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ABSTRACT

Studies on the bond behaviour of deformed steel rebars in conventional 
concrete have been widely covered. However, the studies on the bond behaviour 
between deformed steel rebars and high-strength self-compacting concrete (HSSCC), 
particularly with the addition of steel fibres, are still very limited. Hence, in this 
research, an in-depth study was conducted to investigate the effects of steel fibres on 
the bond behaviour of deformed steel rebars embedded in steel fibre high-strength self- 
compacting concrete (SFHSSCC). Experimental works were carried out in two phases. 
Phase 1 involved the design of concrete mixes and the testing of fresh and mechanical 
properties of the normal vibrated concrete (NVC), HSSCC and SFHSSCC. The steel 
fibres used in SFHSSCC were the hooked-end type with 35 mm length and an aspect 
ratio of 63.6. The research works in Phase 2 involved the direct pullout testing 
conducted according to the RILEM RC6 Part 2 standard. A total of 72 pullout 
specimens with a dimension of 200 mm x 200 mm x 200 mm were prepared and tested 
at 30 ± 2 days. A few of SFHSSCC specimens were tested at the 6 months of concrete 
age. The pullout specimens comprised high yield deformed steel rebars of 12, 16, and 
20 mm diameters. The pullout specimens were subjected to increasing axial pullout 
load. The test results in Phase 1 showed the proposed design mix of self-compacting 
concrete managed to achieve high compressive strength of 60-80 N/mm2. As compared 
to HSSCC, the concrete compressive strength of SFHSSCC had increased slightly, but 
the splitting tensile strength had increased tremendously. The results showed that 
SFHSSCC with 1.0% of steel fibre volume fraction was the best mix that satisfy the 
self-compacting and harden concrete requirements and therefore was selected for 
further study in Phase 2. The test results of Phase 2 showed that the effect of steel 
fibres in increasing bond strength between rebar and the high-strength self-compacting 
concrete is seen to be insignificant as the results of bond strength of rebars in HSSCC 
and SFHSSCC concrete showed small differences only. However, the addition of steel 
fibres in SFHSSCC had improved the concrete ductility very significantly. At the age 
of 6 months, the confinement energy of the SFHSSCC improved substantially by about 
80% as compared to the confinement energy at 30 ± 2 days. Based on the stress-strain 
behaviour in concrete, it was observed that the SFHSSCC was able to expand 
significantly under large stresses with controllable strains which justifies that the 
presence of steel fibres had contributed to improved confinement effects to the extent 
that the SFHSSSCC had the ability to provide high confinement energy and good 
ductility. Subsequently, based on the pullout test results, two new bond strength 
equations are proposed to predict the bond strengths of deformed steel rebars 
embedded in HSSCC and SFHSSCC. Finally, it can be concluded that the presence of 
steel fibres in SFHSSCC could overcome the brittle failure in high strength self- 
compacting concrete and significantly improves the concrete ductility, which delay the 
loss of bond between rebars and concrete.
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ABSTRAK

