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ABSTRACT 

Anthropogenic climate change potentially causes water shortages over 

different spatial and temporal scales. Over the coming decades, the impact of climate 

change would be tangible, with significant increases in the global mean temperature, 

changes in the frequency and intensity of precipitation, and rising sea levels. These 

changes will adversely affect the water resource system due to the increased severity 

of floods, droughts, timing and amount of runoff and evaporation. The reservoir 

systems require continuous development and revision for optimal operations to deal 

with the variability of future climate change. Therefore, this study attempted to 

develop optimal reservoir operation under the new realities of climate change in a 

tropical agro-hydrological watershed in Perak, Malaysia. Reservoir inflow variability 

due to climate change affects hydrological processes and irrigation demands at a basin 

scale. Meta-learning, an ensemble machine learning technique using support vector 

regression (SVR) and random forest (RF) coupled with the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) multi-Global Climate Model (multi-GCM), 

was applied to investigate the impacts of climate change on Kurau River. Five GCMs 

(CanESM5, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, and NorESM2-LM) and three 

shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5) were used. The 

climate sequences generated by the delta change factor method were applied as input 

to the meta-learning model to predict the streamflow (reservoir inflow) changes from 

2021-2080. The model fitted reasonably well, with Kling–Gupta efficiency (KGE), 

Nash-Sutcliffe efficiency (NSE), percent bias (PBias), and Root Mean Square Error 

(RMSE) of 0.79, 0.83, 2.52, and 4.51, respectively, for the training period (1976-1995) 

and 0.72, 0.72, 5.85, and 6.90, respectively, for the testing period (1995-2005). Future 

projections of multi-GCM over the 2021-2080 under three SSPs predicted an increase 

in rainfall for all months except April-June (dry period or off-season), with a higher 

increase during the wet period (main-season). Temperature projections indicated an 

increase in maximum and minimum temperatures under all SSPs, with a higher 

increase of approximately 2.0°C under SSP5-8.5 during 2051-2080 relative to the 

baseline period of 1976-2005. The model predicted seasonal changes in the inflow by 

-7.5 to 7.1% and 1.2 to 5.9% during the off-season and the main-season, respectively. 

A significant inflow decrease was predicted in April and May for all SSPs due to high 

temperatures during the off-season, with SSP5-8.5 being the worst. The future rice 

irrigation demand changes for the Kerian Irrigation Scheme compared to the baseline 

period for two planting periods by -1.0 to 0.1% and -5.3 to -2.6% during the off-season 

and main-season, respectively. A significant irrigation water demand decrease is 

predicted in September and October for all SSPs due to increased rainfall during the 

main-season, with SSP5-8.5 being the most prominent. The stochastic dynamic 

programming is applied to determine the optimal release policies for Bukit Merah 

Reservoir considering future climate variability (15 combinations of different GCMs 

and SSPs for two future periods). The rule curve patterns varied under different 

scenarios and future periods. The patterns revealed that the reservoir will suffer from 

tremendous water stress in the far future (2051-2080) than in the near future (2021-

2050) and significantly during the off-season.  
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ABSTRAK 

Perubahan iklim antropogenik berpotensi mengakibatkan kekurangan air pada 

skala ruang dan masa yang berbeza. Pada masa hadapan, kesan perubahan iklim akan 

semakin ketara dengan peningkatan ketara purata suhu global, perubahan kekerapan 

dan keamatan hujan serta peningkatan paras laut. Perubahan ini memberi kesan buruk 

kepada sistem sumber air disebabkan peningkatan banjir, kemarau, masa dan jumlah 

air larian, dan kadar sejatan. Sistem takungan memerlukan pembangunan dan semakan 

berterusan untuk operasi optimum bagi menangani ketidaktentuan perubahan iklim. 

