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ABSTRACT 

Several major floods have hit Malaysia within the last decades. In order to 

dampen the effects of the floods on communities’ different types of flood mitigation 

projects, mostly structural mitigation measures were carried out. While some of the 

measures have been successful in reducing the impact of the flooding, others were not 

that successful, leading to the collapse of building structures. Therefore, there is a need 

to concentrate on a recovery framework specially tailored towards building permanent 

settlements using a robust and cost-effective building system. An industrialized 

building system (IBS) has been proposed as one of the best solutions for rapidly 

building permanent settlements in flood-prone zones. However, the existing IBS is not 

designed to sustain the horizontal impact due to the debris carried by the flood. Thus, 

a new permanent settlement built in the aftermath of floods using the IBS will 

eventually be destroyed by the extreme impact of horizontal load in the next flood 

cycle. Previous studies on the behaviour and performance of the IBS subjected to 

horizontal impact are found to be lacking. Furthermore, the joint of an IBS is likely to 

be the weakest point and vulnerable to failure when subjected to the horizontal load. 

There is, therefore, the need to develop an improved IBS that is able to withstand the 

horizontal impact of the flood. Thus, this study aimed to investigate the performance 

and behaviour of steel bolt-connected IBS structures subjected to the sudden impact 

of hydrodynamic force with debris as well as the horizontal impact of the pendulum. 

Both dam-break tests and pendulum impact tests were simulated using Autodesk 

computational fluid dynamic (CFD) simulation and Autodesk simulation mechanical 

(nonlinear finite element analysis (NLFEA)) for optimizing the laboratory 

experimental work, respectively. A scale of 1:5 models (one-dimension (1D), two-

dimensional (2D), and three-dimensional (3D)) were designed using Eurocode 2, 

developed, and constructed according to the Buckingham Pi Theorem and Similitude 

Theory and later tested in the laboratory. The three models which include the single 

column-footing, 2D IBS frame and 3D IBS platform were properly tested for the dam-

break test with and without debris using 1 m, 2 m, and 3 m reservoir water height. 

These three models were also tested for the sudden impact of the pendulum. The result 

shows the percentage difference between experimental results and the CFD numerical 

simulation for the stress of the 3D platform is 12.87%, while the displacement 

difference is recorded as 0.09 cm. However, the bolt-connected IBS models resisted 

the highest hydrodynamic forces as compared to the estimated ones from FEMA P-

646 and FEMA P-55. Hence, this assured the reliability of the bolt-connected IBS 

structure for real practice. Furthermore, results of the pendulum impact tests were 

verified with the published literatures and they showed a very good agreement. The 

results show that bolt-connection is more effective and contributes additional 

robustness to the IBS method. Moreover, bolt connection has proven to be effective in 

restricting damages from spreading to other structural components. The findings of 

this study are crucial to improving the current IBS method of construction. The study 

has also successfully enhanced understanding on the behaviour of debris impact on 

building structures and contributed new knowledge on debris impact in relation to the 

design code of practice.
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ABSTRAK 

Dalam dekad belakangan ini, Malaysia telah mengalami beberapa bencana banjir besar. Untuk 

mengurangkan kesan banjir terhadap masyarakat, berbagai jenis projek mitigasi bencana banjir telah dilaksanakan, 

terutamanya langkah-langkah mitigasi struktur. Sebilangan langkah-langkah telah berjaya mengurangkan 

hentaman banjir, tetapi masih ada langkah lain yang kurang berkesan dan kemudian menyebabkan keruntuhan 

struktur bangunan. Oleh itu, kerangka pemulihan yang khusus untuk pembinaan penempatan tetap dengan 

menggunakan sistem bangunan yang mantap dan menjimatkan kos adalah diperlukan. Sistem Binaan Berindustri 

(IBS) telah dicadangkan sebagai salah satu penyelesaian terbaik untuk membina penempatan tetap dengan pantas 

di zon-zon berisiko banjir. Walau bagaimanapun, IBS semasa adalah tidak direkabentuk untuk menahan hentaman 

mendatar oleh banjir. Oleh itu, penempatan kekal baru yang dibina menggunakan IBS selepas banjir juga akhirinya 

akan musnah akibat hentaman beban mendatar yang melampau pada kitaran seterusnya. Kajian terdahalu mengenai 

tingkah laku dan prestasi IBS yang dikenakan hentaman mendatar masih kurang. Di samping itu, bahagian 

sambungan IBS berkemungkinan merupakan bahagian yang paling lemah dan mudah terdedah kapada kegagalan 