Kajian mengenai kelakuan ikatan tetulang keluli berbunga dalam konkrit 
konvensional telah dilaksanakan dengan meluas. Bagaimanapun, kajian mengenai 
sifat ikatan antara tetulang keluli berbunga dan konkrit kekuatan tinggi terpadat sendiri 
(HSSCC), terutamanya dengan penambahan gentian keluli, masih sangat terhad. Oleh 
itu, dalam penyelidikan ini, kajian lebih mendalam telah dilakukan untuk menyelidik 
kesan gentian keluli terhadap sifat ikatan tetulang keluli berbunga yang tertanam 
dalam konkrit kekuatan tinggi terpadat sendiri dengan gentian keluli (SFHSSCC). 
Kerja-kerja ujikaji dijalankan dalam dua fasa. Fasa 1 melibatkan reka bentuk campuran 
konkrit dan ujian sifat konkrit segar dan mekanikal bagi konkrit bergetar normal 
(NVC), HSSCC dan SFHSSCC. Gentian keluli yang digunakan dalam SFHSSCC 
adalah jenis hujung bercangkuk dengan panjang 35 mm dan nisbah aspek 63.6. Kerja 
penyelidikan Fasa 2 melibatkan ujian tarik-keluar langsung yang dijalankan mengikut 
piawaian RILEM RC6 Bahagian 2. Sejumlah 72 spesimen tarik-keluar dengan dimensi 
200 mm x 200 mm x 200 mm telah disediakan dan diuji pada 30 ± 2 hari. Beberapa 
spesimen SFHSSCC juga telah diuji pada umur konkrit 6 bulan. Spesimen tarik-keluar 
menggunakan tetulang keluli berbunga alahan tinggi berdiameter 12, 16, dan 20 mm. 
Spesimen tarik-keluar dikenakan beban tegangan paksi yang meningkat. Keputusan 
ujian Fasa 1 menunjukkan reka bentuk campuran konkrit terpadat sendiri yang 
dicadangkan dapat mencapai kekuatan mampatan tinggi di antara 60-80 N/mm2. 
Berbanding dengan HSSCC, kekuatan mampatan konkrit SFHSSCC meningkat 
sedikit, tetapi kekuatan tegangan pecah meningkat dengan sangat tinggi. Keputusan 
menunjukkan SFHSSCC dengan 1.0% pecahan isipadu gentian keluli adalah 
campuran terbaik yang memenuhi keperluan konkrit terpadat sendiri dan konkrit keras 
dan telah dipilih untuk kajian lanjut di Fasa 2. Keputusan ujian Fasa 2 menunjukkan 
kesan gentian keluli dalam peningkatan kekuatan ikatan di antara tetulang keluli 
dengan konkrit kekuatan tinggi terpadat sendiri dilihat tidak ketara kerana hasil 
kekuatan ikatan tetulang keluli dalam konkrit HSSCC dan SFHSSCC menunjukkan 
perbezaan yang sedikit. Bagaimanapun, penambahan gentian keluli dalam SFHSSCC 
telah meningkatkan kemuluran konkrit SFHSSCC dengan sangat ketara. Pada umur 6 
bulan, tenaga pengurungan SFHSSCC meningkat dengan ketara sehingga 80% 
berbanding tenaga pengurungan pada 30 ± 2 hari. Berdasarkan penyelidikan sifat 
tegasan-terikan dalam konkrit, telah diperhatikan bahawa SFHSSCC dapat 
mengembang dengan ketara di bawah tegasan yang besar dengan terikan terkawal 
yang membuktikan bahawa kehadiran gentian keluli telah menyumbang kepada kesan 
pengurungan yang lebih baik sehingga SFHSSSCC mempunyai keupayaan untuk 
memberikan tenaga pengurungan yang tinggi dan kelakuan mulur yang baik. 
Seterusnya, berdasarkan keputusan ujian tarik keluar, dua persamaan kekuatan ikatan 
baharu telah dicadangkan untuk meramalkan kekuatan ikatan tetulang keluli berbunga 
yang tertanam dalam HSSCC dan SFHSSCC. Akhirnya, dapat disimpulkan bahawa 
kehadiran gentian keluli dalam SFHSSCC dapat mengatasi kegagalan rapuh dalam 
konkrit kekuatan tinggi terpadat sendiri serta meningkatkan kemuluran konkrit dengan 
ketara, yang melambatkan kegagalan ikatan di antara tetulang keluli dan konkrit.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Self-compacting concrete (SCC) originated in Japan and was first developed 

in 1988 by Okamura. The innovation of SCC aimed to produce durable concrete 

structures that do not require compaction by skilled labours. SCC is a type of concrete 

that flows and is compacted under its own weight without the need for any mechanical 

vibration (European Project, 2005). SCC offers substantial benefits in the construction 

industry due to its ability to naturally fill in the highly congested reinforced concrete 

formwork and thus reduce the number of workers required for the concrete works. 

Besides, the elimination of compaction works also helped reduce noise and provide 

better safety conditions for construction workers (Siddique, 2011; Dehwah, 2012; 

Kamal et al., 2013). Hence, SCC becomes the preferred alternative material against 

the traditional vibrated concrete (Pajak and Ponikiewski, 2013; Santos et al., 2016). 

The application of SCC was extended to high-rise buildings, including the construction 

of the world tallest building, the Burj Khalifa in Dubai, as shown in Figure 1.1 (Bajic 

and Vasovic, 2009; Baker et al., 2009).

As known, concrete is a brittle material with limited ductility, and this is more 

evident for concrete with a high-strength grade (Sulaiman et al., 2017). The use of 

high-strength concrete in modern construction industry is getting popular due to the 

economic advantages. The reason is that high-strength concrete avoids the design of 

oversized structural members, which is uneconomical to the industry (Song and 

Hwang, 2004). Similar to high-strength conventional concrete, HSSCC also exhibits 

brittle behavior in both compression and tension, which gets more apparent as its 

strength increases (Schumacher, 2006; Pajak and Ponikiewski, 2013). Therefore, 

various research works have been carried out to overcome the brittle behaviour of 

high-strength concrete so that the concrete ductility can be improved.
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Figure 1. 1 Super high-rise building, Burj Khalifa, Dubai constructed using SCC
material (Baker et al., 2009)

To improve ductility and crack resistance, steel fibres are added to normal 

concrete to produce the steel fibre reinforced concrete (SFRC). However, the vibration 

work used to facilitate the concrete compaction in SFRC may cause uneven 

distribution of steel fibres and hence affect the quality of the reinforced concrete 

structure. Therefore, by using the same concept in SFRC, researchers have started to 

explore the possibility of adding steel fibres in SCC to eliminate the issue of 

compaction work and at the same time to increase the hardened properties of SCC. 

