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ABSTRACT 

Segmentation of the medical image plays a significant role when it comes to 

diagnosis using a computer-aided system. This study focused on the human corneal 

endothelium's health, one of the research areas that is particularly interested in human 

cornea health. Various pathological environments expedite the extermination of the 

endothelial cells, which abnormally decreases the cell density. Dead cells worsen the 

hexagonal design. In this study, medical feature extraction was obtained depending on 

the segmentation of the endothelial cell boundary. The task of segmentation of such 

objects is considered challenging due to the nature of the image captured  during 

endothelium  layer  examination  by  ophthalmologists  using confocal or specular 

microscopy. The resulting image suffers from various issues that affect the image's 

quality, such as noise, shadow, and blurry image. So, the study's primary goal was to 

propose and develop an automatic and robust model for the segmentation of endothelial 

cells of the human cornea obtained by in vivo microscopy and computation of the 

different clinical features of endothelial cells. A new scheme of image enhancement was 

proposed, such as The Contrast-Limited Adaptive Histogram Equalization (CLAHE) 

techniques to enhance contrast to achieve the goal of this study.  After that, a new image 

denoising technique Enhanced Wavelet Transform Filter and Butterworth Bandpass for 

Segmentation (WTBBS) was employed. Subsequently, brightness level correction was 

applied by using the moving average filter and the CLAHE to reduce the effects of the 

non-uniform image lighting produced as a result of the previous step. The primary focus 

of this study was the segmentation stage. This stage involved precise detection of the 

endothelial contours. So, a new segmentation model was proposed, which is an Adaptive 

Hybrid Trainable Model for Segmenting Endothelial Cells (AHTMSEC). The 

AHTMSEC includes one crucial step: an Artificial Neural Network for Adaptive 

Segmenting (ANNAS) to identify the complexity of the image and the suitable 

algorithm. The output of this step was processed using either the Enhanced U-NET 

Approach for Endothelial Cell Segmentation (EU-NETAECS) or the Trainable Segmentation 

and Distance Transform (TDWS) to enhance the Watershed Transform for cell segmentation. 

In the segmentation stage, the shape of the cells was extracted, and the contours were 

highlighted. This stage was followed by clinical feature extraction and the used of the 

features for diagnosis. In this stage, several relevant clinical features such as 

Pleomorphism Mean Cell Perimeter (MCP), Mean Cell Density (MCD), Mean Cell Area 

(MCA), and Polymegathism were extracted. The role of these clinical features was 

crucial for the early detection of corneal pathologies and the evaluation of the health of 

the corneal endothelium layer. Every process was benchmarked against the best and up-

to-date segmentation and clinical features detection techniques found in the literature. 

The existing methods of image enhancement and segmentation have been enhanced 

considerably via original ideas. Significant contributions of the present study on medical 

feature extraction based on segmentation were enumerated and ranked from top to 

bottom according to the degree of importance. The accuracy of the adaptive segmentation 

model for images classification was 97.5 %.  It can be observed that the values obtained 

using the manual and automated techniques did not exhibit statistically significant 

differences for any of the five clinical features. The manual and automated processes 

differences were below 2%, 2%, 1%, 1.5%, and 3.5% for MCD, MCA, Polymegathism, 

MCP, and Pleomorphism, respectively. 
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ABSTRAK 

