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ABSTRACT 

Cold-formed steel (CFS) is a popular material with various advantages. Its 

easy production and assembly allow engineers to speed up the construction process. 

However, CFS is susceptible to buckling because of its natural thinness, especially 

when dealing with high temperatures. The unprotected CFS behaviour under fire is 

expected to have little strength compared to the hot-rolled steel. At present, CFS 

column subjected to standard fire has been done by few researchers. The study 

included the difference in shape and size of the column, differences in thickness, 

steel grade, column length, and restraint or unrestraint in thermal elongation. 

However, the larger size is more reliable to be used as the column but has never been 

tested in fire. The test for unrestrained thermal elongation columns is also 

unavailable. As such, the purpose of this study was to evaluate the structural 

behaviour of CFS columns under ambient and fire conditions. Based on these 

behaviours, the experimental findings were compared with the prediction from BS 

EN 1993-1-2: 2005 to evaluate the suitability of the code for CFS column fire design. 

In achieving the objectives, an investigation into fire resistance subjected to the ISO 

834 fire standard was conducted on the CFS column. The variables involved were 

the CFS sections with various cross-section types and service loadings known as the 

degree of utilization. Three types of cross-sections, known as channel, back-to-back 

(BTB), and box-up (BU) sections, were studied. First, the column was preloaded at 

30%, 50%, and 70% of its ultimate strength to simulate the real fire situation. Then, 

the column was exposed to the ISO 834 fire standard condition. The temperature at 

the column surface and the time were recorded until the CFS column failed. The 

temperature increase on the column surface were monitored using thermocouple 

Type K, and the analyses of these thermocouple readings were used to evaluate the 

mean temperature of the column. The results showed that the shape had no 

significant effects on the critical temperature of the CFS columns. The temperature 

behaviours of a BTB column for all degrees of utilization showed that the web had a 

lower temperature compared to the flange due to the greater thickness of the web. 

Meanwhile, the failure temperature of the CFS could reach up to 600⁰C for 30% 

degree of utilization. The critical temperature and time for the column could be used 

in proposing a fire safety design rule for the CFS column. The modified design curve 

for the CFS column was also proposed. It is concluded that the BS EN 1993-1-2: 

2005 could be used to evaluate the safe buckling load under fire by including a 

modification factor due to buckling behaviour for built-up and channel CFS columns. 
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ABSTRAK 

Keluli terbentuk sejuk (CFS) adalah bahan yang popular dengan pelbagai 

kelebihan. Pengeluaran dan pemasangannya yang mudah memberikan pilihan kepada 

jurutera untuk mempercepatkan proses pembinaan. Walau bagaimanapun, CFS 

mudah melengkok, terutama ketika berada dalam suhu tinggi kerana sifatnya yang 

tipis. Tingkah laku CFS yang tanpa perlindungan di bawah api dijangka mempunyai 

kekuatan yang sedikit berbanding dengan keluli tergelek panas. Pada masa ini, kajian 

tiang CFS yang terdedah kepada kebakaran telah dilakukan oleh beberapa 

penyelidik. Kajian ini merangkumi bentuk dan saiz tiang yang berbeza, ketebalan 

yang berbeza, gred keluli, panjang tiang dan juga sekatan atau tiada sekatan dalam 

pemanjangan haba. Walau bagaimanapun, saiz lebih besar yang sesuai untuk 

digunakan sebagai tiang tetapi tidak pernah diuji dalam kebakaran. Ujian tiang tanpa 

sekatan pemanjangan haba masih tidak pernah dilakukan lagi. Tujuan kajian adalah 

untuk menilai tingkah laku struktur tiang CFS di bawah keadaan suhu persekitaran 

biasa dan kebakaran. Berdasarkan tingkah laku ini, dapatan eksperimen 

dibandingkan dengan ramalan daripada BS EN 1993-1-2: 2005 untuk menilai 

kesesuaian kod untuk mereka bentuk kebakaran tiang CFS. Untuk mencapai tujian 

ini, siasatan terhadap ketahanan api yang berdasarkan standard kebakaran ISO 834 

dilakukan pada tiang CFS. Pemboleh ubah yang terlibat adalah CFS dengan pelbagai 

jenis keratan rentas dan beban perkhidmatan yang dikenali sebagai darjah 

penggunaan. Tiga jenis bentuk, yang dikenali sebagai channel, back-to-back (BTB), 

dan box-up (BU) telah dikaji. Tiang dimampatkan pada suhu persekitaran untuk 

mengenal pasti tingkah lakunya dan membandingkannya dengan kod reka bentuk. 

