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ABSTRACT

The distributed fibre optic sensor (DFOS) technology adopted in this study is 
based on Brillouin scattering sensing technology known as Brillouin Optical Time 
Domain Analysis (BOTDA). BOTDA is a well-established technology for various 
civil engineering applications, but the study of its application in the instrumented pile 
load test is still very limited. Here, the study considers the instrumental static axial 
top-loaded, bi-directional loaded, and laterally loaded in bored pile and static axial 
top-loaded in the precast reinforced concrete pile. The study also focuses on the pile 
structural deformation measurement technique, anomaly detection, and interpretation 
of instrumented test piles with DFOS. The DFOS strain sensing system was first 
calibrated in the laboratory and then installed in the full-scale on-site control 
specimen to compare and verify the instrumented data with conventional 
instrumentation such as Vibrating Wire Strain Gauge (VWSG) and Telltale 
Extensometer. Subsequently, the DFOS was used in seven (7) full-scale instrumented 
pile load tests. DFOS via BOTDA technology had successfully measured continuous 
strain profile. With the continuous strain profile in the axially loaded instrumented 
test pile, DFOS is capable of measuring the pile structural deformation of the entire 
pile length. If there are any imperfections in bored piles, such as shaft bulging, cold 
joints in concrete, intrusion of foreign matter, and improper toe formation due to 
contamination of concrete, it can be detected through anomaly measurement along 
the continuous strain profile. By eliminating those measurement anomalies, 
misinterpreting load transfer curves and pile geotechnical behaviour through 
continuous strain profiles can be minimised. The measurements were further verified 
by numerical analysis in RATZ software, the pile integrity test (proof coring test and 
unconfined compression strength test), and visual inspection. A new installation 
technique and configuration of DFOS had been established in instrumented precast 
reinforced concrete (RC) piles and laterally loaded instrumented bored piles. The 
entire pile length deformation in long slender RC piles, including pile joints, was 
successfully measured and interpreted with DFOS measurement. In the laterally load 
instrumented test piles, the interpreted lateral movement via DFOS was found to be 
in good agreement with conventional sensor measurement. In addition, the pile 
defect detected through anomaly measurement was further verified with a low-strain 
pile integrity test. In conclusion, the DFOS via BOTDA technology is successfully 
implemented in various instrumented test piles. Continuous pile structural 
deformation measurement and anomaly detection improve the reliability of 
instrumented test pile analysis. This technology will reform the current practice on 
various types of instrumented test piles and provide a better understanding or 
comprehensive interpretation of pile structural and geotechnical behaviour.
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ABSTRAK

