the ash formulation and toxicity characteristics of a lubricant  

formulation [16]. The conventional additives both synthetic and inorganic compounds 

contain toxic elements ranging from phosphorus, ashes, and sulphur (PAS), also 

multiples of pollutants are recorded from the use of synthetic mineral oil base 

lubricants. The chemical characteristics of by-products of bio-additives are found low 
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risk to flora, fauna and the ecosystem [24,27,28]. As bio-additives discovered and 

found considerable alternatives to synthetic and inorganic compounds, similarly non-

toxic bio-lubricants would be required [9,16,29]. Eco-friendly lubricant can 

complement bio-additives in mitigate the release of sulphur, carbon oxides, methane, 

nitrous oxides and other greenhouse gases [11,16,23].  

Following world innovation, conventional additives contain anti-wear (AW) 

additives, zinc diakyldithio-phosphate (ZDDP) [11,30,31]. The package (ZDDP) has 

the potential to work with other brand additives that contribute necessary 

characteristics to the fully developed lubricant [31,32]. Many class additives in a 

complete engine lubricant contain viscosity modifiers (VM or VI), friction modifier 

(FM), extreme pressure agents, corrosion inhibitors, dispersants, detergents, 

antioxidants, pour point depressants and hydrophobic tendency [11,30,33–35]. For 

optimum friction and wear reduction, additives with constituents of S and P are 

considered to replace with nonylphenol (NP) due to their excellent performance during 

service [36,37]. It is generally desirable that all the lubricating materials should 

maintain its anti-wear and antifriction performance for a long period of time in order 

to keep the moving parts of the machine functional both in lubrication and cooling.  

With this, the friction together with other negative occurrences can be mild and 

may not cause misadventure failure. Additives as well as the fundamental oil base 

stock used in producing most of these lubricants are petroleum-derived or synthetic 

[12,38]. In the study of synthetic produced lubricants from cycloaliphatic group, like 

polyalphaolefins (PAOs) and gas to liquid (GTLs) base stocks, they are an important 

class of lube base stocks with many good lubricating properties, including viscosity, 

but have low polarity [39]. This low polarity leads to low solubility and dispersancy 

for polar additives and sludge generated during service. These base stocks require the 

use of co-base stocks additives to improve lubricant behavior and deposit solubilit y 

[24]. 

Eichhornia crassipes plant additives (solid/powder phase) of infinitesimal sizes 

below 100nm, with high property in carbon nanomaterials for nanotubes additive 

(friction reduction) [40,41] and formulated carboxymethyl polymer (viscosity 
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modifier) with oil lubricant affinity, thereby would establish homogenous and stable 

colloidal scattering behavior [34,42]. Biomass appears to be an adequate attractive 

feedstock because of its potentials in abundance, renewability and practical 

environmental impacts resulting in no net release of carbon dioxide and very low 

sulphur content [43–45]. Nanomaterials are distinct from traditional bulk materials 

because of their extremely small size and strong specific surface area [45,46]. In this 

regard, lubricants have mixed with nanoscale additives to form homogeneous colloida l 

dispersion mixture, which significantly applied in mitigating most of friction and wear 

occurrences in fluid lubricated systems [47,48]. 

However, in order to lift the demand and tribological properties, synthetic 

formulated additive borates and boronate esters derived from boric acids or boronic 

acids were adopted and vigorously studied [49]. The borates and boronate ester 

formulated additive provides less ashes, almost phosphorus free and reduce sulphur. 

But many effects were recorded ranging from toxicity, poor degradability and highly 

flammable and do require special handling care [49]. Consequently, aryl amine and 

phenol additives provides a synergistic enhanced performance but considered beyond 

cost, owing to the restrictive high cost of its synthetic oil [50,51].  

Therefore, there is a need for good sorption additives that provide appropriate 

solubility and dispersibility for the oil lubricants and control sludge generated during 

service of lubrication. The expectation of plants additives in the formulation of bio 

lubricants had been indicated by some bio lubricant researchers [52–54]. The 

achievability’s of accepted plant for additive formulation where based on potential 

alkalinity levels and total base number and some other physical properties that have 

been reported by bio researchers [55–57]. 
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1.3 Problem Statement 

The global environmental challenges on pollution that are associated with 

human activities through industrial operations are still a major concern. Additives are 

widely used in petroleum (non-renewable) derived lubricants to enhance lubrication 

performance. However, those lubricants together with additives still contains some 

toxic constituents, has poor biodegradability and contributes significantly to eco-

pollution. Petroleum additives have been studied, most product contain very high 

percentage content of mineral oil, implying a possible high level of toxicity and highly 

poor biodegradability. To be considered suitable for consumption, the lubricant base 

oil together the inclusive additives are expected to possess little or no toxic constituents 

as not to affect human health and environment. As a result of these, bio lubricant with 

features similar to the conventional mineral oil with non-toxic effect, need to be 

considered as alternative in the area of sliding contact lubrication.  