apabila dikenakan beban mendatar. Oleh yang demikian, penyambung yang ditambahbaik yang mampu menahan 

hentaman mendatar banjir adalah perlu dibangunkan. Oleh itu, kajian ini bertujuan untuk mengkaji prestasi dan 

tingkah laku struktur IBS dengan penyambung bolt yang dikenakan hentaman mendadak daya hidrodinamik dan 

hentaman mendatar pendulum. Kedua-dua ujian empangan-pecah dan ujian hentaman pendulum disimulasikan 

dengan menggunakan dinamil bendalir pengkomputeran Autodesk (CFD) dan mekanik simulasi Autodesk 

(NLFEA) masing-masing untuk mengoptimumkan kerja-kerja ujian makmal. Model kecil yang berskala 1:5 (satu 

dimensi, dua dimensi, dan tiga dimensi) direkabentuk menggunakan Eurocode 2, dikembangkan dan dibina 

berdasarkan teorem Buckingham Pi dan teori penyerupaan, dan kemudian diuji di makmal. Ketiga-tiga model yang 

merangkumi tapak tiang tunggal, rangka 2D IBS dan pelantar 3D IBS telah diuji dengan ujian empangan-pecah 

dengan serpihan dan tanpa serpihan menggunakan ketinggian air takungan 1 m, 2 m dan 3 m. Ketiga-tiga model 

ini juga diuji dengan hentaman mendadak pendulum. Hasilnya, perbezaan peratusan antara hasil ujian makmal dan 

simulasi numerik CFD untuk tegasan pelantar 3D adalah 12.87%, dan perbezaan peratusan untuk anjakan adalah 

0.09 cm. Namun, model IBS dengan penyambung bolt mampu menahan daya hidrodinamik tertinggi berbanding 

dengan anggaran nilai dari FEMA P-646 dan FEMA P-55. Oleh itu, ini telah menjaminkan kebolehpercayaan 

struktur IBS dengan penyambung bolt dalam amalan sebenar. Selain itu, hasil ujian hentaman pendulum juga telah 

disahkan dengan literatur yang diterbitkan dan menunjukkan persetujuan yang baik. Hasil menunjukkan bahawa 

sambungan bolt adalah lebih berkesan dan mampu menyumbang kekuatan tambahan kepada kaedah IBS. Di 

samping itu, sambungan bolt terbukti berkesan dalam menyekat rebakan kerosakan ke komponen struktur yang 

lain. Pencarian kajian ini adalah sangat penting untuk meningkatkan kaedah pembinaan IBS semasa. Kajian ini 

juga telah berjaya meningkatkan pemahaman yang lebih baik terhadap tingkah laku hentaman serpihan pada 

struktur bangunan dan menyumbang pengetahuan baru mengenai hentaman serpihan yang dikaitkan dengan kod 

amalan rekabentuk.
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CHAPTER 1  

 

 

INTRODUCTION 

1.0 Problem Background 

Malaysia is experiencing heavy rainfall which can cause a lot of disasters due 

to the reason that the country lies entirely in the equatorial zone. Heavy rain has a great 

impact on many aspects of the Malaysian people’s lives on the east coast of Peninsular. 

Though the rains are very vital for farming among others, especially wet rice farming, 

they may also be the main responsible for causing seasonal floods. Therefore, rains 

and floods are frequently identified as hazards and resources (Parker, 1996). There is 

a flash flood in the urban areas which is the most common and disruptive hydro-

meteorological phenomena that they are experiencing most often. Flood in the rural 

area can cause more devastating effect not only to the environment or the life of people 

but also to whatever infrastructures available, it can also destroy permanent settlement 

which would generate a big disaster to the rural environmental areas. Numerous things 

are adding to the flooding challenges varying from the topography of the area, drainage 

problems, some engineering structures, and the climate. Floods are mostly caused due 

to the presents of storms wherein a lot of rainfall occurred in a very short time. These 

types of precipitation rains, resulting in a frontal storm. Other main factors that caused 

the presents of flood hazards are intensity and long duration of the rain. 

1.1 Background of the Problem 

Flood has been a serious problem in Malaysia, several major floods have been 

experienced within the last decade of December 2006; January 2007; August 2010; 

December 2012; December 2013; and December 2014 through January 2015. 

