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ABSTRACT 

Most real engineering systems are multivariable systems and multiobjectives 

in nature, especially in a complex dynamic system. The ultimate objective of 

dynamic system modeling is to obtain parsimonious and adequate model, where the 

predictive error and model complexity need to be optimized and satisfied 

simultaneously. This study attempts to establish the needs of a multiobjective 

optimization algorithm by comparing it with a single-objective of the multivariable 

optimization algorithm. Two different types of optimization techniques are used: (1) 

elitist the non-dominated sorting genetic algorithm (NSGA-II) for multiobjective 

optimization and (2) the modified genetic algorithm (MGA) for single-objective 

optimization. The results showed that advantage of the multiobjective optimization 

algorithm compared with the single objective optimization algorithm in developing 

an adequate and parsimonious model for a discrete-time multivariable dynamics 

system. A new algorithm based on a multiobjective optimization algorithm for model 

structure selection is proposed namely multivariable multiobjective optimization 

using hybrid differential evolution (MOHDE). The proposed algorithm was 

compared with NSGA-II for model selection in dynamic system modeling of 

multivariable optimization. The study involved simulated and real systems data for 

comparison in terms of model predictive accuracy and model complexity. The case 

studies for real systems were considered in this study for investigating the 

effectiveness of the multivariable proposed algorithm namely Reference 

Evapotranspiration (ETo) for MISO systems, offshore structure response for SIMO 

systems and CD-player arm for MIMO systems. The results showed that the 

proposed algorithm is capable to produce a good and adequate model with a minimal 

number of terms and a good predictive accuracy with lower error (less than 1%) on 

average for all study cases where the result shows that MOHDE outperformed 

NSGA-II. 

 

  



vii 

ABSTRAK 

Kini kebanyakan sistem kejuruteraan adalah sistem pembolehubah-pelbagai 

dan objektif-pelbagai, terutamanya dalam sistem dinamik yang kompleks. Objektif 

utama pemodelan sistem dinamik ini adalah untuk mendapatkan model yang 

parsimoni dan mencukupi, dimana ralat ramalan dan kerumitan model perlu 

dioptimumkan dan dipenuhi dengan serentak. Kajian ini dibuat untuk menunjukkan 

keperluan algoritma pengoptimuman objektif-pelbagai dengan membandingkannya 

dengan algoritma pengoptimuman objektif-tuggal dalam aplikasi pembolehubah-

pelbagai. Dua teknik pengoptimuman yang digunapakai adalah: (1) algoritma genetik 

elitist tersusun tak-terdominasi II (NSGA-II) untuk pengoptimuman objektif-pelbagai 

dan (2) algoritma genetic terubahsuai (MGA) untuk pengoptimuman objektif-

tunggal. Hasil menunjukkan kelebihan algoritma pengoptimuman objektif-pelbagai 

berbanding dengan algoritma pengoptimuman objektif-tunggal dalam 

membangunkan model yang mencukupi dan parsimoni untuk sistem dinamik 

pembolehubah-pelbagai masa diskret. Algoritma baru berdasarkan algoritma 

pengoptimuman objektif-pelbagai bagi pemilihan struktur model dicadangkan iaitu 

pengoptimuman objektif-pelbagai menggunakan evolusi pembezaan hibrid 

(MOHDE). Algoritma cadangan telah dibandingkan dengan NSGA-II dalam 

pemilihan pemodelan sistem dinamik pengoptimuman pembolehubah-pelbagai. 

Kajian ini melibatkan data sistem simulasi dan sistem sebenar untuk perbandingan 

dari segi kejituan ramalan dan kerumitan model. Untuk menyelidiki keberkesanan 

algoritma pembolehubah-pelbagai yang dicadangkan, kajian kes sistem sebenar 

dipertimbangkan dalam kajian ini adalah Evapotranspirasi Rujukan (ETo) untuk 

sistem MISO, Respon Struktur Luar persisir untuk sistem SIMO dan lengan pemain 

careka (CD) untuk sistem MIMO. Keputusan menunjukkan bahawa algoritma yang 

dicadangkan mampu untuk menghasilkan model yang baik dan mencukupi dengan 

bilangan terma yang minimum dan kejituan ramalan yang baik dengan ralat yang 

rendah (kurang dari 1%) secara purata untuk kesemua kajian kes dimana hasilnya 

menunjukkan bahawa MOHDE mengatasi prestasi NSGA-II.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