The aim of additives inclusion in lubricants is to achieve good shear stability, 

good tribological properties required to control excessive temperature and some other 

unwanted conditions. At this point, no advance work has been reported using pure 

nanoparticle plant as base additive for lubricants. In this work, formulation of lubricant 

nano-additive using unrefined physio mechanically approach have been proposed. 

This is based on the convincing information on the prospects of EC material meeting 

some serious requirements for lubricant additive formulations (bio sorption property 

[58], and good for carbon nanotubes [23] and polymer [59]), though this may require 

some previous conventional approaches. Recent findings among bio lubricant 

researchers have it partially refined, mechanically extracted plant oils, possess high 

stability, exhibit better response to additives (plant additives) and lubricants and 

tribological behavior than their refined counterparts [60,61].   

Although good number of additives for lubricants enhancement have been used 

in the past, they still require detail investigation to answer many questions, such as 

raw/synthetics materials selection, tribological behavior towards withstanding the 

working condition. Therefore, as advancement pushes with intensity of developing 

more green technology by tribological manufacturers, the constraint insists researchers 
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to formulate new product that respond more effectively to the final users, also always 

available and affordable.  

1.4 Objectives of the Study 

In this research, the aim is to provide solutions to those mentioned worrisome 

environmental effect, sustainability and cost problems associated with lubricants by 

formulating additive from Eichhornia Crassipes plant. However, in order to achieve 

the goal, the following precise objectives were considered. 

i. To determine the best concentration (wt.%) of the formulated Eichhornia 

Crassipes carbon nanotubes (EC-CNTs) and Eichhornia Crassipes 

Carboxymethyl cellulose (EC-CMC) additives for optimum tribologica l 

performance in rapeseed base oil. 

 

ii.  To analyse the tribological effect of the optimal formulated EC-additives in 

rapeseed oil and compare it to mineral oil and ZDDP additives under boundary 

lubrication regime. 

 

iii.  To propose the frictional wear mechanisms of the optimal formulated EC-

additives in rapeseed oil and compare it to mineral oil and ZDDP additives 

under boundary lubrication regime.  

 

iv. To investigate the shear stability of the optimal formulated EC-additives in 

rapeseed oil and compare it to ZDDP additives.  
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1.5 Research Questions 

The concern task is to produce an economical substitute to petroleum derived 

additives for lubricants from a productive source, especially a water plant and 

environmentally friendly type. The appropriate questions that required to be followed 

in accomplishing this task are: 

i. How could formulation of the sorption (lubricants and bio-additives additive) 

most suitable as optimum base class for lubricant additive achieved? 

ii.  Why are there significant effects of the formulated EC-NP additives on friction 

and wear generation during working conditions?  

iii.  How adequate is the shear stability of the produced additive in meeting the 

stipulated requirements of international additives?  

 

1.6 Scope of the Study 

Lubricant additives application in the field of engineering covers a very wide 

range. The suitable usage of the additive, however, strongly depends on the mechanism 

working condition and additive strength. In order to achieve the objective of the study, 

the following scopes are been outlined. 

i. Two types of NPs additives (EC-CNTs and CMC polymer) formulated from 

Eichhornia Crassipes and inorganic based ZDDP counterpart for reference are 

used. 

 

ii. Usage of rapeseed bio-lubricant was used as a key study base oil, compared to 

base mineral oil in respect to compatibility with the new formulated additives.    

 

iii. Application of ASTM G133 ball on flat and ASTM G99 ball on Disc under 

ISO 6892-1 tribological standard test were carried out on the formulated 
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additives using selected loads under different temperatures (RT and 100 oC) 

respectively. 

 

vi. The application of EC-NPs additives with the lubricant is limited on the 

selected concentration (wt.%) with optimum performance in the initial 

coefficient of friction and wear analysis conducted.  ZDDP was also included 

at a concentration of 1 wt.% for comparison. 