Untuk mensimulasikan keadaan kebakaran sebenar, tiang dibebankan pada 30%, 

50%, dan 70% dari kekuatan maksimumnya. Kemudian tiang tersebut didedah 

kepada keadaan standard kebakaran ISO 834. Suhu di permukaan tiang dan masa 

kebakaran direkod sehingga tiang CFS gagal. Peningkatan suhu pada permukaan 

tiang dipantau dengan menggunakan termokopel Jenis K dan analisis bacaan 

termokopel ini digunakan untuk menilai suhu purata tiang. Hasil kajian menunjukkan 

bahawa bentuk tidak mempunyai pengaruh yang signifikan terhadap suhu kritikal 

tiang CFS. Tingkah laku suhu tiang BTB untuk semua darjah penggunaan 

menunjukkan bahawa web mempunyai suhu yang lebih rendah berbanding bebibir 

kerana ketebalan web yang lebih besar. Sementara itu, suhu kegagalan CFS dapat 

mencapai hingga 600⁰C untuk darjah penggunaan 30%. Suhu dan masa kritikal untuk 

tiang dapat digunakan dalam cadangan kod reka bentuk keselamatan kebakaran 

untuk tiang CFS. Keluk reka bentuk yang diubah suai untuk tiang CFS juga 

dicadangkan. Disimpulkan bahawa BS EN 1993-1-2: 2005 boleh digunakan untuk 

menilai beban lengkuk yang selamat di dalam kebakaran dengan mengambil kira 

faktor pengubahsuaian disebabkan tingkah laku lengkuk tiang binaan dan channel 

CFS.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview Background 

Fire accident in building and infrastructures is considered as one of the most 

serious, terrible and dangerous environmental hazards. It contributes to disastrous 

personal human injuries, devastating damage, loss of life, and production and capital 

losses. Fire and Rescue Department of Malaysia has reported that the increase in fire 

is very significant when a total of 36,043 fire calls were recorded in year 2018 

compared to 28,853 calls in 2017 (Malaymail, 2019). Table 1.1 shows that there 

5,449 fire cases reported by the Fire and Rescue Department of Malaysia (KPKT 

2019). Housing related cases contributed the highest number at 2209 cases followed 

by shops and factories at 469 and 288, respectively.  

The trend of building fire cases in Malaysia is at higher number more than 

5000 cases over the year 2013 to 2019 as shown in Figure 1.1 ( Statistic KPKT 

2019). This data has increased from 3447 cases in year 2007 (Salleh and Ahmad, 

2009). Beitel and Iwankiw (2008) conducted a historical survey on the multi-story 

building which collapses due to fire accident. Based on their study, 22 cases of fire 

induce collapse was categorised according to structural materials. There are seven 

cases involving concrete collapse, six from structural steel, five from brick/masonry, 

two cases from an unknown material, and two cases from wood. 
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Table 1.1 Building fire cases in Malaysia in 2017 (Statistic KPKT 2019) 