Segmentasi imej perubatan memainkan peranan penting apabila diagnosis 
menggunakan sistem berbantukan komputer dijalankan. Kajian ini memberi tumpuan 
kepada kesihatan endotelium kornea manusia, salah satu bidang penyelidikan yang 
memberi perhatian terhadap kesihatan kornea manusia. Pelbagai persekitaran 
patologi mempercepatkan penghapusan sel endotel yang secara tidak normal 
mengurangkan kepadatan sel. Sel-sel mati memburukkan reka bentuk heksagon. 
Dalam kajian ini, pengekstrakan ciri perubatan diperoleh bergantung pada 
segmentasi batas sel endotel. Tugas segmentasi objek tersebut dianggap mencabar 
kerana sifat tangkapan imej semasa pemeriksaan lapisan endotelium oleh pakar 
oftalmologi menggunakan mikroskop confocal atau spekular.   Imej yang dihasilkan 
mempunyai pelbagai masalah yang menjejaskan kualiti imej seperti bercak, bidang 
gelap dan imej kabur.  Oleh itu, tujuan utama kajian ini adalah untuk mencadangkan 
dan membangunkan model automatik dan teguh untuk segmentasi sel endotel kornea 
manusia yang diperoleh dengan mikroskopi dalam tubuh dan pengiraan ciri klinikal 
sel endotel yang berbeza.   Skema peningkatan imej baru dicadangkan seperti 
teknik-teknik Penyamaan Histogram Adaptif Kontra Terhad (CLAHE) untuk 
meningkatkan kontras bagi mencapai tujuan kajian ini.  Seterusnya, teknik denoising 
imej baru yang dikenali sebagai Penapis Transformasi Wavelet yang Dipertingkatkan 
dan Laluan Jalur Butterworth untuk Segmentasi (WTBBS) digunakan. Seterusnya, 
pembetulan   tahap   kecerahan   diterapkan   dengan   menggunakan   Penapis  
Sederhana Bergerak dan CLAHE untuk mengurangkan kesan pencahayaan imej yang 
tidak seragam yang dihasilkan sebagai hasil dari langkah sebelumnya. Fokus utama 
kajian ini adalah peringkat segmentasi. Peringkat ini melibatkan pengesanan 
kontur endotel yang tepat. Oleh itu, model segmentasi baru dicadangkan, iaitu 
Model Hibrid Adaptif yang Boleh Dilatih untuk Membahagikan Sel Endothelial 
(AHTMSEC). AHTMSEC merangkumi satu langkah penting, iaitu Rangkaian Saraf 
Tiruan untuk Segmentasi Adaptif (ANNAS) untuk mengenal pasti kerumitan imej 
dan algoritma yang sesuai. Hasil dari langkah ini telah diproses dengan menggunakan 
kaedah EU-NETAECS atau TDWS. Pada peringkat segmentasi, bentuk sel telah 
diekstrak, dan kontur telah ditonjolkan. Peringkat ini diikuti dengan pengekstrakan 
ciri klinikal dan menggunakan ciri tersebut untuk diagnosis. Di peringkat ini, 
beberapa ciri klinikal yang berkaitan seperti Min Perimeter Sel Pleomorphism 
(MCP), Min Ketumpatan Sel (MCD),  Min Luas Sel (MCA),  dan  Polymegathism 
telah  diekstrak. Peranan ciri klinikal ini sangat penting untuk pengesanan awal 
patologi kornea dan penilaian kesihatan lapisan endotelium kornea. Setiap proses 
telah ditanda-aras mengikut segmentasi terbaik dan terkini serta teknik pengesanan 
ciri klinikal yang terdapat dalam literatur. Kaedah penambahbaikan dan segmentasi 
imej yang sedia ada telah dipertingkatkan dengan ketara melalui idea asal. 
Sumbangan utama kajian ini mengenai pengekstrakan ciri perubatan berdasarkan 
segmentasi telah disenaraikan dan diberi peringkat dari atas ke bawah mengikut tahap 
kepentingan. Ketepatan model segmentasi adaptif untuk klasifikasi imej adalah 
97.5%. Dapat diperhatikan bahawa nilai yang diperoleh menggunakan teknik manual 
dan automatik tidak menunjukkan perbezaan yang signifikan secara statistik untuk 
mana-mana lima ciri klinikal. Perbezaan proses manual dan automatik masing-
masing berada di bawah 2%, 2%, 1%, 1.5%, dan 3.5% untuk MCD, MCA, 
Polymegathism, MCP, dan Pleomorphism. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Segmentation of the medical image plays a significant role when it comes to 

diagnosis using computer aid system, The fact that endothelial cells lack propagation 

gives room for the replacement of space and activity of the dead cell by others that 

that are nearby.  Subsequently, the wide variety of cells and their properties by age 

and pathologies at birth, the count of cells is 6500 cells/mm2, and decreases 

spontaneously during the lifetime, at 80 is 1700 – 2000 cells/mm2 (Ko et al., 2001). 