Teknologi sensor gentian optik teragih (DFOS) yang diguna pakai dalam 
kajian ini adalah berdasarkan teknologi penginderaan hamburan Brillouin yang 
dikenali sebagai Analisis Domain Masa Optik Brillouin (BOTDA). BOTDA ialah 
teknologi yang telah digunapakai untuk pelbagai aplikasi kejuruteraan awam, tetapi 
kajian penggunaannya dalam ujian beban cerucuk berinstrumen masih sangat terhad. 
Di sini, kajian mempertimbangkan ujian beban statik instrumental atas-paksi, beban 
dwi-arah dan beban-sisi dalam cerucuk gerek, dan beban statik atas paksi dalam 
cerucuk konkrit bertetulang pratuang. Kajian ini juga menumpukan teknik 
pengukuran ubah bentuk struktur cerucuk, pengesanan anomali, dan tafsiran cerucuk 
ujian berinstrumen dengan DFOS. Sistem pengesan terikan DFOS pada mulanya 
ditentukur di makmal dan kemudiannya dipasang pada spesimen kawalan di tapak 
berskala penuh bagi membandingkan dan mengesahkan data dengan instrumentasi 
konvensional seperti Tolok Terikan Wayar Bergetar (VWSG) dan Telltale 
Extensometer. Selepas itu, DFOS telah digunakan pada tujuh (7) ujian beban cerucuk 
berinstrumen skala penuh. DFOS melalui teknologi BOTDA telah berjaya mengukur 
regangan secara berterusan. Dengan profil terikan berterusan dalam cerucuk ujian 
berinstrumen atas paksi, DFOS dapat mengukur ubah bentuk struktur keseluruhan 
panjang cerucuk. Jika terdapat sebarang ketidaksempurnaan dalam cerucuk gerek 
seperti aci membonjol, sambungan sejuk dalam konkrit, pencerobohan bendasing, 
dan pembentukan tapak kaki ceruruk yang tidak betul akibat pencemaran konkrit, ia 
boleh dikesan melalui pengukuran anomali di sepanjang profil terikan berterusan. 
Dengan menyingkirkan anomali pengukuran tersebut, salah tafsir lengkung 
pemindahan beban dan sifat geoteknik cerucuk melalui profil terikan berterusan 
boleh diminimumkan. Pengukuran selanjutnya disahkan secara analisis berangka 
dalam perisian RATZ, ujian integriti cerucuk (ujian teras bukti dan ujian mampatan 
tidak terkurung) dan pemeriksaan visual. Satu teknik pemasangan dan konfigurasi 
DFOS baharu telah diwujudkan dalam cerucuk konkrit bertetulang pratuang (RC) 
berinstrumen dan cerucuk gerek berinstrumen beban sisi. Keseluruhan ubah bentuk 
panjang cerucuk dalam cerucuk RC langsing yang panjang, termasuk sambungan 
cerucuk, telah berjaya diukur dan ditafsirkan dengan pengukuran DFOS. Dalam 
cerucuk ujian berinstrumen beban-sisi, pergerakan sisi yang ditafsirkan melalui 
DFOS didapati dalam persetujuan yang baik dengan pengukuran sensor 
konvensional. Di samping itu, ujian integriti cerucuk terikan rendah turut 
mengesahkan kecacatan cerucuk yang dikesan melalui pengukuran anomali. 
Kesimpulannya, DFOS melalui teknologi BOTDA telah berjaya digunapakai dalam 
pelbagai jenis ujian cerucuk berinstrumen. Pengukuran ubah bentuk struktur cerucuk 
berterusan dan pengesanan anomali telah meningkatkan kebolehpercayaan analisis 
cerucuk ujian berinstrumen dengan ketara. Teknologi ini pasti akan membawa 
pembaharuan kepada amalan semasa bagi pelbagai ujian cerucuk berinstrumen dan 
memberikan pemahaman yang lebih baik atau tafsiran secara menyeluruh tentang 
kelakuan struktur dan geoteknikal cerucuk.
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CHAPTER 1

INTRODUCTION

1.1 Background

Due to the global growth in population and the advancement in construction 

technology, more high-rise buildings and mega infrastructures are built in recent 

decades. Capacity required for pile foundation is getting higher and higher. The 

foundation for these structures must be well designed in order to withstand the 

significant loads, yet at the same time optimizing the design parameters and cost 

(Mirsayapov & Koroleva, 2014). Advancement in technology allows the use of 

Finite Element Analysis (Liu et al., 2012; Pressley & Poulos, 1986) or machine 

learning approaches (Kardani et al., 2020; Nguyen et al., 2020; Prayogo & Susanto,

2018) to predict the foundation behaviour under high loads. However, the 

inhomogeneous nature of the soil strata creates varies uncertainties in determining 

the geotechnical design parameters for the pile foundation. Pile load tests are 

necessary to verify that these piles will comply long-term capacity requirements for 

the building foundation (Tomlinson & Woodward, 2014). With the Instrumented Pile 

Load technique, the pile geotechnical design parameter can be verified and varies 

useful information of pile behaviour under static load can be obtained.