Type of Building                                                    Total    

Shop                                                        469 

Factory                                        288 

Warehouse                                         27 

Store                                                                        343 

Workshop                                      96 

Hotel                                                                    36 

Shopping Centre                               17 

Office 99 

Public Hall                              10 

Cinema                      0 

Entertainment Club/Pub/Bar                              5 

Restaurant                     88 

Terrace House 863 

Flat House 257 

Apartment/Condominium                       234 

Squatters                                    116 

Long/Traditional House                      125 

Mosque/Surau 26 

Temple 23 

Kitchen                                                                      443 

Laboratory                                  7 

Public Higher Education Institution                      7 

Privet Higher Education Institution                      2 

Government Primary School 29 

Privet Primary Scholl                        2 

Government Secondary School 32 

Privet Secondary Scholl                        2 

Government Pre-school/Kindergarten 9 

Privet Pre-school/Kindergarten 5 

School Hostel                                    13 

Workers‟ Hostel                                    58 

Public Hospital/Clinic 23 

Privet Hospital/Clinic                                7 

Shop House 110 

Residential House                                      1,341 

Church                                              1 

Livestock Estate 11 

Budget Hotel/ Premise 4 

Hotel/Homestay                          16 

Others                                                  205 

Total                                                                                                                        5,449 
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Figure 1.1 Building fire cases statistics in Malaysia for 2012–2019  

(Statistic KPKT) 

In construction activity and modern building design, the use of economical 

materials and construction project methods is a major concern to fulfill client 

demands. Cold-formed steel (CFS) as known as steel-based material has been 

applied significantly as load-bearing structural section in several building 

constructions. CFS which is popular due to its comparable strength, lightweight 

component, high resistance on corrosion, and ease fabrication and handling has been 

selected in the modern building structural element. In order to meet the fire safety 

design requirements, CFS must perform well in terms of its integrity and stability for 

a particular period during a fire incident. This assessment is important to give enough 

time for occupants to evacuate the building and firefighters to contain the fire. This is 

also important to minimise losses and reduce repair and rehabilitation costs after the 

fire. During a fire incident, a firefighter has to re-evaluate the tactical time frames 

when dealing with lightweight steel-framed buildings. Other structural materials 

usually provide 20 minutes fire resistance. Additionally, CFS with a lightweight 

section offers slightly or no warning on cracking and failure or moaning sounds as in 

timber structure (Karl, 2006). It was reported that the structural bearing members 

made of lightweight CFS elements failed at one time due to thinner thickness (Karl, 

2006). Figure 1.2 shows the remaining of a lightweight steel frame after fire 

exposure.  

0

1000

2000

3000

4000

5000

6000

7000

2013 2014 2015 2016 2017 2018 2019

To
ta

l o
f 

C
as

e
 

Year 

Building Fire Statistic in Malaysia 



 

4 

 

Figure 1.2 Remaining of a lightweight steel frame after a fire (Karl K. 

Thompson, 2006). 

1.1.1 Cold-formed Steel (CFS) Member 

CFS as load-bearing structures could fail due to buckling, residual stress due 

to press breaking and cold forming, geometrical imperfection due to element 

slenderness or thin thickness, and low fire stiffness. A CFS section is usually an open 

section that is prone to failure in several buckling modes under compression due to 

unsymmetrical section geometry. Georgieva et.al (2012a) reported that CFS strength 

is not only determined by its cross-sectional geometry but also determined by 

connection type (intermediate and at the ends), overall buckling length effect and 

interconnection quality. A high concentration force on a very thin section due to 

large bolt forces may also cause premature failure. Besides that, the elongation of 

bolt holes will lead to bearing failure.  

Under the fire conditions, CFS is a temperature-dependent material where it 

loses its strength more rapidly compared to hot-rolled steel (HRS). A review by 

Kolarkar (2010) shows that the HRS remains its full strength up to 400°C and 

beyond that, it decreases steeply. CFS loses its strength 10% to 20% more than HRS 

and it starts at 150°C, as shown in Figure 1.3. On the other hand, the thickness is an 
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important element when dealing with CFS as local buckling is a critical issue due to 

the thin element of the CFS section. A research conducted by Nirosha (2010) and 

Jingjie et al. (2020) found that, during a fire, the CFS beam failed due variety of 

buckling, similar to the situation at the ambient temperature. Several researchers 

conducted material strength behaviour study of CFS subjected to elevated 

temperature and produced a complete model of material strength based on several 

parameters, such as steel grades and thickness. However, the research data are still in 

debated.  Hence, it is required to evaluate the actual material properties of CFS at 

high temperature.  