Oleh itu, kajian ini cuba membangunkan operasi takungan optimum dengan strategi 

penyesuaian di bawah realiti baharu perubahan iklim di kawasan tadahan air agro-

hidrologi tropika di Perak, Malaysia. Kebolehubahan aliran masuk takungan akibat 

perubahan iklim menjejaskan proses hidrologi dan permintaan pengairan pada skala 

lembangan. Meta-pembelajaran, satu gabungan teknik pembelajaran mesin di antara 

sokongan regresi vektor (SVR) dan hutan rawak (RF) digandingkan bersama Projek 

Perbandingan Model Berganding CMIP6 gabungan-Model Iklim Global (GCM), telah 

digunakan untuk menyiasat kesan perubahan iklim terhadap Sungai Kurau. Lima 

GCM (CanESM5, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, dan NorESM2-LM) 

dan tiga laluan sosioekonomi bersama (SSP1-2.6, SSP2-4.5, dan SSP5-8.5) telah 

digunakan. Urutan iklim yang dijana oleh kaedah faktor perubahan delta digunakan 

sebagai input kepada model meta-pembelajaran bagi meramalkan perubahan aliran 

masuk takungan dari 2021-2080. Model ini meramal dengan baik, dengan kecekapan 

Kling-Gupta (KGE), kecekapan Nash-Sutcliffe (NSE), peratusan bias (PBias), dan 

Ralat Purata Kuasa Dua Akar (RMSE) 0.79, 0.83, 2.52, dan 4.51, masing-masing 

untuk fasa latihan (1976-1995) dan 0.72, 0.72, 5.85, dan 6.90, masing-masing untuk 

fasa ujian (1995–2005). Unjuran masa hadapan bagi tempoh 2021-2080 di bawah 

semua SSP meramalkan peningkatan hujan sepanjang tahun kecuali April-Jun (tempoh 

kering atau musim-luar), dengan peningkatan yang ketara semasa tempoh basah 

(musim-utama). Unjuran suhu meramalkan peningkatan terhadap suhu maksimum dan 

minimum di bawah semua SSP, dengan peningkatan yang tertinggi 2.0°C di bawah 

SSP5-8.5 semasa tempoh 2051-2080 berbanding tempoh garis dasar 1976-2005. 

Model tersebut meramalkan perubahan bermusim dalam aliran masuk masing-masing 

sebanyak -7.5 hingga 7.1% dan antara 1.2 hingga 5.9% semasa musim-luar dan 

musim-utama. Penurunan aliran masuk yang ketara diramalkan pada bulan April dan 

Mei untuk semua SSP disebabkan oleh suhu tinggi semasa musim-luar, dengan SSP5-

8.5 adalah yang terburuk. Perubahan permintaan pengairan padi masa hadapan bagi 

Skim Pengairan Kerian berbanding tempoh garis dasar untuk dua tempoh penanaman 

masing-masing sebanyak -1.0 hingga 0.1% dan -5.3 hingga -2.6% pada musim-luar 

dan musim-utama. Penurunan permintaan air pengairan yang ketara diramalkan pada 

bulan September dan Oktober untuk semua SSP disebabkan peningkatan hujan semasa 

musim-utama, dengan SSP5-8.5 paling menonjol. Pengaturcaraan dinamik stokastik 

digunakan untuk menentukan dasar pelepasan optimum untuk Takungan Bukit Merah 

dengan mengambil kira ketidaktentuan iklim masa hadapan (15 kombinasi GCM dan 

SSP untuk dua tempoh masa hadapan). Corak lengkung operasi berbeza di bawah 

scenario SSP dan tempoh masa hadapan yang berbeza. Corak tersebut mendedahkan 

bahawa takungan untuk tempoh 2051-2080 akan mengalami tekanan air yang luar 

biasa berbanding tempoh 2021-2050 dan lebih ketara semasa di musim-luar.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Water is an essential natural resource and a fundamental need for the survival 

of every living thing on earth. All economic sectors need water, where productions are 

impossible without it, especially agriculture, industry, and energy (cooling in power 

plants). In recent years, struggling for water to satisfy the daily requirements of the 

endless burgeoning population, increasing demands of agriculture and industry, and 

the worsening impacts of climate change have reached extreme threats to the point of 

the physical scarcity of resources (Dolan et al., 2021; Kummu et al., 2016). According 

to global-scale water scarcity projection studies by United Nations World Water 

Development Report, over 4 billion of the population worldwide is likely to face 

tremendous water stress and scarcity by 2050 (Boretti & Rosa, 2019). Climate change 

is expected to alter weather patterns, disrupting water availability, rising sea levels, 

worsening soil conditions and crop diseases, and significantly increasing greenhouse 

gas emissions (Mikhaylov et al., 2020). 