Specifically, Mohd Salih (2011) stated that people whose age lies between 25 to 32, 

the epithelium cell density is observed to be around 3000-3500 cells/mm2. However, 

the value is below 2000 cells/mm2 in the elderly population. 

Various pathological environments fasten the extermination of the endothelial 

cells which in turn decreases the cell density in an abnormal manner. Dead cells 

worsen the hexagonal design. The mutilated endothelial cells can no longer revive 

back and that gives room for neighboring cells to migrate and expand so that they 

can fill in the space. The latter results to cell elongation that is unpredictable as well 

as increase in size and thinning. Cell density is therefore a major parameter when it 

comes to explaining the health condition attributed to corneal endothelium. 

Similarly, Vigueras-Guillén et al. (2018a) indicates that today three 

parameters are applied when evaluating the health ranking of endothelium. The 

parameters are polymegethism which is also termed as cell variation, pleomorphism 

also known as hexagonally and endothelial cell density. Various approaches to 

separation of every cell found in corneal endothelium‟s image have been generated 

and they are all giving accurate results. Getting cell contours that are reliable needs 
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manual delineation of the cell boundaries because there are a lot of endothelial cells 

in every square millimeter and segmenting them manually has proven to be an 

activity that consumes a lot of time. 

Additionally, arrangement of cells in “corneal endothelium” is quite 

important for the ophthalmologists since it gives essential diagnostic information 

concerning the status of the cornea health and signs of any disease (Bourne, 2003). 

The first method of assessing corneal endothelium dates back to 1920, when 

Voge first reported a method for examining endothelial mosaics by specular 

reflection using a slit lamp biomicroscope. In 1968, Maurice2 first reported 

observing the endothelium at 400x magnification using a specially designed corneal 

microscope, coining the term mirror microscope. Brown3 described a non-contact 

mirror microscope in 1970 (American Academy of Ophthalmology, 1997). 

Later in 1975, Laing demonstrated a clinically useful microscope capable of 

imaging the endothelium at 200x magnification. Shortly after, Bourne and Kaufman 

(1976) reported the results of a photographic flash that allows for clearer photos. The 

introduction of clinically useful endothelial cell microscopy in 1975 dramatically 

increased clinical and basic scientific research on the corneal endothelium. Prior to 

this period, the inner layer of the corneal endothelium was known to be important in 

maintaining corneal clarity, but the poor regenerative capacity of humans was not 

well understood. Between 1975 and 1978, several clinical studies using a mirror 

microscope suggested that certain intraocular events, such as vitreous-endothelial 

contact, result in corneal endothelial depletion, resulting in trauma or endothelial 

contact. 

Corneal endothelial cells are currently being clinically evaluated in vivo 

using imaging techniques such as specular microscopy (SM) and confocal 

microscopy (Yao et al., 2019). These microscopic techniques allow in vivo 

visualization of corneal endothelial cells to examine cell morphology and health. 

Unfortunately, the field of view (FOV) of these microscopy techniques is limited by 

both confocal synchronization and corneal curvature. In addition, MS is most 
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commonly used in clinical practice to characterize epithelium and endothelium, but it 

is not possible to evaluate all layers of the cornea. IVCM, on the other hand, requires 

eye contact to achieve a high numerical aperture that helps break down a single 

endothelial cell. This can lead to patient discomfort, damage to the corneal surface, 

and an increased risk of corneal infections and abrasions. While Bizheva et al. (2017) 

showed that Optical coherence tomography (OCT) enables non-contact in vivo 3D 

imaging for anterior ocular imaging with spatial resolution down to the intracellular 

level which provides deep penetration of the signal into the core tissue, allowing all 

layers to be viewed at the same time. The axial resolution of OCT depends on the 

center wavelength and bandwidth of the light source, but the lateral resolution 

depends mainly on the objective of the imaging. Therefore, OCT does not require 

high NA unless very high lateral resolution is required. Various types of OCT 

systems have been demonstrated in transverse and anterior corneal endothelial cell 

imaging, including spectral domain OCT (SD) (Ang et al., 2016), full field OCT (FF) 

and the domain of Gabor (Mazlin et al., 2018). to augment. GD (Yao et al., 2019). 