In most practical applications, control processes or systems need the 

knowledge of the mathematical equations of those processes or systems. Most 

application in control systems are complex, time-varying or nonlinear. It is crucial to 

model a system, especially in engineering and science since they are both mostly 

involved with designing systems based on mathematical models. This can be done by 

developing a mathematical model based on the information of input and output 

variables, known as System Identification (SI). SI uses statistical methods to 

build mathematical models of dynamical systems from measured data. It is mainly 

used for two purposes, namely model estimation and controller design, to develop 

mathematical models in some SI applications. Additionally, it is important to 

recognize the behaviour of the system in order to improve the accuracy and 

efficiency of the system. Four procedures are involved in system identification: the 

acquisition of data, the choice of model presentation, parameter estimation, and 

model validation (Ljung, 1999). The previous researcher chose this method as it can 

easily be implemented with the current advanced digital technology and allows for 

simple modeling. 

The identification of unknown system has been studied and developed as 

mathematical models where mostly of these models are based on parameterized 

nonlinear models such as difference equation models, artificial neural networks 

(Billings et al., 1989; Z. Chen et al., 1993), Volterra series (Hélie & Roze, 2008), 

wavelet networks (Aadaleesan et al., 2008) and Wiener and Hammerstein models 

(Xu et al., 2008; Zhai et al., 2006). By minimize the errors, the parameters are 

estimated between the outputs of proposed model with the measured output of the 

system which to be modelled. According to Nowak (2002), there are some issues 

https://en.wikipedia.org/wiki/Statistical_method
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Dynamical_system


 

2 

regarding approaching nonlinear system identification; these are test for nonlinearity 

of the system, selection of the model class either parametric or nonparametric, 

selection of the optimality criterion of the system and consideration of the input 

signal of the system., Liu et al. (2017) proposed a novel many-objective evolutionary 

algorithm using a one-by-one selection strategy to solve the inefficacy of attempts to 

balance convergence and diversity in a high-dimensional objective space. 

Parsimonious model is required in modelling process, where the simplest 

model that adequately representing the measured input-output data of the process. 

The model structure that represents the nonlinear system should be optimized and 

adequate. The importance of selecting model structure in modeling dynamic systems 

can be summarized by Ahmad et al. (2004): 

i. It is important to find parsimonious model in order to complete polynomial 

model in modelling the dynamic systems. 

ii. The selection of an optimal model structure will drive to the development of 

an adequate model. 

iii. The calculation matrix of the complete parameters of the model is always ill 

conditioned by simply increasing the dynamic terms of the model in order to 

achieve the desired predictive accuracy. 

 

Over the past decades, optimization algorithms have received increasing 

attention by the research community as well as the industry. The optimization 

problem in system identification is an important issue in order to develop an 

adequate and parsimony model. Ahmad (2004) has mentioned the issue in system 

identification by using single objective optimization algorithm or also called as 

Modified Genetic Algorithm (MGA). Mean Square Error (MSE) is defined as an 

objective function in optimizing the model structure in system identification. Even 

though models with good predictive accuracy can be found successfully, however the 

optimal complexity of the model is not guaranteed especially for processes of high 

order of nonlinearity. Hence, in this research study, solving the problem of 

optimizing two objective functions in the nonlinear system identification will be 
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focused. The two objective functions that will be considered are; minimizing the 

error of predicted and measured and minimizing the complexity of the model. To 

provide an optimal model structure, these two conflicting objectives must be satisfied 

simultaneously that will lead to solve multiobjective optimization problem. 

According to Coello et al. (2007), multiobjective optimization problem can 

be defined as finding the best solution which can satisfies all the objective functions 

simultaneously. Although multiobjective optimization problem is difficult to solve, 

various proposed algorithms have been studied. Stochastic optimization is one of the 

categories beside deterministic and enumerative methods. This method comprises of 

random search, simulated annealing, Monte Carlo, Tabu search, differential 

evolution and evolutionary computation. Random search is the simplest stochastic 

optimization. It simply evaluates a given number of randomly selected solutions. 

This method is not suitable for many multiobjective optimization problems because 

of its failure to incorporate problem domain knowledge (Goldberg, 1989). Simulated 

annealing is an analogy of annealing process (physical cooling phenomenon) that is 

an analogy from natural evolution system. Simulated Annealing usually starts from a 

high temperature, which decreases exponentially. The slower the cooling process, a 

better solution can be obtained. This method is slow to achieve the global optimum 

(Russell & Norvig, 2010). 