Malaysian Drainage and irrigation department categorized flooding into two types: 

heavy rains (monsoon) floods and flash flooding (DID, 2000). According to the 
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perspective views of hydrological experts, the clear difference between monsoon 

floods and flash flooding disasters is the period of dissipation whereby the river flow 

declines back to the normal water level. Flash flood usually takes only a few hours to 

return to the normal level of the water, while heavy rains (monsoon) flood could 

potentially prolong to a month. There is a total of 189 river basins in the whole of 

Malaysia which the main channels are directly flowing into the south china sea. 

Furthermore, 85 of the river basins are prone to frequent flooding (89 of them were in 

Peninsula Malaysia, while 78 are in Sabah and 22 are in Sarawak). The expected area 

which is exposed to flooding catastrophe is roughly 29,800 km2 which is 9% of the 

total area of Malaysia. This is affecting over 4.82 million Malaysians, and this is near 

to 22% of Malaysia’s total population (Abdullahi, 2015). 

It has been recorded that Muar River Basin has been experiencing numerous 

flooding for over a long a period, there was a series of monsoon rain events that had 

caused flooding in the Muar River Basin geographical region. The floods that were 

recorded are shown from December 1926 to January 1927, February to April 1967, 

November 1967 to January 1968, December 1970 to January 1971, and November 

1979, respectively. From 1980 to 2010, a total number of 29 flood incidents have been 

noted (Abdullahi, 2015). Among the side effects of flooding include damages to 

houses, shops, schools, farmland, industries, and water quality. The research had 

shown that flood victims faced problems of repairing cost, some with small scale 

businesses could not be able to reopen their business after the flooding disaster (Vinet, 

2008). 

Malaysian government recognizes the Drainage and Irrigation Department 

(DID) as the authorized department that is handling flooding disasters in the country. 

They DID, however, is an agency that is dominated by engineers who were 

professionally trained for controlling floods. The main policy and strategy of DID for 

flood mitigation comprises large structural measures which include dams and 

embankments for controlling flood flows. Despite the claims of DID in recent years, 

the department decided to consider non-structural processes which include the 

following: alerting systems for mitigating the flood impact, planning for the land use, 

forecasting of the flood. In order to implement the rule guidelines for mitigating the 
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flood, the following measures were considered first: (i) Implementing the flood 

mitigation structures with relevance to engineering and commercial environment; (ii) 

Implementing structural measures of complementary; (iii) Implementing non-

engineering measures in the places where there is lacking technical solution, and (iv) 

Persistence on strengthening the forecasting of the flood plus warning systems. 

Furthermore, the authority had carried out a different number of projects for mitigating 

the flood which most of which were structural mitigation procedures such as 

channelization of rivers, increasing river embankments and constructing multi-purpose 

dams (Abdullahi, 2015). 

Some of the strategies for flood mitigation have been successful in decreasing 

some of the effects of flood, although they are not completely successful in the entire 

flood management. Furthermore, it is predicted that the upcoming floods may become 

harsher because of higher populations, more intensive farming and the increasing of 

industries. All these can easily increase the effect of floods, exposure, and vulnerability 

to flooding hazards. Likewise, on the side of the crowds, it is predicted that the impact 

of the flood could become more dangerous and enduring with longer recovery time as 

the erosion of social capital becomes further and more pronounced (Abdullahi, 2015). 

It is a harsh fact that flooding is happening every year whereby there is an 

anticipation of extreme flooding once in every 5-years due to heavy monsoon rainfall. 

Under this circumstance, people need shelter for living safely, and it is not easy to 

mitigate the frequency and intensity. Therefore, there is a need to concentrate on 

recovery framework, which is building a permanent settlement by producing a building 

system in which the structures can be built very fast and must be robust and cheap. 

There are many proposed solutions which include container, modular blocks and IBS 

frame structure that is readily available in the local market. IBS has been 

acknowledged as one of the best solutions, yet IBS has some problems, and the 

performances are not fully investigated especially the performance and the behaviour 

at the joint. Since floods with debris move at high speed, the sudden impact imposed 

by flood with debris onto the sidewall of permanent settlement may cause failure 

especially at the joint. 
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1.2 Problem Statement 