Hence, a sufficient amount of steel fibres are added into the fresh SCC mixtures, 

resulting in steel fibres self-compacting concrete (SFSCC), an innovation to the plain 

SCC. It was found that the addition of steel fibres in SCC dramatically improved the 

material behaviour in terms of tensile strength, flexural strength, toughness, ductility, 

and resistance towards cracking and dynamic load (Gouri et al., 2010). These effects 

are attributed to the capacity of steel fibres to transfer tensile stress across crack 

surfaces, a process known as crack- bridging (Lu et al., 2018; Mahmod et al., 2018; 

Khan and Ahmad, 2018).
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Despite the fact that SCC was introduced at the end of the 1980s, the research 

on the bond behaviour only commenced toward the end of the 1990s (Valcuende and 

Parra, 2009; Santos et al., 2016). The bond studies in reinforced concrete design are 

crucial because they are the key element for concrete and steel reinforcement to 

function as a composite structural material. This composite action which formed the 

bond involved a load transfer between the concrete and the reinforcement steel. 

Consequently, the bond may be considered as a continual stress distribution that occurs 

along the steel-concrete interface (Bilek et al., 2017). If the bond resistance is 

insufficient, the reinforcing rebar will slip, disrupting the composite action and hence 

causing failure, which is detrimental to the whole structural system. Therefore, bond 

studies in reinforced concrete are crucial as they can influence the ultimate failure of 

reinforced concrete members.

The addition of steel fibres in reinforced concrete is known to improve the 

anchorage bond between reinforcing rebars and the surrounding concrete. Steel fibres 

in reinforced concrete can delay crack propagation and increase the ductility of 

reinforced concrete components. This improved performance is believed to be 

associated with the confinement effects provided by the steel fibres.

1.2 Problem Statement

In literature, numerous information on the bond of reinforcing rebar in normal 

vibrated concrete (NVC) is available, and some researchers have developed model 

formulae to predict the bond strength (Goto, 1971; Orangun et al., 1977; Eligehausen 

et al., 1982; Hassan et al., 2010; Garcia-Taengua et al., 2016). However, the bond 

studies between SCC and deformed steel rebars only started in the late 90s. Some of 

the earlier studies were conducted by Sonebi and Bartos (1999) and then followed by 

Zhu et al. (2004), Valcuende and Parra (2009), Desnerck et al. (2010a), Pop et al. 

(2013), Sfikas and Trezos (2013) and Khayat and Desnerck (2014). In general, most 

researchers agreed that the SCC bond shows better performance than the NVC.
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According to some researchers, HSSCC tends to be brittle due to the high 

strength concrete (Sonebi and Bartos, 1999; Valcuende and Parra, 2009; Pop et al., 

2013). Therefore, without sufficient concrete confinement, the high compressive 

strength in HSSCC can cause sudden and brittle failures in concrete, which causes 

abrupt loss of bond between rebar and the surrounding concrete. Some methods used 

before to increase concrete confinement are transverse reinforcement, external 

wrapping materials, or fibres. The use of fibres, in particular steel fibre, has gained 

popularity due to economics, reinforcing effects, and resilience to environmental 

aggression.

Taengua (2013) stated that passive confinement provided by steel fibres affects 

bond performance in terms of bond strength and bond failure ductility. However, data 

on the effects of steel fibre confinement are very limited, particularly the effects of 

steel fibre confinement on the bond behaviour of deformed steel rebars in SFHSSCC. 

So far, only a few studies have been conducted to investigate the bond between 

deformed steel rebars and the SFHSSCC. These studies focus more on the influence 

of specific parameters such as fibre volume, fibre aspect ratio, concrete cover, concrete 

compressive strength, and early concrete ages on the bond behaviour of deformed steel 

rebars in SFHSSCC.

Hence, based on the limited information obtained from the previous studies, 

there are three main issues that have not been addressed. The first issue is how the steel 

fibre confinement affects the mode of failure in SFHSSCC and the second issue is the 

effectiveness of the steel fibre confinement in increasing the ductility of SFHSSC. 

