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ABSTRACT

Ti-based alloys belong to the categories of metals that are being used 
extensively in biomedical implants because they possess unique properties, such as 
high strength, corrosion resistance and biocompatibility. Among many Ti-based 
alloys, Ti-Ni alloys have been widely applied for biomedical applications. However, 
it has been discovered that Nickel is a toxic element that can cause hypersensitivity 
on human body. Hence, the need to develop Ni-free Ti-based alloys for biomedical 
applications is of paramount importance. P type Ti alloys, such as Ti-27at.%Nb and 
Ti-25at.%Ta consisting of non-toxic elements are some of the strong candidates for 
the replacement of Ti-Ni alloys. The aim of this research was to modify the Ti- 
51at.%Ni, Ti-27at.%Nb and Ti-25at.%Ta alloys by applying TiN coating on the 
surface of the alloys to improve their corrosion resistance, wear resistance, surface 
hardness and biocompatibility. Titanium Nitride (TiN) was selected as the coating 
material deposited on the substrates through physical vapour deposition magnetron 
sputtering method with varying deposition parameters namely, temperature, power, 
bias voltage and Nitrogen flow rate. The Taguchi method of parameter optimization 
through design of experiment was adopted and Taguchi orthogonal array standard 9- 
run matrix L9(34) was applied to reduce the number of experimental runs to only 9 
experiments. Microstructural and phase variation of the coated and uncoated Ti- 
51at.%Ni, Ti-27at.%Nb, and Ti-25at.%Ta alloys was determined using scanning 
electron microscope (SEM), energy dispersive spectrometer and x-ray 
diffractometer. The surface hardness (344 ± 12.5 HV, 325 ± 26.5 HV and 359 ± 7.9 
HV) adhesion strength, (2999 ± 149.5mN, 2110 ± 100mN, 2145 ± 12.3mN) and 
coating thickness (1.171p,m, 1.92p,m, 1.78p,m) were measured using micro hardness 
and scratch adhesion test equipment, respectively. Corrosion properties were 
evaluated using both electrochemical and immersion tests in simulated body fluids 
(SBF). Antibacterial test was performed on the coated samples using agar disc 
diffusion technique with Escherichia coli bacteria. Based on microstructural 
characterisation, all the alloys showed typical features and morphologies of Ti- 
51at.%Ni, Ti-27at.%Nb, and Ti-25at.%Ta. The coating materials deposited on the 
alloys were found to be composed of TiN coatings. The coatings showed 
improvement of surface hardness: 88.8%, 30%, 35.5%, and adhesion strength: 
10.7%, 30.6% and 15.9% for all coated alloys of Ti-51at.%Ni, Ti-27at.%Nb, and Ti- 
25at.%Ta, respectively. The results of the bio-corrosion test showed that both the 
coated and uncoated alloys had excellent corrosion resistance after 28 days of 
immersion in SBF solution at a constant temperature of 37oC. Similarly, the 
electrochemical test conducted at 37oC in SBF solution, showed that the uncoated 
and coated samples had high resistance towards corrosion. The antibacterial test 
results indicated that the uncoated alloys exhibited sign of the presence of 
antibacterial activities with small inhibition zones formed around them. However, no 
inhibition zones were observed in the coated alloys due to the presence of the 
deposited TiN coatings that acted as a physical barrier between the alloys and their 
surroundings. Nevertheless, the TiN coated Ti-based alloys have tremendous 
potential as materials for biomedical applications.
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ABSTRAK