 

Figure 1.3 Strength of steel relative to yield strength at elevated temperature 

(Kolarkar, 2010) 

CFS has been widely used as wall framing system.  Starting in the year of 

2002, the study of CFS compression member at elevated temperature are done to 

identify a fire behaviour of the wall. (Ranawaka & Mahendran, 2009b; Chen & 

Young, 2007a; Feng et al, 2004; Feng et al., 2003a; Feng et al, 2003b; Feng et al, 

2003c; and Kaitila, 2002). Basically, the studies were conducted to evaluate the 

behavior of CFS under compression subjected to elevated temperature. After the 

behavior of CFS at elevated temperature is well understood, the wall made up with 

CFS and fire resistance material were tested to evaluate its behavior. On the other 

hand, a test for cold-formed stainless steel column was conducted by a few 

researchers, namely Ng and Gardner (2007), To and Young (2008), Hassanein 

(2010), Uppfeldt et al.,(2008), and Gardner and Ng (2006). The results generally 

showed that stainless steel had a higher stiffness retention factor compared to hot 

rolled steel (HRS). However, it is well known that stainless steel has a higher 
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material cost than HRS. The price of stainless steel and HRS as reported in April 

2014 by the World Steel Prices (2014) was 2778 USD and 713 USD per-tonne, 

respectively. To solve this issue, CFS can be proposed to be used as column for 

developing the low-rise buildings (up to two-storey). Up to date, the study of CFS 

column under fire condition become significant due to popularity of application as 

column structure. Therefore, the fire performance of the CFS column can be studied 

to improve fire safety issue.  

Fire resistance greatly depends on massivity (shape factor), shape and size of 

the cross-section, load level, and buckling length. The performance criterion of steel 

columns with a load-bearing function needs to meet the stability criteria (Wardenier, 

2001). In designing a bare steel column, the determination of the critical temperature 

column failure and thermal response of the column is vital. Both criteria are 

considered for the column, which is exposed to fire distributed along the column 

length.  

1.1.2 Built-up Cold-formed Steel (CFS) Member 

A built-up CFS section is usually recognised as a combination or composition 

of normal CFS sections such as C (cee), Z (zee), Ɛ (sigma), hat, or angle section to 

create an innovation and new section. The new section is linked and jointed by using 

self-drilling screws, self-tapping screws, bolts and nuts, or weld. Figure 1.4 shows a 

variety of the built-up CFS section that used for structural or non-structural 

components or utilised for compression and tension members 
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a) Close built-up CFS section 

 

 

b) Open built-up CFS section. 

Figure 1.4 Example of types of built-up CFS for compression and tension 

members 

The advantages of the built-up CFS section are numerous and can be 

organised into two categories, namely strength and stability (mechanical strength) 

and production and handling. Table 1.2 shows the advantages of built-up CFS. 
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Table 1.2 Advantages of built-up CFS section 

No Production and Handling Mechanical Strength 

1. Easy to produce (fasten bolt, screw, 

or weld the standard shape (C, Z) 

without building a special 

production method for a complex 

shape). 

Higher stability capacity (the 

double section has greater cross-

section properties). 

2. Erection and formation of CFS 

structure are more rapid and 

without using heavy lifting 

machines or equipment 

(appropriately equipped for two-

storey building or an emergency 

temporary house). 

The symmetric section can 

eliminate eccentricity between 

gravity and shear centre that 

removed a certain buckling failure 

effect (out-of-plane movement and 

distortional buckling).  

3. Composed CFS members are 

relatively cheap alternatives to a 

single section. If not laterally 

supported, a single section easily 

fails in overall buckling, hence, 

built-up is the best solution 

(Georgieva et al., 2012a). 

Closed sections or box sections 

permit  spanning longer distances 

between the supports condition and 

able to sustain the heavier loads 

rather than single C-sections 

(Reyes & Guzmán, 2011). 

4. CFS has proper corrosion 

protection using zinc and zinc alloy 

hot-dip galvanised coatings. It can 

tolerate and resist the physical 

requirements produced during 

fabrication, production, 

distribution, storage, installation 

and also transportation of steel-

framing members (Technical Note 

on Cold-Formed Steel 

Construction, 2011). 