Irrigation systems are vital for economic advancement, food security 

enhancement, and poverty alleviation. Nevertheless, existing irrigation management 

systems are criticized for low efficiency and poor performance, causing massive water 

losses that lead to severe water shortages. Food and Agriculture Organization (FAO) 

of the United Nations stressed that the agricultural sector remains the leading consumer 

of water in the world for irrigation supply, contributing to approximately three-quarters 

of total water withdrawals (FAO, 2010). Crop cultivation acutely relies on plant roots 

absorbing water from the soil and conveying it to the leaves to restore water losses 

caused by the transpiration of the photosynthesis process. Unfortunately, agriculture 

is often hampered due to randomness, uncertainty, and insufficient rainfall, 

consequently requiring proper irrigation systems to secure food security. The 
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agricultural sectors will encounter the great challenge of increasing future food 

demands with limited water resources. The situation is exacerbated when a massive 

amount of water is also decisively desired for environmental concerns, including 

aquatic life, wildlife refuges, forestry, riparian habitats, recreation, and inland 

navigation. Furthermore, Tripathi et al., 2018 reported that agricultural yield 

production needs to be enhanced by 70% in conjunction with the global population 

boost by 2025.  

Rice is the daily staple food and a rich source of carbohydrates and protein for 

over half the population globally, with more than 90% of the rice in the world being 

produced and consumed in Asia (Fukagawa & Ziska, 2019). In Malaysia, the scenario 

shows that rice production is not possible to accommodate the rapid increase in the 

population (Munusam et al., 2017). In order to meet the demand, approximately half a 

billion Ringgit Malaysia has been allocated annually to import rice from abroad 

(Sarwar & Khanif, 2005). According to Alam et al. (2010), Malaysia has 

approximately 300,000 rice farmers covering more than 322,000 hectares of rice 

granaries under the irrigation scheme. Rice cultivation in Malaysia is implemented 

twice a year under irrigation schemes during the off-season (first season) and main-

season (second season), also known as double cropping practice. Water is the main 

driving factor for rice production, with irrigation and drainage facilities being the keys 

for rice-growing areas (Akinbile et al., 2011). Rice cultivation systems in Malaysia 

consume a massive volume of freshwater, and the irrigation requirement water depth 

is around 100 to 150 cm (Amin et al., 2011).  

Despite the fact that Malaysia is bestowed with an average annual rainfall of 

2500 mm to 3000 mm with copious water resources that potentially cause floods, 

climate change coupled with rising population, industrialization and urbanization 

acceleration, and pollution would cause the opposite impacts (Hamidon et al., 2015; 

Rashid et al., 2021). The concept of drought resilience and water security has gained 

attention due to ever-increasing water demand. Zhang et al. (2021) reported that the 

world is experiencing a global water crisis due to the worsening water scarcity 

aggravated by increased population and economic activities, and inefficient water 

resource management. Cook & Bakker (2012) stated that water security is an 
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integrative approach to highlight good governance issues by promising realistic 

approaches to water management suitable for the current scenario. Heat and drought 

are prominent for impacting the growth and productivity of crops by declining and 

varying crop yields and quality (Fahad et al., 2017). Due to climate change, changes 

in rainfall and evaporation are thought to augment irrigation requirements globally 

(Konapala et al., 2020). Many studies related to agricultural water demand emphasized 

that climate change would alter global and regional water allocation for irrigation 

(Calzadilla et al., 2013; Chaturvedi et al., 2015; Guo & Shen, 2016; Iglesias & Garrote, 

2015; Malhi et al., 2021; Rowshon et al., 2019). Sufficient irrigation water availability 

can be guaranteed by using appropriate techniques and models to estimate future 

irrigation requirements based on future climate trends. The future irrigation water 

requirements under appropriate irrigation management systems potentially maximize 

production and minimize the adverse impact on the environment (Hamidon et al., 

2015; Taghvaeian et al., 2020). Good irrigation management practices will apply water 

at the right time with the right quantity to ensure sustainable water availability.  