Various types of sensors had been used in instrumented test pile in order to 

monitor the pile behaviour under loading condition. The commonly used measuring 

sensors in instrumented test pile are strain gauge and tell-tale extensometer for 

axially loaded test pile and inclinometer for lateral load test pile (Buttling, 1976; 

Krasinski & Wiszniewski, 2017; Liew et al., 2010; Moayedi et al., 2015; Russo, 

2013; Wang et al., 2015).

Strain gauge and tell-tale extensometer is point-wise sensor used to measure 

pile axial deformation. Both type of sensor is installed at certain intervals along the

1



pile or at selected depth according to soil or rock profile to obtain load 

transferred/distribution at targeted soil or rock layer during load test. Due to the 

nature of the sensors are point-wise sensors, it only able to provide piece of the 

puzzle information regarding the pile behaviour during load test. Factors such as 

uncertainty of soil strata, non-uniform concrete material and pile section, 

imperfection of sensor installation, etc., can contribute more than 40% of error which 

will further jeopardize the result of instrumented test pile analysis (Hayes & 

Simmonds, 2002).

For lateral load test, inclinometer is used to measure tilt angle along the pile 

at certain fixed interval and subsequently convert the tilt angle into lateral 

deformation profile. The tilt angle measurements normally are taken manually and at 

interval of every 500 mm. Typical inclinometer system accuracy is ±0.25 mm per 

reading, or ±6 mm accumulated over 50 readings (25 m length) which include errors 

introduced by casing, probe, cable, readout, and operator (Durhamgeo, 2020). The 

typical accuracy of inclinometer system caused the system to be less reliable and will 

contribute significant error to pile lateral deflection measurement. Strain gauge can 

be used to evaluate the distribution of load transfer from the pile to the surrounding 

soil during lateral load test. Strain gauge should be installed in pairs to measure axial 

strain, with the gauges in each pair located at same depth, symmetrically opposite 

each other, equal distant and parallel to the pile axis, and in line with the applied load 

(ASTM, 2022c). Lateral deflection can be interpreted by integrate the different in 

strain for each pair of strain gauge along the pile depth. With the strain gauge as 

point-wise sensor at selected depth/interval, the pile lateral deformation analysis is 

less reliable due to unavailable of data in between the point-wise sensor interval.

Instrumented test pile forms a crucial part to verify pile performance and 

geotechnical capacity. A more comprehensive and reliable system is required to 

improve the implementation of instrumented test pile in order to obtain more 

accurate geotechnical parameter through load-transfer analysis. In this study, a new 

technique is established using DFOS via BOTDA technology to improve the 

performance of varies instrumented test pile. It able to improve accuracy of pile load 

transfer analysis and supplement the existing pile integrity testing. Pile deformation
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at varies geological ground stratum is also discussed based on measurement from 

DFOS.

1.2 Statements of Problem

Instrumented pile load test provides important information regarding the 

performance of pile. These tests are necessary to verify that the piles will comply 

long-term capacity requirements for the building foundation. Although the strain 

gauge has been widely used for a long time, there are several limitations such as 

time-consuming to install and to connect to data acquisition system, prone to 

damages, tedious installation process (Ammar et al., 2007), and requires at many 

instrumented levels (smaller vertical spacing and very costly) in order to achieve 

reliable load transfer measurement. Imperfection such as pile shaft necking, cold 

joint and concrete contamination especially at pile toe, among the factor that caused 

anomalies measurement and contribute to error in pile performance analysis.