 

1.1.3 Built-up Cold-formed Steel (CFS) Column 

The built-up CFS column is favourable and has been recognised and utilised 

due to its excellent structural behaviour. In modern building construction, the use of 

the CFS column as a frame structure in residential construction is applied for 

buildings that are up to two-storey as show in Figure 1.5. For the double C-section, 
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the I-section arrangement is used to strengthen the external frame columns whereas 

the hollow section arrangement is used to support the long beam. 

 

Figure 1.5 Residential house building frame (Dunai, 2007) 

The study on the built-up CFS section using a variety of connection methods 

has been done invoving screw, bolt and nut, and weld connection. Most of built-up 

columns are test at ambient temperature. Stone and LaBoube (2005) experimented 

the built-up CFS section with the built-up CFS I-section proposed the stud by using 

self-drilling screws with two numbers which were spaced at a set of intervals. Mei et 

at., (2009) tested the built-up CFS section by using two lipped C-sections with the 

dimension of the web, 100 mm, and thickness of 1.6 mm as a compression member 

connected by using a self-drilling screw which is recognised as back-to-back (BTB) 

section. Dunai (2007) did an experimental activity on built-up CFS with the shape of 

a box-up (BU) column fastened using a self-drilling screw located at the flange and 

the size of the C-section that used in the study is 150 mm × 200 mm. Next, Li et al., 

(2010) tested the CFS BU section produced by C-section with a depth of 100 mm 

and connected by using a self-drilling screw. Young and Chen (2008) established the 

built-up CFS with jointing the C-section with intermediate stiffeners using self-

tapping screws at the flange and categorising as a closed section and lastly did a 

compression test.  
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Meanwhile, for column test under fire was conducted by Laím et al. (2020). 

They using a self-drilling screw to form a built-up CFS Sigma section with 

intermediate stiffener. Jingjie et al. (2020) produced built-up CFS column using 150 

mm channel section and steel sheet connected using self-drilling screw. Craveiro, et 

al., (2014) and Craveiro et al., (2016) was conducted built-up using 150 mm CFS 

channel column using self-drilled screw.  

The study of CFS column connected using weld also available. The column 

were test at ambient. Whittle and Ramseyer (2009) developed and tested a CFS BU 

section with fastened using weld to CFS C-section with a thickness of 4.76 mm. The 

weld was connected at the bottom and top sections with the length welds of 50.8 mm 

and also at intermediate positions with the length welds of 25.4 mm along with the 

member. Reyes and Guzmán (2011) used seam welds with different weld spacings to 

form a BU member. Piyawat et al., (2012) proposed the built-up CFS with 

connecting by stitch welding and tested the BU members. While Besevic and 

Kukaras (2011) implemented the study of mechanical behaviour on built-up CFS by 

connecting two lipped C-sections with point welding for the compression test 

purpose.  

There is only one research studied welded column test under fire. Pires 

(2021) used continues weld along the length of to form build-up box a 2 m column. It 

was expose to ISO fire.  

1.2 Problem Statements 

The applications of built-up shapes, such as in a composing member has 

attracted the attention of light-steel frame designers to widen CFS applications to 

larger structures. Besides, the built-up shape has several advantages in terms of its 

production, handling, and mechanical strength, which can affect the total cost of a 

project. It is also suitable for the fast construction of low-rise buildings (up to two-

storey). However, the fire resistance of CFS is a critical issue because it is 

susceptible to having a low stiffness level when exposed to fire. 
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In observation, the CFS column with various size and connection were used 

to form a built-up column. The investigation of the CFS column composed of large 

sizes of channel section to act as a column has been done by Dunai (2007). All 

studies on the built-up CFS column was conducted under ambient temperature to 

determine the structural behaviour and mechanical strength. From literature, it was 

explained that the end condition of the column is caused shearing occur at the 

column end. Therefore identification of support end are required since variety of end 

condition are used in previous research. Since the channel CFS section size used by 

(Dunai, 2007) are unavailable in Malaysia market. Hence, the size of channel section 

that produce in Malaysia were used in this study. The choice of steel grade and 

dimension are based on available CFS product in Malaysia. For the large size of the 

200 mm CFS channel section, a specified steel grade of G450 is available. The 

thickness of 1.9 mm and 200 mm is similar to the Dunia (2007) found to be 

appropriate for 1 to 2-story houses. 