Climate change has crept into every continent of the world by disrupting 

national economies and lives, costing people, communities, and countries (IPCC, 

2013). Many studies have revealed that the phenomena would alter future climate 

conditions, in which extreme drought and severe flood events would turn erratic and 

more frequent. Agriculture is sensitive to climatic conditions such as variations in 

rainfall, average temperature, solar radiation, and atmospheric carbon dioxide 

concentration (Mulla et al., 2020; Raza et al., 2019). Large-scale rice cultivation, 

which requires massive amounts of water, would be very vulnerable to water stress 

caused by heat waves under global warming. Hydrologic processes are highly at-risk 

due to the impact of climate forcing in the Southeast Asia regions, of which Malaysia 

is a branch of the continent (Tan et al., 2019). Global warming would increase by at 

least more than 50%, which exceeds 1.5 °C although under the lowest greenhouse gas 

emission scenario, impacting the evapotranspiration rates and causing high demand 

for irrigation supplies, exacerbated by the changes in rainfall pattern, intensity, and 

frequency of extreme events during the northeast monsoon and rainfall intensity during 

the southwest monsoon. (IPCC, 2022). Therefore, adaptation strategies for water 

resource systems at the basin scale against climate risks have become essential. 

Integrated hydrological assessment with water availability, resilience, and risk under 
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current and future climate scenarios, potentially enhancing water resource availability 

and delivery and inspiring in modeling water resource scenarios. 

In Malaysia, rice cultivation has the highest volume of annual irrigation water 

releases to fulfill the demand for eight granary schemes (210500 ha), mini-granary 

(29500 ha), and non-granary schemes (100633 ha) (Toriman & Mokhtar, 2012); 

unfortunately, due to low efficiency, and poor management and performance, it has 

been criticized for causing too much water wastage (Akinbile et al., 2011). These 

issues are strongly linked with uncertainty in water resource management, exacerbated 

by the impacts of climate change. Moreover, continuous measurement of river flow 

discharge is problematic to execute, expensive, and time-consuming. Therefore, 

improving the water allocation and delivery through predictions and simulations of 

river water flow changes within a catchment by incorporating the uncertainty in 

available water resources and crop irrigation requirements is urged, as has been done 

by Adnan et al. (2021), Bayesteh & Azari (2021), Khosravi et al. (2021) and Jia et al. 

(2022). Notwithstanding, the imbalance often occurs between the irrigation demand in 

the irrigation scheme and the water supply from the basin, resulting in either water 

wastage during low demand or water shortage during high demand (Ismail et al., 

2020). Therefore the role of the reservoir or dam has become crucial to meet the water 

demand as it is the pillar in the management of water resources of a river basin. 

The International Commission on Large Dams (ICOLD) recorded that a single 

reservoir (dam) built in the world acts to store and supply water for agricultural 

irrigation (48%), hydropower generation (20%), industrial and domestic consumption 

(13%), flood mitigation (9%), recreation (5%), and navigation (5%) (Lee et al., 2018). 

Additionally, about 17% of the remaining dams are built to execute multi-objectives 

to fulfill the demand for more than two of these purposes. Water supply from reservoirs 

is the primary key contributing to the sustainability of life through satisfying water 

demand in each sector, especially agriculture (rice). Reservoirs play an essential role 

in storing available water surplus obtained during the wet period for use during low 

water availability during the dry period to ensure sustainable and uniform crop 

production. Due to the increasing demand for future food, the expansion of irrigated 

agricultural land is essential, urging further reservoir construction (Nüsser & Baghel, 
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2017); however, mismanagement and climate change would potentially harm the 

environment and its utility for human purposes (Guo et al., 2021). Downstream 

hydrologic infrastructure and its operation are vulnerable to an increase in the 

frequency of extreme weather and changes in reservoir inflow patterns triggered by 

climate change (Ehsani et al., 2017). The performance of reservoir systems usually 

relies upon the operational decisions related to storage, release, and demand volumes 

(Chadwick et al., 2021). Water resource management which covers the water 

availability from the basin and reservoir, irrigation demand, and climatic parameters, 

needs to be thoroughly studied to project best practices to balance future irrigation 

supply and demand for the scheme. Accordingly, a quantitative assessment of various 

water management elements needs to be integrated under temporal and spatial 

variations of the climate change scenarios. The optimization solution for reservoir 

operation can be achieved by establishing a set of optimal release decisions for 

consecutive periods to maximize water management objectives (Dobson et al., 2019). 