Meanwhile, the third issue is the development of the bond strength equations. Various 

bond strength equations have been developed quite extensively over the last few 

decades to predict bond strength. However, the bond strength equations for HSSCC 

and SFHSSCC still require some refinement and improvement as it is still at the initial 

stage of development. Therefore, there is a need to review and refine the existing bond 

strength models to produce a more reliable and accurate bond strength equation to 

predict the bond strength of rebar in HSSCC and SFHSSCC.
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1.3 Objectives of the Study

This study aims to investigate the bond behaviour of deformed steel rebars 

embedded in SFHSSCC. In an attempt to solve the issues stated in the problem 

statement, the following outlines the objectives of this study, which are:

i. To investigate the fresh and mechanical properties of NVC, and the proposed

HSSCC and SFHSSCC.

ii. To investigate the behaviour and performance of bond between deformed steel

rebars and HSSCC without steel fibres and with steel fibres (SFHSSCC).

iii. To investigate the effects of steel fibre confinement on the bond behaviour of

deformed steel rebars in SFHSSCC.

iv. To make a recommendation of bond strength equations to predict the bond

strength of deformed steel rebars in HSSCC and SFHSSCC.

1.4 Scope of Study

The scopes of works are limited to the study on:

i. the fresh and hardened properties of NVC, HSSCC without steel fibres and 

SFHSSCC with fibres volume fraction of 0.5% and 1.0%.

ii. bond between rebars and concrete based on experimental pullout tests of 12 

mm, 16 mm and 20 mm diameter deformed steel rebars embedded in NVC, 

HSSCC without steel fibres and SFHSSCC with fibres volume fraction of 

1.0%, and

iii. SFHSSCC using 35 mm length and 0.55 mm diameter of hooked-end steel 

fibres only.
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1.5 Significance of Study

This study provides information on the key properties of the SFHSSCC 

through the investigation of the fresh and hardened properties of the material. More 

importantly, this study shows the benefit of adding steel fibres in HSSCC to improve 

the bond performance between deformed steel rebars and the surrounding concrete 

through the passive confinement effect provided by the steel fibres. The findings of 

the in-depth investigation on the pullout test are discussed thoroughly in this study, 

which further enriches and contributes to the knowledge of the bond behaviour 

between deformed steel rebars and SFHSSCC. This study also proposes improved 

bond strength equations to predict the bond strength of deformed steel rebars 

embedded in HSSCC and SFHSSCC. Additionally, this study can also be used in the 

construction industry, especially for construction materials that involve the use of 

HSSCC and SFHSSCC.

1.6 Outline of the Thesis

This thesis consists of seven chapters. Chapter 1 presents the introduction of 

the topic, problem statement, objectives of the study, scope of the study, significance 

of the study, and the outline of this thesis.

Chapter 2 presents the literature review on various aspects of the bond 

behaviour between deformed steel rebars and the SFHSSCC. In this chapter, the 

background of SCC and SFSCC are discussed in detail. Subsequently, reviews of the 

previous research works related to bond studies are presented and discussed. This 

includes the bond mechanism, factors influencing the bond behaviour, confinement 

effect, and bond testing method.

Chapter 3 discusses the research methodology used in this study. This entails 

the methodology used to achieve the objectives of this research. At the beginning of 

this chapter, an overview of the research methodology framework is presented, which 

consists of two phases. The first phase is the investigation of the fresh and mechanical
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properties of the concrete mixtures, while the second phase is the experimental pullout 

test works. This chapter also detailed the method used to prepare specimens for fresh 

and mechanical properties testing, and also for the pullout testing.

Chapter 4 presents the results of the fresh and mechanical properties of the 

NVC, HSSCC and SFHSSCC. The results of the fresh concrete testing, which consists 

of slump test, slump flow, V-funnel and L-Box are presented and discussed. 

Subsequently, this chapter also analysed and discussed the results of the mechanical 

properties of the concrete mixes.

Chapter 5 reports the findings of the experimental pullout test conducted. The 

overall results of the pullout specimens are presented and discussed in detail, which 

emphasise the mode of failure and the bond stress-slip relationship. The effects of rebar 

sizes, concrete cover thickness and rebar embedment length on the mode of failure are 

discussed at length in this chapter. Subsequently, the effects of the concrete 

compressive strength, tensile strength and top-rebar effect on the bond performance 

are also analysed and presented. Additionally, analysis of the bond strength using the 

normalised bond strength is also discussed in this chapter.

Chapter 6 discusses the analysis of the steel fibre confinement mechanism in 

SFHSSCC. The discussion includes the bond mechanism and the analysis of the steel 

fibre bridging and sewing effects in SFHSSCC. The distribution of steel fibres in 

concrete obtained from the coring samples of the SFHSSCC pullout specimens is also 

shown in this chapter. Subsequently, the analysis of the steel fibre confinement effects 

is presented using the graph that shows the stages of pullout behaviour. The 

confinement energy and the stress-strain analysis of pullout specimens are also 

discussed. Then the detailed analysis of selected existing bond strength equations, 

which leads to the development of new equations to predict the bond strength of 

HSSCC and SFHSSCC is presented.

Chapter 7 presents the conclusion which highlights the significant contribution 

of this study. The outcomes of this study are compared to the objectives to show the
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accomplishment of the objectives. This chapter ends with some recommendations for 

future works that are expected to benefit this field of study.
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