The lateral resolution of all systems has been reported to be approximately 2 µm in 

tissue, resulting in a very limited field of view and depth of field (DOF). As a result, 

the system was very sensitive to rapid eye movements, Fast SDOCT (Tan et al., 

2018) was able to show a successful representation of corneal endothelial cells in 

small FOVs during in vivo imaging. To date, OCT has failed to frontal visualize 

corneal endothelial cells in vivo to allow quantitative analysis . More importantly, 

the spatial resolution required for in vivo OCT imaging of anterior corneal 

endothelial cells is still unknown. 

Despite of long history of endothelial imaging, but yet there lack debatable 

precise fully-computerized means that help in calculating the cell borders and 

successfully performing assessments and quantitative assessments of the 

characteristics. Notable inter and intra-observer disparities can still be seen 

(Hoppenreijs et al., 1996).  Kitzmann et al. (2005) confirmed there are a number of 

tools which are available and can be used to assessing the density of the cell and 

endothelium‟s morphometry. Both non-contact specular and confocal microscopes 

give quality images from the peripheral and central cornea. Besides, Salvetat et al. 

(2011) states that the non-contact confocal microscopy is the current modality which 

in as much as it gives the same quality like the other microscopes, generates a huge 
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field of view. That means, the medical feature for extraction by use of the image 

processing forms provide tremendous assistance when getting correct diagnosis of 

the cornea health. The latter increases the accuracy and saves on time. Analysis of 

the said parameters can also be brought out spontaneously by use of a diagnosis 

model that is computer aided. The model should also be fully automatic from the 

instance of capturing the image using a medical tool and the examination given for 

diagnosis by an optometrist. 

Huang et al. (2018) depicted that physical representation of cells is a task that 

is quite labor-intensive. The provided software by microscope manufacturers for 

segmenting the cells has insubstantial performance. Such integrated software has 

indicated the erroneousness of the automated analyses when compared with expert 

commentary and that calls for a model that is fully automatic. The study focuses on 

creating such a model through development and enhancement of image processing 

techniques so that the current challenges which exist in measurement and 

segmentation of cornea endothelial cells can be dealt with. 

1.2 Research background  

Medical imaging encompasses the technologies that are employed in viewing 

the human body with the aim of monitoring, diagnosing or treating medical 

conditions. This is basically aimed at obtaining an inside image of the bodily 

structure in a manner that is non-intrusive as potential. Medical imaging has emerged 

as one of the commonly used methods of laboratory test that is going through 

changes in the past decade. There has been a rapid advancement in this area, thereby 

leading to the development of more accurate and less intrusive devices 

Much of the current study attributed to division of the cell that attempts to 

come up with a model that is fully automatic and one that will cater for detection of 

cells and quality of the image. That is because of image‟s intensity and many 

numbers of region of interests ROI. An example can be found in the early works of 

Nadachi and Nunokawa (1992) who used morphological thinning and scissoring to 
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rectify the medical features. Lost boundaries are then edited physically whilst a 

(Vincent and Masters, 1992) work histogram was derived from calculating cell size 

and the number of neighbors for every cell. The derivation gave quantitative 

information pertaining the cornea heath. The histogram resulted from using a dome 

extractor in marking cell edges and applied marker-driven watershed segmentation to 

get binary images. Both were semi-automatic, which needs the manual editing to 

complete segmentation   

In order to deal with the challenge in Angulo and Matou (2005) and Gavet 

and Pinoli (2008), a proposal for constraining the watershed segmentation through 

the distance map was made. A slightly contrasting method was suggested by Bullet 

et al. (2014), who came up with watersheds on the map and divided the fused cells 

by use of Voronoi diagrams. Nevertheless, as it can be seen in Gavet and Pinoli 

(2014), the methods are receptive to the setting of the parameter and therefore 

requires research before the prime results are derived. 

Arguably, Selig et al. (2015) has come up with a proposal of using stochastic 

watershed so as to avoid the interaction between the user, change of parameters and 

the empirical setting. While Dagher and El Tom (2008) made use of the watershed 

contours in initializing many balloon snakes. A comparable method was suggested 

by Charłampowicz et al. (2014), where the various active contours for the snakes 

continues to evolve from circular sections derived through thresholding. 