The most popular method that is used in multiobjective optimization 

problems is Evolutionary Computation (EC). This method embodies the techniques 

of genetic algorithms, evolution strategies, genetic programming and evolutionary 

programming, collectively known as Evolutionary Algorithms (EA). In general, this 

method consists of a population of solutions that will go through genetic operations 

for evaluation and produce a new generation. It is important to involve 

multiobjective optimization in selecting model structure for nonlinear system 

identification, including getting adequate and parsimony model (McLeod, 1993). 

Zitzler et al. (2000) state that evolutionary algorithms is established method 

for solving multiobjective optimization because they deal simultaneously with a set 

of feasible solutions. The following is an incomplete historical list of EA for solving 
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multiobjective optimization problem are: Multiple Objective GA, MOGA (Fonseca 

& Fleming, 1996), Non-dominated Sorting GA, NSGA (Srinivas & Deb, 1994), 

Thermodynamical GA, TDGA (Kita et al., 1996), Pareto Archived Evolution 

Strategy, PAES (Knowles & Corne, 1999), Strength Pareto EA, SPEA (Zitzler, 

1999), Multi-Objective Messy GA, MOMGA (Van Veldhuizen, 1999), Pareto 

Envelope-based Selection, PESA Corne (Corne et al., 2000), Strength Pareto EA2, 

SPEA2 (Zitzler et al., 2001), Elitist Non-dominated Sorting Genetic Algorithm, 

NSGA-II (Deb et al., 2002), and Multi-Objective Differential Evolution, MODE 

(Babu et al., 2005). All the proposed methods are used in different multiobjective 

optimization problems. Basically, these methods generate solutions in the Pareto 

front that need trade-off between model objective functions that are usually 

conflicting. 

To solve the multiobjective optimization problems, a researcher Deb (2002) 

performed an elitist multiobjective genetic algorithm (NSGA-II). They used elitism 

approach in order to avoid the best solution being deleted during the optimization 

process. For the diversity mechanism, they applied the crowding distance estimation 

procedure to maintain the diversity of the trade-off of the solutions. This method has 

been applied in several applications of multiobjective optimization such as 

mechanical component design, truss-structure design and microwave absorber design 

(Deb, 2001). 

For several problems a simple evolutionary algorithm might be good enough 

to find the desired solution. As reported, there are several types of problems where a 

direct evolutionary algorithm could fail to obtain a convenient (optimal) solution 

(Kuroda et al., 2015; Li et al., 1997; Lo & Chang, 2000; Qiao et al., 2019; Tseng & 

Liang, 2005; Y. Wang et al., 2007). This clearly paves way to the need for 

hybridization of evolutionary algorithms with other optimization algorithms, 

machine learning techniques, heuristics etc. Some of the possible reasons for adapt or 

implement hybrid are as follows: 

i. To improve the quality of the solutions obtained by the evolutionary 

algorithm  
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ii. To improve the performance of the evolutionary algorithm (i.e. speed of 

convergence). 

iii. To incorporate the evolutionary algorithm as part of a larger system 

especially for complex system that involve multivariable parameter. 

Hence, if first algorithm outperforms second algorithm in some cost 

functions, it should be roughly as many as any other function in which second 

outperforms first. Therefore, from a problem-solving perspective, it is difficult to 

formulate a universal optimization algorithm that solves all problems and 

hybridization can be the key to solving real problems. Nowadays, differential 

evolution (DE) has been applied to multiobjective optimization (MOO) problems. 

DE is suitable for solving huge and complex problems with just a simple algorithm 

(Feoktistov, 2006). Thus, many works have implemented DE to MOO problems 

(Adeyemo & Otieno, 2009; Babu et al., 2005; Basu, 2011; Fan et al., 2006; Peng et 

al., 2010). This research proposes a new MOO algorithm based on DE namely 

MOHDE to determine optimum model structure for dynamic systems and studied its 

effectiveness using the simulated and real multivariable data systems. 

1.2 Problem Statement 

Model structure selection in identification problems conventionally is 

selected based on its model representation consisting of full expansion of the 

equation. Most real engineering system optimization problems are multivariable and 

as well as multiple objectives in nature since they have several problems to be solve 

and objectives need to be satisfied simultaneously. Therefore, the needs of 

multiobjective optimization in system identification must be consider for the problem 

which has more than one objective function i.e., model predictive error and model 

complexity. An adequate model must fulfil two requirements; these are predictive 

accuracy and parsimony model. However, in most reported works in system 

identification, the model is developed by optimizing the prediction error and model 

parsimony is obtained through trial and error, i.e., single objective optimization 

(SOO) algorithms. 
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SOO signifies all algorithms that use only one objective function in the 

development of dynamic models. These algorithms have been successfully applied to 

linear parametric modelling but have some disadvantages. The disadvantages are:  

i. Only suitable for one objective function in modeling dynamic system;  

ii. Several procedures need to be added to find an optimal model structure that 

will affect computational time. 

iii. High order of nonlinearity or complexity for modeling dynamic system will 

not guarantee getting a parsimonious model structure.  