Aloi berasaskan Ti tergolong dalam kategori logam yang digunakan secara 
meluas dalam implan bioperubatan kerana mempunyai sifat unik seperti kekuatan 
tinggi, ketahanan kakisan dan keserasian bio. Di antara banyak aloi berasaskan Ti, 
aloi Ti-Ni telah digunakan secara meluas untuk aplikasi bioperubatan. Namun, telah 
diketahui bahawa Nikel adalah unsur toksik yang boleh menyebabkan hipersensitiviti 
pada tubuh manusia. Oleh itu, keperluan untuk membangunkan aloi berasaskan Ti 
tanpa Ni untuk aplikasi bioperubatan sangat penting. Aloi Ti jenis P, seperti Ti- 
27at% Nb dan Ti-25at. % Ta yang terdiri daripada unsur-unsur tidak beracun adalah 
beberapa calon kuat untuk penggantian aloi Ti-Ni. Tujuan penyelidikan ini adalah 
untuk mengubah aloi Ti-51at.%Ni, Ti-27at.%Nb dan Ti-25at.%Ta dengan 
menggunakan salutan filem nipis di permukaan aloi untuk meningkatkan kekuatan 
lekatannya, ketahanan kakisan, kekerasan permukaan dan keserasian bio. Titanium 
Nitride (TiN) dipilih sebagai bahan salutan dimendap pada substrat melalui kaedah 
magnetron terpercik pemendapan wap fizikal dengan parameter pemendapan yang 
berbeza iaitu, suhu, kuasa, voltan bias dan kadar aliran Nitrogen. Kaedah Taguchi 
pengoptimuman parameter melalui reka bentuk eksperimen digunakan dan matriks 
piawaian 9-larian Taguchi L9 (34) diterapkan untuk mengurangkan jumlah larian 
eksperimen kepada 9 sahaja. Variasi struktur mikro aloi bersalut dan tidak bersalut 
ditentukan menggunakan mikroskop elektron imbasan, spektrometer penyebaran 
tenaga dan difraktometer sinar-x. Kekerasan permukaan (344 ± 12.5 HV, 325 ± 26.5 
HV dan 359 ± 7.9 HV), kekuatan lekatan (2999 ± 149.5mN, 2110 ± 100mN, 2145 ± 
12.3mN) dan ketebalan lapisan (1.171p,m, 1.92p,m, 1.78p,m) diukur masing-masing 
menggunakan peralatan ujian mikro dan lekatan. Sifat kakisan dinilai menggunakan 
ujian elektrokimia dan rendaman dalam simulasi cecair badan (SBF). Ujian 
keserasian bio telah dilakukan pada aloi berasaskan Ti yang dilapisi menggunakan 
teknik penyebaran cakera agar dengan bakteria Escherichia coli. Berdasarkan 
pencirian mikrostruktur, semua aloi menunjukkan ciri tipikal dan morfologi aloi 
berasaskan Ti. Bahan salutan dimendapkan pada aloi didapati terdiri daripada lapisan 
TiN. Bahan salutan menunjukkan penambahbaikan kekerasan permukaan: 88.8%, 
30%, 35.5%, dan kekuatan lekatan: 10.7%, 30.6% and 15.9% bagi semua aloi 
tersalut masing-masing untuk Ti-51at.% Ni, Ti-27at.%Nb, dan Ti-25at.%Ta. Hasil 
ujian bio-kakisan menunjukkan bahawa kedua-dua aloi yang disalut dan tidak disalut 
mempunyai ketahanan kakisan yang amat baik setelah 28 hari rendaman dalam 
larutan SBF pada suhu tetap 37oC. Begitu juga, ujian elektrokimia yang dijalankan 
pada suhu 37oC dalam larutan SBF, menunjukkan bahawa sampel disalut dan tanpa 
salutan mempunyai ketahanan yang tinggi terhadap kakisan. Hasil ujian antibakteria 
menunjukkan bahawa aloi yang tidak disalut menunjukkan tanda-tanda adanya 
aktiviti antibakteria dengan zon penghambatan kecil yang terbentuk di sekitarnya, 
namun, tidak ada zon penghambatan yang diperhatikan pada aloi bersalut kerana 
terdapat lapisan TiN yang bertindak sebagai penghalang fizikal antara aloi dan 
persekitarannya. Walau bagaimanapun aloi berasaskan Ti tersalut TiN mempunyai 
potensi yang sangat besar sebagai bahan untuk aplikasi bioperubatan.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

The human body inner framework is the skeletal system, which comprised 

many bones of different physical structure roles. The bone is subjected to 

deterioration due to social, bodily processes, injury, and disease. A significant illness 

that is faced by the aged and sometimes the young people is arthritis, it causes 

impairment to the life of those affected, and it could lead to unbearable pain and 

immobility (Manivasagam et al., 2010). Apart from people affected by the disease, 

agile and young people such as sportsmen and women often need replacements of 

bioimplants due to fracture and excessive strain. The complex problems encountered 

in bioimplants has been their contact with the biological environment of various 

physico-chemical nature and interaction with tissue and bone (Manivasagam et al., 

2010). It is essential for biomaterial choice to be acceptable to the human body 

without immunological rejection in the body and to have an excellent response to 

tissue cells. A biomaterial is an adapted material for medical applications (Tathe et 

al. 2010).