1.2 Problem Statement 

Rice cultivation is a crop that requires a sufficient volume of water to ensure 

healthy and uniform growth. Despite that, rainfall is characterized by inconsistent 

distribution and volatile intensity, consequently leading to significant problems 

affecting crop productivity and yields under unideal water depth on the field (Firdaus 

et al., 2020). Supplemental and full irrigation is needed during the off-season and 

main-season to ensure growth and maximize rice yields. Many tropical regions depend 

on the reservoir as a reliable source of water supply to fulfill rice water demand and 

for a sustainable environment through irrigation structures (Nam et al., 2015). Bukit 

Merah Reservoir is the primary water source for the large-scale rice granary of the 

Kerian Irrigation Scheme. The rice scheme is one of the eight main granaries in 

Malaysia, contributing to approximately 24000 hectares of net rice area (Karim et al., 

2004; Vaghefi et al., 2016). Water coming from Kurau River Basin is stored and 

released from the reservoir according to the decision of the operator. Reservoir inflows 

mainly depend on the fluctuations of stream discharges from river basins, the driving 

factor for sustainable rice production, which varies significantly during the dry and 
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wet periods compounded by the influence of global climate change. The impact of 

climate change significantly alters the hydrological processes, directly threatening rice 

production, which is related to food security in Malaysia (Firdaus et al., 2020). The 

rising global temperature and change in rainfall patterns likewise affect crop 

evapotranspiration, irrigation demand, and shrinking rice yield (Houma et al., 2021; 

Rowshon et al., 2019). In recent literature, impact assessment studies related to climate 

change have highlighted the sensitivity of water resources to climatic variations. 

Global climate change would alter the streamflow fluctuations, reservoir levels, 

groundwater recharge, soil moisture, and crop irrigation demands disturbing the 

existing ecosystem and hydrological balance (Chan et al., 2021).  

One of the major challenges in adapting to the impact of climate change on 

managing water resources is the lack of climate scenarios at a local scale. To develop 

adaptation strategies to climate risk, the projection of climate variables for assessing 

the risk at the local scale or basin scale has become a necessary approach. However, 

the drawback arises from the following reasons; (1) projected climate information 

from the Global Climate Models (GCMs) cannot be directly used due to the large 

resolution for local application, and (2) GCMs do not simulate the ultimate variable of 

interest to decision-makers such as streamflow, reference evapotranspiration (ETo), 

and irrigation requirement directly (Rummukainen, 2010). Obtaining climate 

projections at fine spatial (local) scales involves a downscaling procedure. 

Downscaling can be achieved using different techniques based on spatial and temporal 

considerations for the hydro-meteorological variables. Weather generators are 

stochastic models under statistical methods used for generating hydro-meteorological 

parameters for a local scale by referring to historical data series as a baseline (Kilsby 

et al., 2007). The stochastic nature of the model is receiving attention in water 

resources-related applications such as agriculture to generate long daily synthetic data 

such as rainfall as input parameters since it is always related to the randomness of 

nature (Verdin et al., 2018). Most researchers suggested that the stochastic projection 

of more than one climate model (GCMs) and ensemble modeling is necessary to 

provide insights into model uncertainties and develop risk management strategies 

(Adib et al., 2020; Hamed et al., 2022; Houma et al., 2021; Kumar et al., 2014; 

Rowshon et al., 2019). These valuable remarks are well established for the climate 

projection based on historical and GCM-based extracted climate data, and it is now a 
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well-established technique for assessing climate change impacts. Therefore, applying 

the stochastic downscaling model is appropriate for assessing the impact of climate 

change under different new shared socioeconomic pathways (SSPs) scenarios of 

Coupled Model Intercomparison Project Phase 6 (CMIP6). 