Hence, alternative algorithms based on more than one objective function need 

to be investigated to optimize the developed dynamic system. Furthermore, this study 

will elaborate and propose a suitable method of multiobjective optimization 

algorithm that suitable for dynamic system modeling. In addition, since it took 

advantage of integrated methods, incorporated with hybrid evolutionary algorithm as 

part of a larger system, especially for complex multivariable systems that can be 

solved simultaneously in MOO.  

1.3 Objectives 

The main objectives of this research are: 

i. To evaluate the needs for multiobjective optimization and multivariable in 

system identification (SI) on model structure by comparing study between 

single objective optimization and multiobjective optimization algorithms that 

is suitable for dynamic system modeling. 

ii. To propose an efficient hybrid differential evolution based algorithm for 

multiobjective optimization. 

iii. To validate the proposed algorithm using simulated systems and published 

real plant data for nonlinear multivariable system. 
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Multi-objective optimization methods will be further investigated to obtain 

good results for model structure selection in nonlinear system identification. The 

multiobjective optimization algorithms will be improvised to make effective 

modeling dynamic systems in consequential of the parsimony and adequate models.  

1.4 Scopes and Limitation 

The research is subjected to several scopes and limitation due to wide area of 

research in system identification and multiobjective optimization algorithms. The 

scopes and limitations are listed as: 

i. Only Nonlinear Auto-Regressive with eXogeneous input (NARX) models 

will be used with and without additional of white noise and only least 

square estimation (LSE) is considered in the simulation studies for fitting 

the regression. 

ii. Input-output data is reliable and available from simulated systems and 

experimental data. 

iii. Multivariable system application including Multi input single output 

(MISO), Single input multi output (SIMO), and Multi input multi output 

(MIMO) are considered. 

iv. All simulation and implementation of the algorithms are using Matrix 

Laboratory (MATLAB) software and Off-line system identification is 

considered. 

 

1.5 Importance of the Research 

Choosing a model structure is one of the main processes of system 

identification. This process can be tedious if the model representation used to 

represent the system has a large number of candidate terms especially in 
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multivariable system. If the number of input and output lags and the nonlinearity 

order used are large, the number of candidate terms, M will basically increase. 

Therefore, searching for an adequate and parsimonious model requires a high 

computational cost. Most model structure selection algorithms show that it is not 

practical to select a significant term from all candidate terms if the number of 

possible models is very huge. In particular, the NARX model is used, which is 

especially possible in multivariable systems. 

An alternative approach for identifying parsimonious model especially for 

nonlinear structures is needed, and therefore being proposed. Most modeling 

problems need to consider minimizing two objective functions i.e. model predictive 

error and model complexity. Hence, this study proposed an alternative algorithm 

using MOO approach for resolving these objective functions. This algorithm is based 

on evolutionary algorithms where DE is chosen to be combined with MOO 

procedures in model structure selection in an identification problem. By taking the 

advantages of global characteristic in genetic algorithm, the algorithm will simplify 

the model structure selecting to search for optimal solution without comprehensively 

testing every possible solution. The results of the study provide an alternative 

approach for choosing model structures, especially for nonlinear and multivariable 

systems. 

1.6 Research Methodology 

The initial stage of the methodology for the study is based on system 

identification procedures: i. Acquisition of either simulated or real data, ii. Selection 

of a model structure, iii. Estimation of parameters, and iv. Validation of the identified 

models. This research focuses on the development of a suitable multiobjective 

optimization method in modeling multivariable dynamic system. Next, the study 

continue with coded NSGA-II and MOODE in MATLAB software that was 

proposed by Loghmanian (2010) and Zakaria (2013), respectively to familiarise with 

multiobjective optimization method that is applied to system identification problem. 
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This multiobjective optimization algorithm is investigated to capture its effectiveness 

and shortcomings. 

The purpose of this study is to incorporate and improve the NSGAII and 

MOODE algorithms for selecting model structures since the execution time is too 

long. The modifications of this coding will reduce the computational time and make 

it suitable for modeling dynamic systems. The modified encoded MOO based on the 

NSGAII algorithm is then compared to the MGA-based SOO algorithm in dynamic 

system modeling to justify the use of the MOO advantages. A new MOO algorithm 

based on the DE algorithm is being developed. This proposed algorithm will be 

investigated and identify its strengths and weaknesses. The effects of various genetic 

parameters of DE also will be investigated to find the correct combination of these 

parameters for model structure selection. 