Foracchia and Ruggeri (2000) and Ruggeri et al. (2010) have taken advantage 

of shape modeling technology using the prior knowledge incorporated into the 

Bayesian analysis framework (Foracchia and Ruggeri, 2007). This approach is based 

on using neural networks to make classification of the cells in the cell body,  marking 

every pixel as the cell vertex or the body by the use of vector machines (Poletti and 

Ruggeri, 2014), and growing number of vertices hence coming up with a normal 

hexagons into the boundaries of the cell by the use of genetic algorithm (Scarpa and 

Ruggeri, 2016b). The researcher seeks to develop an accurate, reliable, and fully 

automatic model capable of segmenting the endothelium cell. The researcher also 

tackles some significant issue that was a severe challenge to achieve their goal. They 
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impose during their work to solve the problems such as the artifact that the 

microscopic may produce during the acquisition, which includes noise, bluer and 

uneven illumination, especially at the border of the image due to the nature of the 

cornea endothelium layer, besides, the mechanism of capturing and the reflection of 

light. 

Most of the studies start to enhance images before the segmentation phase 

using a sophisticated pre-processing tier and scheme, which significantly influences 

segmentation accuracy. In some models, post-processing also was required. One of 

the dedicated pre-processing models was introduced by Khan et al. (2006) , which 

involves using the bandpass filter to the image‟s input. An illumination that is not 

uniform is see when the content having low frequency is dealt with through the lower 

region of the sub band.  

Also Sharif et al. (2015) noted that the noise of high frequency is taken care 

of by the band pass's upper sub band section. During his analysis of state of the 

artworks done by others, the noise type of such image can be classified into two 

types photon noise and read noise which called Poisson and Gaussian such that the 

Photon noise result from the emission (and detection) of the light itself generated 

by microscopy This follows a Poisson distribution, while Read noise, arising from 

inaccuracies in quantifying numbers of detected photons. This follows a Gaussian 

distribution for which the standard deviation changes with the local image 

brightness. Thus almost every study concerning endothelial cell segmentation 

consists of first-processing treatment followed by binarization just before the 

segmentation phase. In some research, post-processing was needed to overcome 

some unwanted result from segmentation process such over-segmentation or under 

segmentation or disconnected marker the determined cell boundary which effect 

feature analysis and extraction as an example the study Vigueras-Guillen et al. 

(2019) which apply three post-processing method to improve the CNN model base 

segmentation outcome firstly. 
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Furthermore, it is done by applying Biomarker estimation from edge images, 

using Fourier analysis, and finally using characteristic S.D. To improve edges of the 

cell, image enhancement was performed by authors due to specific artifact existed in 

the image obtained by confocal or specular microscopic used in accession of medical 

and biomedical facts lead to segmentation issues that are more profound. Such 

include the divergent noises that are associated such as Poissonian, Rician, Speckle 

and Gaussian noise (Meziou et al., 2011). To evaluate and measure the amount of 

noise  in such images and the study showed Gaussian noise is one of the common 

noises encountered, Poisson noise features confocal microscopy as a result of 

complex appearances of the cell, analogous of power and the information pertaining 

to the gradient was located from the photon variables that follows statistics from 

Poisson (Young, 1996). Subsequently, Sheppard et al. (2006) presented the sources 

of noise as end results of the size of the pinhole, form of detection, and the imaging 

data on the ratio of noise to signal. 

Also, another artifact affects the quality of images; this artifact is the uneven 

illumination due to light focusing on the work of Habrat et al. (2016). The problem 

of distribution of brightness was treated by adjusting the brightness levels in rows 

and columns. More investigation presented in chapter 2 about the methods and 

techniques used to solve such artifact, which is combined with noise and dark edges 

of the images. 

The region of interest (ROI) is often segmented manually by a properly 

trained expert. When manual segmentation is done, multiple subjective measurement 

decisions could be involved, and such decisions may cause an increase in the 

probability of intra- and inter-observer flaws. When such errors occur in terms of 

judging endothelial cells, the consequences can be severe in positions of missed 

chances (false negatives) and false anxieties (false positives). It has been noted by 

some medical practitioners that raising false alarm due to erroneous judgement is 

highly unacceptable. 
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Thus, it is crucial to develop automatic solutions because they facilitate 

speedy analysis, while minimizing the problems of intra- and inter-observer 

variation.  