In present, CFS column subjected to standard fire has been done by few 

researchers. The study was including the different in shape and size of column, 

different in thickness, steel grade, column length and also restraint or unrestraint in 

thermal elongation.   The simplest section to make a built-up section is channel 

section, which may be produce as Back-to back (BTB) or Box-up (BU) section 

connected by using self-drilling screw. The study conducted by Craveiro, et al., 

(2014) and Craveiro et al., (2016) was limited to channel size of 150 mm, S280 

grade of steel. The column was restraint in thermal elongation.  However, the larger 

size is more reliable to be used as column has never been tested in fire. The test for 

unrestrained thermal elongation column is also unavailable.  To understand the 

behaviour of unrestrained thermal elongation for large column size in fire, further 

study on fire conditions can be done to evaluate the response of this column‟s fire 

behaviour, which can be used in future fire safety design.   

At present the guideline of CFS structure under high temperatures is 

according to the BS EN 1993-1-2 (2005) which is based on hot-rolled steel design. It 

has to be designed as Class 4 (slender) cross-section with reduction factors for 

material properties same as hot-rolled steel material with the limiting temperature is 
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350°C. Figure 1.6 shows the critical temperature from carbon steel recommended in 

BS EN 1993-1-2 (2005). The strength of CFS at high temperature is a function of 

material strength properties at ambient that multiply with material reduction factors 

due to high temperature. At present Kankanamge and Mahendran (2011) and Chen 

and Young (2007b) were done material test at high temperature for steel grade G450 

and 1.9 mm. The results was found differences. Hence, it is required to evaluate the 

actual material properties of CFS at high temperatures and compare them with the 

existing study. Based on the behavior of CFS at ambient and fire conditions, the 

finding can be used to evaluate the suitability of guidelines for CFS structure under 

high temperatures according to the BS EN 1993-1-2 (2005). 

 

Figure 1.6 The critical temperature with a degree of utilisation from carbon steel 

recommended in BS EN 1993-1-2: 2005 

Evaluation of critical time and temperature of the CFS column were relevant 

in the present situation since design guideline for this type of structure is still unclear. 

Currently, the critical temperature for Class 4 section is 350°C. However, few 

research data found that this value is conservative. The evaluation of critical 

temperature based on degree utilisation for CFS subjected to ISO 834 can be studied 

to justify of produce new curve specifically for CFS. 
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1.3 Research Objectives 

The aim of this research is to investigate the fire behaviour of CFS under 

compression when subjected to fire. To achieve it, the following objectives are set 

out: 

1. To determine the structural behaviour of CFS column under ambient 

temperature. 

2. To determine the temperature behavior of CFS column under compression 

when subjected to fire. 

3. To formulate the structural behavior and temperature behavior of CFS 

column under compression based on Eurocode. 

1.4 Scope of the Study 

The scope of this research is limited to experimental of unprotected CFS 

channel and built-up section only. The CFS used is Grade 450 and dimension of 200 

mm depth and 1.9 mm thickness. The support condition was semi-rigid. The 

compression tested at the ambient condition of the channel and built-up columns 

were conducted to get the actual axial deformation and cross-section deformation at 

mid-height only. Various length of members were also tested. The experiments on 

the CFS channel and built-up CFS column subjected to fire were conducted to 

identify the actual axial deformation with time and monitor the temperature rises at 

the steel surface column when exposed to standard fire. The failure modes of the 

column were observed. The formula of the mechanical properties of the CFS channel 

and built-up CFS columns were established and used as a guide. 

The applied axial concentric load is at a load level of 30%, 50%, and 70% of 

the ultimate load of channel and built-up CFS column and calculated based on BS 

EN 1993-1-2 (2005). A parametric study will be selected based on the important 

factors that are influencing the fire performance of the column, i.e. load level during 
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fire exposure, shape, and size of the column. This study focused on axially loaded 

columns subjected to ISO 834 (ISO,2014) standard fire exposure. 