In the human body, biomaterial and tissues will be in contact, therefore the 

material presence should not trigger an unacceptable level of harm to the body. The 

materials should have mechanical properties such as tensile strength, hardness, and 

low modulus of elasticity, corrosion resistance, and wear resistance (Manjaiah and 

Laubscher, 2017). In this respect, the need for collaboration between specialists such 

as mechanical engineers, material scientists, metallurgists, orthopaedists with track 

records of experience are of paramount importance in achieving excellent results in 

the research, development, and execution of the knowledge extracted in practice (Li 

et al., 2014b). However, developments in the field of biomedical engineering have 

led to continuous renewed interest in biomaterial requirement to resolve the problems
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of failed hard tissues such as hip joints, knee joints, dental implants, by using 

stainless steel, cobalt-based alloys, and titanium alloys, which are known to be 

primary metallic materials as a suitable replacement for hard tissues (Geetha et al., 

2009; (Niinomi, 2003).

In recent years, there has been an increasing interest in titanium and titanium 

alloys among metallic biomaterials because of their properties of low elastic 

modulus, corrosion resistance, wear resistance, shape memory behaviour, high 

specific strength, and excellent biocompatibility (Niinomi, 2002; Temenoff and 

Mikos, 2008) which makes them suitable metals for biomedical applications. Recent 

developments in biomedical Ti-alloys focus on their shape memory behaviour. In 

this regard, Ti-Ni alloys, which fall within the category of shape memory alloys, 

have been widely used in biomedical applications, among many Ti-based alloys.

At the end of the 1970s, researchers introduced Ti-Ni alloy as a biomedical 

metal after finding that the alloy possesses unique mechanical properties, excellent 

corrosion resistance, shape memory properties, and biocompatibility (Kim et al., 

2006a; Miyazaki et al., 2006; Pfeifer et al., 2013). Additionally, Ti-Ni alloy has two 

mechanical properties comparable to those of natural biomaterials such as bone, 

including the ability to recover a large amount of strain and a low elastic modulus. 

Ti-Ni alloy can recover up to 8% strain, and this is beneficial since it can substitute 

bone that naturally recovers a strain by 2% compared to stainless steel, which is just 

around 0.8%. Ti-Ni alloy elastic modulus could be down to 48 GPa near the dense 

bone with less than 20 GPa. By contrast, stainless steel elastic modulus can reach up 

to 193 GPa (Chu et al., 2004). They are ideal as biomaterials, especially for 

orthopaedic and orthodontic surgery due to the two qualities mentioned earlier.

The more extensive medical applications of Ti-Ni alloys were restricted 

despite their use as a biomaterial for a long time, some researchers (Xiong et al., 

2010) later discovered that these alloys are not entirely biocompatible. There have 

been reports that Ni is a toxic agent and allergens that can induce hypersensitivity to 

the human body (Zhang et al. 2015). Many researchers (Bernard et al., 2011) have 

taken serious steps towards finding a solution to Ni ions release from the surface of 

Ti-Ni. High levels of Ni in Ti-Ni alloys may damage the bone structures because of
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their toxic effect on structures of the soft tissue compared to Co and V, also widely 

used in implants, the effects of which are significantly lower (Brojan et al., 2008). 

Additionally, previous research (Abbass et al., 2018) has shown that toxicity is not 

the only problem in Ti-Ni alloys biocompatibility and bioactivity. The integrity of 

the implant-bone interface was found to be a critical problem (Chen et al., 2004).

In line with tissue engineering and biomedical technology, biomaterials are 

meant to have wear resistance, shape memory effect, or super elasticity and low 

elastic modulus. Additionally, they are required to get rid of toxic effects that could 

lead to corrosion, wear, leaching, and avoid the use of Ni in biomedical implants 

(Hermawan et al., 2011). It is, therefore, crucial to develop safe, Ni-free alloys for 

biomedical applications.

The attention of researchers (Miyazaki et al., 2006) have been drawn to a 

newly discovered biomedical P type Ti-based alloys with shape memory and super 

elastic properties due to their outstanding cold workability. P Ti-based alloys are 

commonly seen as P disordered body centre cubic (BCC) in stable high-temperature 

phases and a hexagonal close pack (HCP) low temperatures. Previous studies 

(Nagase et al., 2010) demonstrated that P-type Ti-based alloys might also be suitable 

for future medical applications due to their low Young's modulus and ease of cold 

treatment formation. (Bartakova et al., 2009).