1.3 Problem statement 

Generally, there are many research gabs associated with automatic medical 

image analysis, and most of these gabs are presentd because of the nature of the 

imaging modality. Such that there is no fully automatic model that is able to deal 

with different  features that images contains  which  influence in the results in very 

challenging technical issues. Even though, there are different techniques that have 

been developed for the analysis of endothelial cells images as well as segmentation 

of ROI, there are so many limitations in terms of technical challenges associated with 

the extant solutions (at least until now). A summary of such challenges is given as 

follows: 

1- The noise caused by image acquisition, and the removal of such noise using 

traditional filters may be a difficult task, as important information of image 

may be removed together with the noise. 

2- Shadow is a continuous occurrence happening in the most medical images. 

Such shadows often happen in the cases of images. Which  increases the 

difficulty of segmentation because of the unclear region with weak details, 

that may lay across the ROI (see figure1.1).  
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Figure 1.1 Shadow occurrence at the edges of image 

Majority of the problems associated with medical image involve one or two 

ROI, but in this study a large number of cells are included in the dataset which is 

used. The cells are separated by poor border, thereby leading to great difficulty in the 

segmentation of the images.  

3- Not only do humans possess different complex shapes of soft tissues in their 

eyes, but these tissues are also different because of displacements of the 

human eye during the acquisition of the image. Which cause an blurred 

images due minor movement of the eye during examination  

4- The contrast of such images seems to be low, as they possess unclear 

boundaries with diverse objects existing. There is similarity between the 

values of pixel intensity within the boundary region, and this in turn increases 

the difficulty of identifying the specific border among the ROI (Over-

segmentation problem), and for the training human expert.  Over-

segmentation accrue when the segmentation method extracts the ROI and this 

ROI include part of the background. In such cases, there will be failure of 

conventional boundary-identifying methods depending on gradient data.  
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Figure 1.2 Over segmentation problem 

5- Lack of homogeneity in the ROI implies that areas with different textures 

may be present in the boundaries of the ROI. In an event that there is 

inhomogeneity within the ROI, the expert may be confused about the actual 

ROI and other areas outside the ROI, which may in turn lead to under-

segmentation. Under-segmentation involves the erroneous exclusion of parts 

of the ROI from the final segmentation results. As shows the figure 1.3. the 

same cell has different texture. When apply segmentation technique the 

whole cell can‟t be segmented correctly  

 
Figure 1.3 Under segmentation problem 
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1.4 Research Goal  

The main goal of the study is to propose and develop   a totally automatic, 

robust and real-time model for the segmentation of endothelial cells of the human 

cornea obtained by in vivo microscopy and computation of the different clinical 

features of endothelial cells to achieve the goal first   the visual quality of the images 

should be improved by reducing their unwanted degradations and enhancing their 

poor contrast. Such Improvements in quality will enhance the overall image which 

will contribute to  accomplish the  main goal of this study which is segmentation to 

obtain accurate medical information this will be achieved using image enhancement 

methods A pre-processing scheme of methods has been proposed in this research to 

obtain a decent image quality to highlight cell border furthermore two segmentation 

method was proposed to achieve accurate and precise cell segmentation, all those 

method will serve the purpose of clinical feature extraction which will be used by 

expert for better diagnosis of the medical condition of endothelium layer. The main 

differences of this study when compared to recent research  the study direction 

toward finding the overall solution for different type of images modalities such that it 

extract the medical information regardless what type of image was obtain for 

endothelial cells by constructing a method that able to treats images with small or 

large cells   

1.5 Research Questions 

The main research questions of this study are determined as the following: 

1- How to enhance uneven illumination that occur in the endothelial cell 

images? 

2- How to reduce and remove the noise that exists without affecting vital 

information such as cell border? 

3- How to accurately segment the border of multiple ROI without overlapping? 

with each other or with the cell itself such as over and under-segmentation? 
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4- How to measure the cell shape and size in the whole or part of the images to 

extract clinical features? 

1.6 Research Objectives 

To achieve research goals a logical objective was determined as follow: 

1- Apply a new pre-processing scheme which involves the reduction of noise 

and enhancement of input image quality as well as highlight the border of the 

ROI.  