1.5 Significance of Research  

Throughout this research, four significant point of research are described for 

ensuring the research is classified as an essential topic to study. Firstly, to encourage 

the use of the cold-formed steel (CFS) as a building material in the construction of 

housing, small and medium industries building which is capable to reduce the 

material, production, and maintenance cost. Housing provision with a reasonable cost 

is categorised as crucial as government responsibilities for all countries in the world. 

The housing provision by the government is to ensure that social-economic stability 

and also to promote fair and equitable national development. Therefore, the 

government has introduced the low or medium cost housing categories in order to 

help the people in the country to obtain the first home with affordable price and in 

good quality material and structure. By referring to CFS, the material has great 

strength due to high strength-to-weight ratio and stiffness, and classified as non-

combustible material, has resistance to corrosion problem, and categorised as highly 

sustainable material which can be recycle and little maintenance. Lastly, to addressed 

certain requirements that need to be fulfilled by the contractors such as the material 

able to withstand under fire to a certain limit, less maintenance due to corrosion or 

termite attack, and more than 10 years‟ service limit. An affordable housing 

development is extremely important for millions of people throughout the world. 

When individuals and families have access to stable and quality affordable housing, 

they can become part of a diverse community, find and keep jobs, lead healthier lives 

and take better care of their children. 

Secondly, the significance of the research is based on the need the improved 

fire safety for CFS that is always considered as a critical issue for insurance in 

Malaysia. Normally, the insurance in construction is divided into two categories, 

insurance that helped to protect buildings under construction and insurance to 

protected the property damage when the owners already inhibit the house. The 
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insurance is proposed to protect the house or building from damage due to fire, 

lightning, explosions, etc. Fire is classified as an important issue in housing and 

building and all materials that are used as structural components needed sufficient 

fire-resistant to avoid fire from spreading and results in huge damage to the structure. 

The insurance is protecting the building or house which in the first place is stable, 

strong, and stiff structure before being exposed to risk hazard especially fire. Thus, 

the fire safety design which used CFS must be improved to ensure the insurance 

companies are willing to offer insurance for the building or house built base on CFS.  

Furthermore, fast construction can be done with safety fire hazard. According 

to specific geographical and economic conditions, the materials for building and 

construction activities chosen must not be kept away from limited resources, the 

inevitable rise in the cost, and a long period of production. These issues have 

increased the tendency to utilise CFS for fast construction and without using high 

technologies, high energy consumption, and skilled workers. Besides, the use of CFS 

in building as shown as a lightweight material is an appropriate solution to utilise 

CFS in high-risk fire hazards areas and high-risk seismic zones rather than traditional 

material. 

Finally, the significant of the research is to promote sustainability and green 

construction. The construction that uses CFS material offers eco-friendly process and 

better-performing buildings. The construction procedures with CFS can greatly limit 

waste and other ecological burdens from end to end.   

1.6 Thesis Content 

The contents of this thesis are divided into 6 chapters. This chapter 

highlighted the background of the research, problem statements, objectives and 

significance of the research. In Chapter 2 an extensive literature review of behaviour 

of CFS built-up column, material properties at high temperature, and experimental 

investigations are presented. The detailed research methodology employed in this 

research is discussed in Chapter 3. It includes material properties test at ambient 
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temperature and high temperature, preparation, and testing of samples at ambient and 

fire condition. The result of experimental investigations at ambient temperature is 

presented in Chapter 4. It includes the results on material properties, the results of 

CFS built-up columns. The results of experimental investigations at fire temperature 

is presented in Chapter 5. It includes the results on material properties high 

temperature and fire resistance tests of CFS built-up columns. The fire resistance 

results were classified into temperature development results and axial deformation. A 

comparison of CFS built-up column with BS EN 1993-1-2 was also presented. After 

that a fire model of CFS built-up column based on experimental results is proposed. 

A summary, conclusion of the entire work, and the recommendations for future study 

are presented in Chapter 6. 
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