A widespread study has been conducted on Ti-based alloys consisting of 

several other non-toxic and P-stabilizing elements such as Nb, Zr, Ta, Sn, Mo, and 

Pt, which may be appropriate for biomedical applications (Wang et al. 2010). Nb and 

Ta are candidates of choice as alloying elements for biomaterial implants compared 

to pure Ti due to their biocompatibility and superior electrochemical properties. 

Besides, Ta has excellent resistance to corrosion with low ion release (Ching et al., 

2014). The Studies carried out previously (Xu et al., 2013) revealed Ti-Nb as the 

most exciting alloy to be developed for biomedical applications because it exhibits 

shape memory effect, low elastic modulus, and high compatibility. Other than Ti-Nb, 

Ti-Ta alloys are also an excellent option for future medical applications. Besides 

being non-toxic and having excellent biocompatibility, Ti-Ta also has a low elastic 

modulus similar to Ti-Nb alloy, which is essential for implant materials. Bartakova
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et al., (2009) observed that the Ti-Ta alloy has the best biocompatibility for all of the 

tested biocompatibility parameters. The properties of these alloys may be enhanced 

by surface coating with biocompatible materials.

Coatings are usually used to improve the surface properties of a material 

without negatively impacting the bulk materials. Furthermore, coatings can serve as 

an effective protective layer to reduce ions release, which contributes to corrosion 

(Fauchais and Vardelle, 2012). It can enhance hardness while also providing quality 

surface finishing, lowering friction and wear rates (Chen et al., 2013; Chowdhury et 

al., 2008). It is important to remember that a coating layer is only functional if it 

adheres well to the metal substrate and is strong enough to transfer all loads, 

depending on its original specific purpose. Coatings, on the other hand, have a 

limitation in terms of adhesion to the substrate, which allows chemical bonds to form 

between the layers.

In this research work, as cast Ti-51at%Ni, Ti-27at%Nb, and Ti-25at%Ta 

alloys were coated with TiN. Ti target was used to produce TiN coating by using a 

physical vapour deposition (PVD) magnetron sputtering system. The effects of the 

deposition parameters such as power, temperature bias voltage, and nitrogen flow 

rate on the surface hardness and adhesion strength of the TiN coated alloys for 

bioimplant implant, such as hip, knee and toe prostheses were investigated. The 

uncoated and coated samples were subjected to characterization and antibacterial 

tests to determine which coated alloy is the most suitable for biomedical applications.

1.2 Problem statement

Titanium alloys have various successful applications in surgical intervention 

and biomedical, aerospace, automobiles, chemical industries, and other vital 

industries, owing to their high strength, low weight ratio, and exceptional corrosion 

resistance. In many engineering applications, titanium alloys are replacing heavier, 

less serviceable, or less cost-effective materials. Titanium alloys properties enable 

designers to create systems and components that are dependable, cost-effective, and 

long-lasting.
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Ti alloys are known to have low resistance to wear when compared to 

stainless steel and Co-Cr based alloys, which are used for biomedical applications. 

Their use as implant materials is therefore restricted as they wear easily when rubbed 

between themselves or between other metals (Nasab et al., 2010). The use of the 

alloys in applications for load-bearing surfaces is rejected due to several cases of 

aseptic loosening resulting from the formation of metallic particulate debris 

(Bougherara et al., 2010; Clarke et al., 1992). Debris formation in load-bearing 

applications causes tissue blackening and metallosis as a result of the formation of a 

low adhering surface oxide layer, which periodically detaches from the surface 

(Dearnley, 1999). Ti-based alloys as implant materials are therefore limited only to 

applications where wear resistance properties, e.g., hip implant femoral head, are not 

required (Nag et al., 2009). The development of Ti-Ni alloys for a more extensive 

medical use has been restricted despite their relatively long time use as biomaterials; 

this is because the medical profession is concern about the high nickel content of 

about 50% in bulk, which is a possible cause of nickel ion release (Li et al., 2014a; 

Xiong et al., 2010). High levels of Ni in Ti-Ni alloys can damage bone structures 

because of its toxic effects on soft tissue structure (Brojan et al., 2008). As a result, 

non-toxic nickel-free alloys with the lowest modulus of elasticity and high 

biocompatibility, such as Ti-Nb and Ti-Ta, are used to replace Ti-Ni (Xu et al.,

2013). Furthermore, coating is extremely important for improving the wear 

resistance, hardness, and biocompatibility of the Ti-alloys used as implant materials.