Water stored and released from the Bukit Merah Reservoir, mainly used to 

irrigate Kerian Irrigation Scheme, is regulated by the decision of the operators. 

However, reservoir inflow influences the reservoir function, which primarily depends 

on the entering streamflow of the Kurau River fluctuation. The streamflow prediction 

and simulation processes are not easy tasks due to the limitations and benefits of each 

existing model. Machine learning algorithms are arguably the most relevant current 

development for hydrology in line with Industrial Revolution 4.0 (IR 4.0). The ability 

to self-learn from previous events and respond to nonlinear physical processes to make 

accurate predictions based on minimum data and mathematical equations has received 

significant attention among researchers in the last few years (Hussain & Khan, 2020). 

Support Vector Regression (SVR) and Random Forest (RF) are two machine learning 

models the most applied in dealing with hydrological processes, which have proven to 

perform well as a prediction model (Hussain & Khan, 2020; Pham et al., 2021; Tongal 

& Booij, 2018). However, based on the literature review, SVR and RF models still 

need to be improved to reduce errors in predicting peak flows (Wu et al., 2014) and 

low flows (Li et al., 2019), respectively. Therefore, it will be a good opportunity to fill 

this gap to handle the imbalance of predicted output of these individual machine 

learning models to reduce the error by applying the ensembling method to form meta-

learning. 

The release from the Bukit Merah Reservoir system requires an optimal 

operation to supply sustainable irrigation water over a long-term period while at the 

same time considering future climate change impacts. The future impact of climate 

change potentially increases the risk in the reservoir operation and management 

(Yasarer & Sturm, 2016). Hence, the reservoir systems in Malaysia require more 

attention to integrate the operation and management of the reservoir system with the 

climate change issues. Release decisions from the reservoir for irrigation management 

are typically performed at specific time intervals such as daily, weekly, every ten days, 
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or monthly (Bras et al., 1983). Operationally, optimal operation scheduling is crucial 

in water resource management, especially for rice field irrigation, where an effective 

method is needed to achieve the goal. The appropriate approach to allocation policies 

of irrigation water requires a dynamic sequential decision (Singh et al., 2016). 

Furthermore, in order to increase the reality and reliability of the model, the 

uncertainty of the water resource system must be addressed in the management. As 

deterministic models ignore uncertainties, applying them to problems in the real world 

is often difficult. Stochastic models are more related to principles of probability theory 

to consider uncertainty. Markov process models can deal with the characteristics of 

random variables such as rainfall and streamflow based on transition probabilities 

relating past information to a future occurrence of phenomena (Hossain & El-shafie, 

2013). For this purpose, the Stochastic Dynamic Programming (SDP) is the best 

selection, with the capability of representing the reality of the parameters included in 

the reservoir system, making it qualify to determine the optimal release policy for the 

reservoir and fully represent the risks associated with release decision under 

randomized environments. 

In summary, this research presumes that future climate forcings may contribute 

additional constraints on rice production due to the uncertainty in rainfall and irrigation 

water supplies, which is likely exacerbated by future population rises. Climate change 

eventually impacts the streamflow discharge or reservoir storage level, which would 

lead to water stress and scarcity during the dry season. Therefore, adaptive solutions 

for satisfying irrigation requirements for rice production are mandatory under the 

likely evolving future climate condition. Feedback release policies based on SDP 

combined with machine learning techniques are yet to be explored for Bukit Merah 

Reservoir, particularly to be adaptive for the future hydrological environment and 

irrigation water demand predicted based on GCMs and SSP scenarios of CMIP6. This 

idea highlights the novelty of this research; it will establish a new form of adaptive 

reservoir operation. 
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1.3 Research Objectives 

This study aims to develop an optimal operating policy for reservoir operation 

with adaptation strategies under new realities of future climate variability using a 

combination of statistical downscaling model (SDSM), machine learning, and 

stochastic dynamic programming (SDP) on the hydrological regimes of Bukit Merah 

Reservoir. The goal can be achieved with the following objectives: 

 

1. To generate future hydro-meteorological variables of multi-GCM and SSP 

scenarios under CMIP6 using a statistical downscaling approach. 