An industrialized building system (IBS) has been proposed as the best solution 

for building a permanent settlement in the flood-prone zone where they experienced 

an extreme flood disaster. IBS can offer speedy site assembly with high quality of 

construction; this makes it the best candidate for rebuilding post-disaster permanent 

settlements. Moreover, IBS is very strong for sustaining vertical load, but it is not 

designed to sustain the horizontal sudden impact load especially at the joint. Since the 

existing IBS system is not designed to sustain a horizontal impact due to flood with 

debris, the construction of newly built permanent settlements will be destroyed by 

flood in the next cycle. Hence, it will increase the cost of flood disaster recovery in the 

long term. However, studies on the behaviour and performance of IBS subjected to 

horizontal impact are lacking. Furthermore, the joint of an IBS is likely to be the 

weakest point and vulnerable to failure when subjected to horizontal load. There is, 

therefore, the need to develop a bolt-connected IBS able to withstand the horizontal 

impact of the flood. Nevertheless, the performance and the behaviour of steel bolt 

connections are still in the infancy stage. Therefore, this study would be investigating 

the details of how the bolt connection performs and behaves subject to sudden impact 

due to horizontal load. If bolt can be proven to be more effective, then this would 

contribute to the additional robustness of the IBS. Hence, it can potentially become the 

best solution for flood-prone zone structures in the future. 

1.3 The Research Seeks to Address the Following Questions 

1. How to convert the conventional reinforced concrete structural system to 

Industrialized Building System? 

2. Could the converted IBS provide a better qualitative and reliable building 

system to the future structures especially for flood disaster recovery purposes? 

3. How to create a building system that would prevent one structural component 

from transferring its failure to another component subject to sudden horizontal 

load? 
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1.4 Aim and Objectives of the Study 

The aim of this study is to investigate the performance and behaviour of steel 

bolt-connected IBS structures subjected to the sudden impact of hydrodynamic force 

with debris and horizontal impact force of pendulum. The impact will be simulated 

using simulation software programs (NLFEA and CFD) and laboratory experimental 

work. In addition, to achieve the stated aim, the following objectives of the research 

are stated as follows. 

1 To design and fabricate steel bolt-connected precast framing IBS components 

using current design code and construction method. 

2 To simulate the dam-break tests and pendulum impact tests using Autodesk 

CFD simulation and Autodesk simulation mechanical (NLFEA) for optimizing 

the laboratory experimental work. 

3 To identify the performance and the capacity of bolt-connected IBS 

components subjected to the sudden impact of hydrodynamic force on 1D, 2D, 

3D IBS components. 

4 To investigate the performance and the capacity of bolt-connected IBS 

components subjected to the sudden impact of pendulum on 1D, 2D, and 3D 

IBS components. 

 

1.5 Scope of the Study 

This study focuses on investigating the performance and the behavior of scaled 

1:5 IBS structures using steel bolt as the mode of the connections. There are two phases 

in this research which are: Autodesk simulation software programs and the laboratory 

experimental work. Two simulation software programs were used in phase one. On the 

other hand, Autodesk simulation CFD was used for simulating dam-break tests, the 

observed parameters in this simulation are velocity and pressure. While the other 
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software is simulation mechanical for nonlinear finite element analysis test, then, the 

observed parameters are force, stress, and displacement. These two simulation 

software programs were used to simulate the three IBS models (1D single column-

footing, 2D frame and 3D platform) for optimizing the laboratory work. The second 

phase is designed to conduct two different laboratory tests for studying the 

performance and the behaviour of the proposed steel bolt-connected IBS components. 

The first laboratory experiment is the dam-break test, this test was simulating the 

sudden impact of flooding on the real structures. The second laboratory experiment is 

a pendulum impact test with the purpose to simulate the sudden impact of debris 

against three IBS models which include: 1D single column-footing, 2D frame and 3D 

platform. A total of 51 IBS components were designed and fabricated in the laboratory 

for this study, they were described as 14 precast hollow core slabs (7 slabs with 220 x 

1940 x 40 mm and 7 slabs with 220 x 1500 x 40 mm), 21 precast beams (15 beams 

with1300 x 100 x 60 mm and 6 beams with 340 x 100 x 60 mm), 8 hollow core footing, 

and 8 precast columns (100 x 100 x 700 mm) were made and assembled, and tested as 

a bolt connected IBS structures. Hence, the specimens were designed based on the 

guidelines of Eurocode 2. 

1.6 Importance of the Study 

This research is addressing the crisis of construction mitigation and humanity 

during a disaster of a flood through the following points:  

1. Flood-prone: some parts of Malaysia are in the flood-prone zone, and every 

year flooding is affecting one of those areas. This research is to find a solution 

to the devastation of floods by providing a reliable structure throughout the 

housing lifespan. 

2. By replacing the conventional method of construction with a new innovative 

IBS system would reduce the construction time, provide better site 

management, reduced wastage, establish better qualitative structure, produce 

rapid building, and reduces the cost of construction 
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