 

v. Sliding contact and boundary lubrication behavior (friction and wear) of the 

selected lubricant and the formulated NPs additives. 

 

vi Additives study limitations also include suitable shear stability (viscosity 

indices, kinematic viscosity) with its good response to lubricants. 

1.7 Significance of the Study 

Adopting formulated Eichhornia Crassipes nanoparticles as complementary 

and alternative to non-renewable petroleum derived additives for lubricants, has not 

been applied by previous researchers. It is, therefore necessary for current research 

work to explore and examine its additives impact on base lubricants during lubrication. 

Having known the physiochemical properties of the Eichhornia Crassipes materials 

and behaviors in lubricants [55,62]. Various classifications of lubricant, functional 

fluid (base oil) and additives have been examined in furtherance of replace and 

improved lubricating performance of the petroleum base or inorganic base lubricants, 

that known as the major additives/lubricants base stock with plants formulated additive 

type. The sector of applications of these products covers both industrial, automotive 

and domestic. 

Conventionally, machine (mechansism) dealers and consumer’s curiosity in 

enhanced motoring comfort, and satisfaction, crave for higher quality of vehicles and 

bestride will universally escalate the use of lubricants together with consistency in 

using better quality lubricants, additives among other variables. The World summit on 
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Social Development identified sustainable development goals, such as economic 

development, social development and environmental protection  [15,25]. The 

sustainable development consists of balancing local and global efforts to meet basic 

human needs without destroying or degrading the natural environment. Recent 

publications forecasted that the expected global numerical strength of light-duty 

automobile in 2040 will shy by a very small margin from 1.7 billion, rising from 900 

million the same year, a near double of the fleet in 2014 [63]. Adding to the global 

vehicle fleet, covering passenger cars and commercial vehicle, will rise from the 

current total of 1.2 billion to over 2.4 billion by 2035 [64].  

It is a known fact that scientists in 2007 (UNFCC, 2009) concluded that there 

was at least a 90% probability that atmospheric increase in  toxic products, was human-

induced, mostly as a result of emissions from fossil and petroleum products [4,15,64]. 

These by implication, point to more environmental risk in the future if petroleum 

derived lubricants and additives are not replaced with eco-friendly types [15,24,65]. 

Confronting environmental risk through lengthen market lubricating oils and 

additives, makes the present research more relevant. Adopting green economy as an 

approach of improving human well-being and social equity, evidently will 

significantly reduce environmental risks. 

1.8 Outline of Thesis 

The outline of this proposal from chapter 2, started with the issues of friction 

under sliding lubrication. The lubricant properties relevant to optimum tribologica l 

performance were also introduced. The need of formulating eco-friendly additives 

became necessary in solving catastrophes confronted the ecosystem with constant use 

of petroleum/synthetic lubricant and additives was developed. The nanoparticle 

additives positive impact on friction and wear reduction during lubrication mechanism 

were discussed. 
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Chapter 3 presented the analytical tools, experimental procedure and the 

formulation of various components of the EC-NPs additive. The corresponding mixing 

techniques of developed additives with the suitable tribological test were critically 

discussed. Chapter 4 showcase the characterization results of the new formulated EC-

CNTs and EC-CMC additives. Various tribological test together the optimal 

concentration of the two additives was conducted as to select the final additive 

package. The tribological behavior of the new formulated additive in base rapeseed oil 

were evaluated under different working conditions compared to mineral oil and 

organic ZDDP additive. The wear surface images analysis and the lubrication 

phenomena and mechanisms as well as the shear stability features were conducted. 

Chapter 5 covers the conclusions and discussion of this study, connecting to its 

contribution in reducing excessive friction and wear during lubrication. 

1.9 Summary 

A clear background on the lubrication challenges associated with high heat and 

friction generation and its resultant effect on energy losses were discussed in this 

chapter. The environmental catastrophe caused by persistent consumption of 

synthetic/petroleum blended lubricant (base oil and additives) were elucidated. 

Reliable objectives towards carrying out this study have been developed with a 

motivated research question towards actualization of the objectives mentioned. 

Confirmed holistic scope of the study that will not affect the objectives of the work 

was drawn and followed accordingly. 

The next chapter, gives an elaborate review of previous literatures on the 

research describing friction mechanism, requirements of good additives for optimum 

lubrication. The ideas extracted from literature works, provides a clear structure 

towards preparation of EC-nano-additives using simple and cost effective technology 

as to address the research questions and meeting the objectives aspiration. 
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