Titanium nitride (TiN) is a bioactive coating that improves both the biological 

and mechano-chemical behaviour of Ti-Ni in body applications among the several 

available coatings (Piscanec et al., 2004). Besides, TiN is considerably more resistant 

to wear and corrosion than other compounds such as titanium oxide and titanium 

carbide that are bio-compatible (Poon et al., 2005; Yeung et al., 2005). TiN was thus 

chosen as a bio-active coating capable of improving the adhesion strength, hardness 

and corrosion resistance of Ti-Nb, Ti-Ta, as well as reducing the release of Ni ions 

from the Ti-Ni surface and improving its adhesion strength, hardness and corrosion 

resistance (Piscanec et al., 2004; Starosvetsky and Gotman, 2001). The effects of the 

process parameters (temperature, power, bias voltage and nitrogen flow rate) on the 

improvement of surface hardness and adhesion strength of TiN coated samples for 

biomedical implant such as hip, knee and toe prosthesis were considered.
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With regard to hip and knee replacement using biomedical implants, the 

femoral head of hip prosthesis and joints of knee prosthesis require greater adhesion 

strength of TiN coating as the primary criterion as well as a significant amount of 

surface hardness to prevent wear and debris formation, whereas the ankle and 

femoral stem necessitate greater hardness of TiN coating as the primary criterion as 

well as a significant amount of adhesion strength in the load bearing surfaces (Gobbi 

et al., 2019; Wang and Zreiqat, 2010). Therefore, optimizations of process 

parameters, such as temperature, power, bias voltage and nitrogen flow rate to obtain 

optimum adhesion strength or hardness of the TiN coated alloys for specific 

biomedical applications.

1.3 Significant of the Research

This study aims to coat TiN on Ti-51at % Ni, Ti-27 at %Nb, Ti-25 at % Ta 

alloys using the PVDMS method and evaluate the effects of the coating on the 

properties such as surface hardness, adhesion strength, corrosion resistance, and 

biocompatibility for biomedical applications. The results obtained through 

parameter optimization using the Taguchi method showed significant improvement 

in the properties, which would be beneficial in the production of implants for 

biomedical applications. However, the findings are expected to eliminate the need for 

additional surgery with the newly formed implant materials. The TiN coated alloys 

will improve wear resistance, implant durability and longevity, patient time, cost, 

risk, and morbidity.

1.4 Objectives of the Research

The objectives of this research are as follows:

(a) To determine the best coating parameters (power, temperature, bias voltage 

and nitrogen flow rate) for adhesion strength and hardness using the Taguchi 

method.
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(b) To investigate the microstructural variation between the uncoated and coated 

Ti-51at. %Ni, Ti-27at. %Nb and Ti-25at. %Ta alloys at the selected process 

parameters using EBSD, FESEM/EDS, XRD AND AFM

(c) To determine the mechanical properties (hardness and scratch adhesion 

strength) of the coated Ti-51at. %Ni, Ti-27at. %Nb and Ti-25at. %Ta alloys 

at the selected process parameters

(d) To determine the antibacterial activities and bio-corrosion behaviour of the 

coated Ti-51at%Ni, Ti-27at. %Nb and Ti-25at. % Ta at the selected process 

parameters

1.5 Scopes of the Research

The scopes of the research are as follows:

(a) The deposition was carried out using DC magnetron sputtering physical 

vapour deposition (PVD) method to deposit TiN coating on Ti-51at. %Ni, Ti- 

27at. %Nb and Ti-25at. %Ta alloys

(b) Initial study on the PVD method by varying the deposition parameters such 

as bias voltage, temperature, pressure, and gas flow rate in order to determine 

suitable parameters to obtain the coating.

(c) Optimization process using Taguchi method was applied to get the best 

coating parameters for better adhesion and hardness.

(d) Coating adhesion, thickness and hardness were investigated using micro 

scratch testing machines (Micro Material Nanotest, Wrexham, UK), micro 

hardness tester and field emission scanning electron microscopy/ energy- 

dispersive X-ray spectroscopy (FESEM/EDS)

(e) Material characterization was performed on the coated and uncoated alloys 

using optical microscope (OM), field emission scanning electron microscopy/ 

energy-dispersive X-ray spectroscopy (FESEM/EDS), and X-ray diffraction 

(XRD).

(f) Bio-corrosion and antibacterial tests were carried out using electrochemical 

methods (EIS and Tafel plot), immersion and Agar diffusion technique.
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