Considering the shortcoming of conventional sensor in instrumented test pile 

application, a method using global strain extensometer (GloStrExt) was established 

to improve the survivor rate of sensor (Ali et al., 2008; Hanifah & Lee, 2005). Global 

strain extensometer is a type of post-installation sensor. Steel pipe need to be pre­

installed in the bored pile during concrete casting. The GloStrExt sensor can be 

installed inside the steel pipe after casting of bored pile. It had simplified the tedious 

installation process compare to conventional sensor and also minimises the risk of 

sensor damaged due to concreting process. Although survivor rate of sensor can be 

improved, the GloStrExt system is point-wise sensor and not able to provide full 

length pile information during load test. The issue of non-uniform concrete material 

and pile section, imperfection in bored pile during construction still not able to be 

fully measured or detected using GloStrExt system. Without full length pile 

information, it may jeopardize the result of instrumented test pile analysis.
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The advancement in fibre optic sensing technology provides a better 

alternative to replace strain gauge in instrumented test piles. There are different 

techniques that can be used to monitor the fibre optic signal. Fibre Bragg Grating 

(FBG) sensors are a type of distributed Bragg reflector constructed in a short 

segment of optical fibre that reflects particular wavelengths of light and transmits all 

others. They are made by laterally exposing the core of a single-mode fibre to a 

periodic pattern of intense ultraviolet light and FBG of different wavelengths can be 

multiplexed in an optical fibre. With the multiplexed nature, multiple sensors can be 

interconnected in single cable and directly minimised the tedious work to handle 

large amount of cable. Even the tedious work to handle large amount of cable can be 

minimise, the FBG system is still point-wise sensor and not able to provide full 

length pile information during load test. If the pile is embedded in many types of 

different soil strata, the quantity of point-wise sensor required will be numerous in 

order to measure mobilised shaft friction in different soil strata during the load test.

In recent year, some DFOS technology with ability to measure continuous 

strain profile along the pile had been introduced as an alternative to improve and 

compliment the conventional point-wise instruments in the instrumented pile test. 

DFOS technology such as Brillouin Optical Time Domain Reflectometer (BOTDR) 

(Ouyang et al., 2015; Pelecanos et al., 2018), Optical Frequency Domain 

Reflectometry (OFDR) (Bersan et al., 2018), Luna Optical Distributed Sensor 

Interrogator (ODiSI-B) (Kania et al., 2020), Optical Backscattered Reflectometer 

(OBR) (Monsberger et al., 2020) and etc had been used in few full-scale case studies. 

Most of the case studies successfully prove that DFOS able to measure continuous 

strain profile and provide usefully information for the full length of pile. But those 

technology still have shortcoming such as low accuracy (> 20 p,s) compare to VWSG 

(2 p,s) and some can only measure in short length (< 70 m) continuously. Therefore, 

those DFOS technology as mentioned above still not the perfect solution to improve 

instrument test pile significantly.

DFOS via BOTDA technology with accuracy of 2 p,s and measurement range 

of more than 2 km is adopted in this study in order to overcome those shortcomings 

in current instrumented test pile. With the continuous strain profile measurement via
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BOTDA, the pile structure deformation, load-transfer and mobilised shaft friction of 

a pile can be analysed with better confidence level. Anomalies strain along the pile 

can be detected and directly improve the interpretation result of pile performance 

significantly.

1.3 Objectives of Research

The objectives of this research are to develop the application technique of 

Distributed Fibre Optic Sensor (DFOS) based on BOTDA technology in varies type 

instrumented pile load test. The application technique shall include installation 

method/configuration, data collection, data processing and data interpretation 

relevant to both geotechnical and structural behaviour of the pile. The objectives 

shall include:

(a) To study the feasibility of using distributed fibre optic sensor via BOTDA in 

instrumented test pile.

(b ) To develop method of instrumented test pile in varies types of test pile using 

distributed fibre optic sensor via BOTDA.

(c) To establish method of pile structural deformation measurement and 

interpretation in instrumented test pile with distributed fibre optic sensor.

(d) To establish method of anomaly detection in instrumented test pile and study 

the effect of anomaly to the interpretation of instrumented test pile result.

1.4 Scope of Research

This study looks into the application of DFOS in different type of 

instrumented test piles including axially top loaded bored pile, Bi-Directional loaded 

bored pile, lateral loaded bored pile and axially top loaded precast reinforced 

concrete (RC) pile. The DFOS system used for this study is based on the Brillouin
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Optical Time Domain Analysis (BOTDA) technology. The flow of study is shown in 

Figure 3.1.