Comparative study between NSGA-II and the proposed algorithm (MOHDE) 

is investigated for multiobjective optimization problem. Both simulated and real 

experimental data are also used for the comparative studies. The proposed algorithm 

is applied to the identification of real experimental data obtained from multivariable 

systems. Three case studies are considered namely ocean wave offshore response, 

reference evapotransporation and CD-player arm system to verify the effectiveness 

of proposed algorithm. The validity of the proposed algorithm is studied using 

simulated systems with known model structures at initial stage of investigated case 

studies. Finally, for real process data, the model validity tests such as one step ahead 

prediction (OSA), model predicted output (MPO) and correlation tests are used for 

validation of the identified models produced by the proposed algorithm. The 

summaries of the methodology of the research study are illustrated in Figure 1.1. 
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Figure 1.1 Flowchart of research methodology 
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1.7 Research Contributions 

The contributions of the research can be summarized as follows: 

i. The justification of MOO algorithm through comparative study between 

MOO and SOO algorithms in optimizing model structure for system 

identification. The improved NSGA-II algorithm is investigated in order to 

identify their strengths and weaknesses.  

ii. The proposed algorithm consists of Hybrid Differential Evolution where the 

model structure selection use DE as framework combined with 

Nondominated selection operator namely MOHDE. This proposed algorithm 

will help researcher to choose a suitable model structure from a set of 

possible model structures. 

iii. The implementation of the proposed algorithm (ii) in real case study data for 

all components of complex multivariable (SIMO, MISO, and MIMO) 

application systems to identify and prove the effectiveness of the proposed 

algorithm that will contribute to a better algorithm for system identification 

dynamic systems modeling. 

 

1.8 Outline of the Thesis 

In overall this thesis composes of six chapters. Chapter 1 presents the 

introduction and background of the research. Further, the other chapters are outlined 

in the following paragraphs. 

Chapter 2 reviews the interest of this research which is system identification 

where the critical problem is model structure selection. Different approaches 

developed in model structure selection algorithm in order to get the optimal model to 
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represent the behaviour of dynamic system are presented. SOO and MOO algorithms 

for model structure selection tools are reviewed. Since this study involve with 

multivariable application, hence the needs of MOO and proper selection of suitable 

algorithm also being studied and reviewed to resolve the complex multivariable 

dynamic system. DE algorithm for MOO problem as well as for model structure 

selection is discussed and reviewed. 

Chapter 3 discusses the comparison between SOO and MOO algorithms in 

finding the optimal model structure of the dynamic systems. This chapter is 

presented to show the merit of MOO in solving system identification problem. 

Initially, the description of model representation used in this study is elaborated to 

provide overview for model structure selection. Two algorithms are considered 

which MGA for SOO algorithm while NSGA-II for MOO algorithm. These 

algorithms are compared in modeling simulated systems and real data available in 

the literature. 

Chapter 4 presents the development proposed algorithm for multiobjective 

optimization using hybrid differential evolution (MOHDE). The proposed algorithm 

is based on DE algorithm. Thus, the structure of DE algorithm is elaborated to 

provide the basis for the development of the proposed algorithm. Details 

implementation of MOHDE in model structure selection is described. The effect of 

varying genetic parameters of MOHDE studied and the right combination of those 

parameters is presented. To show the capability of the proposed algorithm, 

comparative studies between MOHDE and NSGA-II are conducted and discussed. 

These comparative studies show that the identification performance of the proposed 

algorithm is better than NSGA-II and can be employed as an alternative for model 

structure selection. 

Chapter 5 studies the identification of multivariable dynamic nonlinear 

system using proposed algorithm. Initially, the effectiveness of the proposed 

algorithm is tested through modeling simulated systems. Next, three case studies 

were considered in this chapter. These are modeling of offshore structure response, 

reference evapotranspiration and CD-player arm. Nevertheless, initial stage of these 
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investigated case studies needs to be investigated using simulated systems with 

known model structures to the effectiveness of the proposed algorithm. The 

identified models are validated through several model validity tests which are 

correlation tests, one step ahead prediction (OSA), and model predicted output 

(MPO). All the model validity results are presented and discussed. 

Finally, Chapter 6 concludes the finding of the research. Further, the final 

chapter provides possible extension works and recommendations for future work. 
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