2- Build an adaptive segmentation   model to distinguish between images with 

certain quality in the datasets used in this research , due to the  microscopic 

used , two    kind of image exist such as  small  cell images  and large  cell 

images  . 

3- Develop a new segmentation method that involves the precise detection of 

endothelial contours to extract the shape of the cells which present the 

contours 

1.7 Research Scope  

In this study, In order to achieve the objectives of this research, it is essential 

to highlight the study scope such that the  study focusses on endothelial cell images 

of human cornea which were obtained by either non-contact confocal or specular 

microscopy such images need to be enhanced by reducing the noise and uneven 

illumination enhancement as a pre-processing   stage other artefact in not considered 

due to the impact of such noise and contrast on the segmentation stage ,the image 

that study will focus on consist of Two dataset which will be  used in these research 

consist of 80 images with ground truth which was extracted  by expert the main 

method depend on Segmentation will be used for cell shape and size detection no 

classification of certain disease will be made only medical feature extraction  will be 

measured such as as Pleomorphic Mean Cell Perimeter (MCP), Mean Cell Density 
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(MCD), Mean Cell Area (MCA), and Polymegathism  to achieve accurate 

segmentation two main process was used which consist of trainable Watershed and 

enhanced CNN base algorithm in addition ,the measurement and evaluation will be 

compared with the ground truth of manual segmentation for the specific datasets 

finally the Benchmarking of the proposed model will be made comparing with  four 

authors working on the same datasets that this study rely on. all methods and 

techniques been chosen depending on the research gabs  recommended by other 

researcher through investigation of recent works done such that pre-processing 

scheme was proposed due artefacts that exists in images and the effect of such 

scheme on the resulting images also the both segmentation methods were chosen 

according to previous studies that proved the effectiveness of both methods when 

dealing with such type of images, also both method were not saturated and need 

major improvement to achieve precise segmentation    

1.8 Research Significances 

The methods proposed in this research will provide an enhanced  visual 

quality for endothelial cell  images by using appropriate  contrast enhancement, also 

new demonising method will deals with the sensitivity of such images in addition the 

denoising method will affect the images so additional enhancement will be needed. 

These topics are highly important, not only in the imaging area, but also in the 

medical field, as mentioned by the previous published articles, books and 

conferences over the last few years. Moreover, these enhancement will play a 

remarkable role in the segmentations stage   

The needs of a full automatic segmentations methods in the field of cornea 

health which can process confocal and specular images effectively and efficiently 

while preserving their important details is fundamental to provide visually improved 

images helping specialists to provide an accurate diagnosis of diseases. Therefore, 

the proposed model tackle the up to date issue in those kind of image modalities and 

the need of reliable and accurate measurement is the major demands by experts due 

to intensive and time consuming manual analysis of such medical cases this study 
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will contribute, By finding the proper solution which help the researcher and expert 

to step up in these field  

1.9 Research Outline  

The findings of this study are presented in this research thesis which is 

organized into seven chapters as outlined in the following: 

i. Chapter 1 presents an introduction to the proposed research, formulates the 

research problem and discusses the aims, motivation and scope of this study.  

ii. Chapter 2 provides a detailed review about the significant contributions in 

both pre-processing and segmentation field, and different methods are 

synthesized. and analysed  of previous studies which carried out to enhance 

and segment the   cell boundary  

iii. Chapter 3 outlines the proposed research methodology, describes the quality 

measurement metrics employed, details the benchmarking process and 

explains the different image datasets used in this research. 

iv. Chapter 4 presents the proposed methods in detail by mentioning their 

concepts, mathematical equations to provide a full understanding about how 

these methods function.in term of image enhancement to highlight cell border   

v. Chapter 5    the proposed segmentation scheme will be detailed step by step , 

such as all related algorithm will be discussed in logical and sequential order 

to present the prcess of endothelial cell segmentation and present  the way 

each algorithm works  

vi. Chapter 6 discusses the results realized by application of the proposed 

methods.  

vii. Chapter7 Lastly, Chapter seven concludes the study by listing the major 

achievements and provides recommendations for future studies. 
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