The study started with the calibration of the measurement system (BOTDA) 

and the sensing cable. After the calibration, the sensing cable and the BOTDA 

system are used for full scale on-site calibration or verification on control specimen 

(pile with consistent structural properties). During full scale on-site measurement, the 

DFOS measurements are validated with comparison to other type of conventional 

sensor, i.e., strain gauge, tell-tale extensometer and LVDT.

After the laboratory and full scale on-site calibration, seven full scale on-site 

instrumented pile load tests were executed and the measurement were verified with 

conventional sensor measurement, numeric analysis dan pile integrity test. The type 

of instrumented pile load test involved including:

(a) 3 full scale Top Loaded Load Test on Cast-in-situ Bored Pile

(b ) 1 full scale Bi-Directional Load Test on Cast-in-situ Bored Pile

(c) 2 full scale Top Loaded Load Test on RC Pile

(d) 1 full scale Lateral Load Test on Cast-in-situ Bored Pile

Pile load tests are carried out approximately 2 weeks to 1 month after the 

installation of test pile. The details of testing methods, equipment, loading sequences 

data collection and other parameters are described in Chapter 3. The detailed 

interpretation of result is discussed and demonstrated in Chapter 4. The final stage of 

this study is to interpret the data collected from DFOS of each pile tests. The pile 

behaviours, structural deformation, anomaly and the performance of the DFOS 

systems are assessed and evaluated.
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1.5 Significance of Research

The distributed fibre optic sensing based on Brillouin Optical Time Domain 

Analysis (BOTDA) is an advanced technique of measuring continuous strain profile 

which has major advantages over conventional point-wise sensors. With the 

continuous strain profile, the behaviour of entire pile length can be assessed 

completely.

With the BOTDA system especially in instrumented bored pile, the load- 

transfer, mobilised shaft friction and end bearing of pile can be analysed from the 

continuous strain profile. Defect in pile shaft such as pile shaft necking, cold joint 

and concrete contamination can be detected based anomalies measurement on the 

continuous strain profile. By eliminate those anomalies, the interpretation of pile 

structural and geotechnical behaviour can be significantly improved.

In precast reinforced concrete pile especially long slender pile, continuous 

strain profile is useful for the computation of pile shortening (which is substantial in 

long slender piles) and provides a whole new insight to have better understanding on 

the behaviour of long precast reinforced concrete (RC) piles response under axial 

pile load test. Failure criterion of long slender pile can be reviewed not only based on 

the load-settlement curve, but also to assess the load-transfer curve (t-z curve), 

shortening profile of piles and the degree of mobilised pile friction and end bearing 

result from the interpretation of continuous strain profile.

Lateral behaviour of the pile can be interpreted from the continuous strain 

profiles measured along the tensile face and the compressive face over the entire 

length of the pile. It can easily replace inclinometer for lateral deformation 

measurement at relatively lower cost. It also able to detect any structural anomalies 

with direct measurement (compare to inclinometer) and reflect the true lateral 

structural behaviour.
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1.6 Outline of Thesis

There are five chapters in this thesis. Chapter 1 generally introduces the 

objectives of this study and the scopes of work. The fundamental studies and 

previous research were reviewed and summarized in Chapter 2. Topics reviewed are 

of wide range which cover the type of pile, pile load-settlement modelling using 

RATZ, pile integrity test, instrumented pile test, conventional sensors, fibre optic 

sensors and the application in civil engineering, i.e., FBG, BOTDR and OBR. 

Chapter 3 thoroughly discusses the methodology of the study. The methodology was 

categorized into verification tests in laboratory, on site testing and result validation 

with conventional sensor, numeric analysis and pile integrity test. Chapter 4 presents 

the results, validation and discussions on all the case studies. The final chapter draws 

the conclusions and recommendation for future.
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