2. To predict and project the monthly streamflow of Kurau River using an ensemble 

of machine learning algorithms coupled with CMIP6 multi-GCM. 

3. To assess the rice water requirement for the Kerian Irrigation Scheme considering 

future climate change scenarios of CMIP6. 

4. To develop an optimal operating model for the Bukit Merah Reservoir using SDP 

for best management practices of water resources under future uncertainties. 

1.4 Research Scope 

The scope of the research is focused on developing an appropriate reservoir 

operation system that derives a monthly optimal reservoir operating policy to fulfill 

water requirements for a large-scale rice irrigation scheme considering future climate 

change impacts and the uncertainties of input arising from the random nature of the 

reservoir inflows. The optimal irrigation and reservoir operations model are developed 

solely based on empirical models, making the model entirely dependent on 

mathematical equations and algorithms without the involvement of watershed 

physiographic features. The development under the climate change limit for 60 years, 

from 2021 to 2080, requires a new model generation for operations beyond this year. 

Despite that, in the case climate change is neglected, the rule curve pattern developed 

based on historical data could be considered for continued use as the optimal operation 

developed based on the stochastic model as it considers the streamflow or reservoir 

inflow uncertainties. However, it is always recommended to keep revising the 
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reservoir operation rule curve for better water security for irrigation. The list of works 

that led to the model development and analysis are as follows: 

 

• Collection of relevant information on the historical, operation, and maintenance 

of the reservoir and rice schemes. 

• Collection of observed hydro-meteorological data from multiple stations within 

the study area and watershed. 

• Downloading and extraction of multiple GCMs and SSP scenarios under CMIP6 

data from .nc file format to .mat file using MATLAB Programme. 

• Detailed study and selection of GCMs downscaling techniques and predictor 

variables suitable for the study purpose. 

• Downscaling the climate variables through a specified downscaling domain with 

coordinates. 

• Evaluation of the performance of machine learning techniques (SVR and RF) for 

predicting monthly streamflow for Kurau River. 

• Selection of best ensemble technique for the machine learning algorithms to 

improve their prediction performance for monthly streamflow. 

• Projection of future streamflow of Kurau River using meta-learning considering 

the effects of climate change on hydrology using multiple GCMs. 

• Evaluation of the projected streamflow of Kurau River under each different future 

SSP scenario (SSP1-2.6, SSP2-4.5, and SSP5-8.5) of ensemble GCM. 

• Projection of future rice irrigation demand of Kerian Irrigation Scheme using 

multiple GCMs and SSP scenarios under CMIP6. 

• Evaluation of the projected rice irrigation demand of the Kerian Irrigation Scheme 

under each different future SSP scenario (SSP1-2.6, SSP2-4.5, and SSP5-8.5) of 

ensemble GCM. 

• Development of a stochastic optimization model based on dynamic programming 

(DP) in order to produce an optimal reservoir operating policy for the Bukit Merah 

Reservoir system with the objective of minimizing the sum of square deviations 

between reservoir releases and rice irrigation water demand. 

• Derivation of an optimal reservoir operation policy using the SDP model that takes 

into account future climate change impacts. 
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• Comparison of optimal operational rule curve results obtained among different 

future scenarios as well as the baseline period for evaluation of the effectiveness 

of optimal operation policies based on performance criteria. 

1.5 Significance of the Study 

The optimal operation and management of the reservoir have been an active 

area of water research for years. Numerous techniques and algorithms have been 

explored for reservoir operation by incorporating uncertainties due to the climate 

variability and stochastic nature of hydrological processes. This study focused on 

uncertainty in reservoir operation, considering the impact of future climate change to 

achieve optimal use of reservoir storage to meet irrigation demand for rice fields. Most 

rice farming systems in Malaysia depend primarily on river water, which is often 

inadequate. Hence, reservoirs become a promising tool to store river water and 

mitigate water scarcity, provided that rational operating techniques ensure adequate 

water provision for irrigation purposes. In reservoir systems, reservoir inflow 

possesses random behavior called stochastic processes, making it difficult to mimic 

the flow patterns perfectly.  

Most researchers involved in hydrological modeling will choose physical-

based models over empirical ones. However, the physical-based models were found to 

consume a lot of input data, costly, and time-consuming. Therefore, the empirical 

approach will be adopted to overcome the drawback. Machine learning with self-learn 

from previous events and responding to nonlinear physical processes to make accurate 

predictions based on minimum data and mathematical equations have received 

significant attention among hydrologists in the last few years. Although machine 

learning techniques are not input data demanding, it is able to perform well by using 

unique mathematical algorithms. In order to enhance the prediction output by machine 

learning techniques, several machine learning algorithms are recommended to be 

evaluated and ensembled. The selection of a good inflow prediction model enables it 

to project the future reservoir inflow considering climate change impact with minimum 

error while reducing uncertainties. These inflow uncertainties will be further 
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considered in the reservoir operation model using the stochastic dynamic operation to 

reduce the decision risks. This model, coupled with multiple GCMs with three levels 

of SSP scenarios of CMIP6, will be beneficial for future planning to conserve water 

and ensure the resilience of the reservoir to cope with the water demands of large rice 

irrigation schemes. 

The outcome of the study will support the Government’s food security 

measures and rural development programs [National Key Economic Area (NKEA) on 

agriculture] with Adaptation and Mitigation Strategies and Policy Options in Paddy 

Production for future planning in Malaysia. The study will also provide valuable 

guidelines for developing conjunctive water use practices and water-saving 

technologies under uncertainty associated with hydrological phenomena and become 

important input for Malaysia Dam Safety Management Guidelines (MyDAMS) on the 

reservoir operation for irrigation. Moreover, this study will also contribute to United 

Nations Sustainable Development Goals (SDG)s, such as (1) SDG goal 12, to achieve 

the target of the sustainable management and efficient use of natural resources, and (2) 

SDG goal 13, to strengthen resilience and adaptive capacity to climate-related hazards 

and natural disasters in all countries. 

1.6 Thesis Outline 

The thesis is organized into five chapters. Chapter 1 is the introduction, Chapter 

2 is the literature review, Chapter 3 is the research methodology, Chapter 4 is the 

results and discussions, and Chapter 5 is the conclusion. 

Chapter 1 clarifies an overview of the significance of water in rice production, 

climate change impacts, streamflow prediction, and reservoir operation. This section 

also highlights the problem faced by the agriculture sector and water resources 

management, and the necessity for the sector to establish an optimal solution for 

irrigation release policy. The aim and direction of the study and its contribution are 

also stated in this chapter. 
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Chapter 2 presents a relevant literature review of the overview of rice 

cultivation and climate scenarios, techniques, and approaches related to the study. It 

includes a detailed discussion of irrigation and water resources management, 

downscaling methods for GCMs, hydrological modeling, rice water demand, and 

reservoir operation and management systems. This chapter also further reviews 

various optimization models suitable for developing irrigation release policies for 

agricultural purposes. 

Chapter 3 explains the methodology with background information on the study 

area, data collection, and a detailed explanation of the methods used to downscale 

GCMs data, determination of future hydro-meteorological data projection, models 

applied to predict and project the reservoir inflow, estimation of rice irrigation 

demands, and development of optimal reservoir operating policy together with the 

option in adaptation strategies. 

Chapter 4 reveals the study results and discussions involving downscaled 

hydro-meteorological parameters, the reservoir inflow forecasting models, rice water 

demand, and the rule curves of the optimal operating policy of the reservoir. The 

outcomes will help farmers and water authorities implement irrigation water release 

from Bukit Merah Reservoir, considering the uncertainties in reservoir inflow and 

future climate change impact under three levels of SSP scenarios of CMIP6. 

Chapter 5 concludes the study by summarizing the entire research work, 

emphasizing the conclusion of each research objective, its novelty and contribution, 

and methodological limitation with recommendations for future research 

improvement. 
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