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ABSTRACT 

Clean and sustainable energy production has become the priority of the 21st century to 

save Earth’s environment from ever-increasing pollution and climate change. Solid Oxide Fuel 

Cell (SOFC) is one of the emergent technologies that which can produce a vast amount of 

clean energy using water; thus, considered to be renewable, sustainable, and pollution-free. 

All previous studies have used high-temperature SOFC electrolyte preparation methods which 

were expensive and cumbersome. Based on these factors, in this study, good quality yttria-

stabilized zirconia (YSZ) electrolyte thin film was synthesizing using soda lime glass and 

sapphire as a substrate by sol-gel dip-coating method which use low temperature preparation 

method for YSZ thin film. Several solvents were tested to obtain homogeneous suspension of 

YSZ such as water, acetone and alcohol and it was found out that alcohol is the suitable one. 

The samples then were characterized by diverse analytical techniques to determine their 

potency for the SOFC applications. As-deposited thin films were characterized using X-ray 

diffractometer (XRD) analyses, atomic force microscopy (AFM), Raman spectroscopy, field 

emission scanning electron microscopy (FESEM) and Four-point probe techniques. The 

impact of various substrates, sintering temperatures and layer-count on the structural, 

morphological and electrical properties of these electrolyte thin films was evaluated. 

Furthermore, the optimum thin film was chosen to demonstrate its viability as an effective 

SOFC electrolyte. XRD analysis showed that the YSZ thin films deposited on soda-lime glass 

and sapphire were highly amorphous and crystalline in nature, respectively. Hence, the 

sapphire substrate was selected for further deposition of thin films. To improve the overall 

characteristics of the YSZ films, two types of heat treatments like sintering and normalizing, 

were performed. The film which had been sintered at 1300 °C revealed the formation of 

crystallites with lower density than the normalized film. Conversely, the film which had been 

sintered above 1300 °C showed much better morphology compared to those obtained using 

the normalized heat treatment. The single-layer YSZ film which had been sintered at 1300 °C 

exhibited excellent crystallinity, dense morphology with fewer cracks, very low porosity and 

high electrical conductivity (2.905 S/m). The double-layered YSZ film sintered at 1400 °C 

displayed the highest conductivity (3.552 S/m) and best crystalline density (5.976 g/cm3). An 

increase in the number of layers from three to ten was found to degrade the crystallinity, 

density and morphology of the grown films. The YSZ electrolyte films deposited with up to 

three layers were not suitable for practical use in the SOFC. Therefore, the double-layered film 

which had been sintered at 1400 °C was chosen as the optimum film. The growth of the 

proposed films was explained using various mechanisms to provide new insight into the 

preparation of the YSZ electrolyte thin films with tailored properties via the low-cost and 

simple method at low temperatures. This study focused only on two types of substrates, a few 

sintering temperatures and one preparation method. However, another synthesis method, 

substrate and characterization technique such as spin-coating, porous anodic alumina and UV-

Visible absorption or emission spectroscopy, respectively, may be useful for better sample 

optimization.  The use of lower temperature for the deposition of the thin films can yield higher 

electrical conductivity of the electrolyte useful for room temperature operation of SOFC. 

Based on the results it can be concluded that the interplay of the type of substrate, sintering 

temperature and the number of coating layers plays a vital role in obtaining high-quality 

electrolyte thin film, showing that synthesis of the YSZ thin film is essential thus the best 

sample is established. 
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ABSTRAK 

Pengeluaran tenaga yang bersih dan mampan menjadi keutamaan pada abad ke-21 ini 

untuk menyelamatkan alam sekitar daripada pencemaran dan perubahan iklim yang semakin 

meningkat. Sel Fuel Oksida Pepejal (SOFC) ialah salah satu teknologi baru yang boleh 

menghasilkan sejumlah besar tenaga yang bersih dengan menggunakan air, dengan itu ia 

dianggap boleh diperbaharui, mampan dan juga bebas pencemaran. Kesemua kajian yang 

terdahulu menggunakan suhu tinggi dalam kaedah penyediaan elektrolit SOFC yang sangat 

mahal dan rumit. Berdasarkan faktor-faktor ini, dalam kajian ini, filem nipis elektrolit yttria 

zirkonia terstabil (YSZ) berkualiti tinggi telah disintesis menggunakan substrat kaca soda-

kapur dan batu nilam sebagai substrat dengan kaedah salutan celup dalam sol-gel yang 

menggunakan suhu rendah untuk filem nipis YSZ. Beberapa pelarut telah diuji untuk 

mendapatkan ampaian homogen YSZ seperti air, aseton dan alkohol dan telah dikenalpasti 

bahawa alkohol adalah yang paling sesuai. Sampel kemudiannya dicirikan oleh pelbagai 

teknik analisis bagi menentukan potensi mereka untuk penggunaan aplikasi SOFC. Filem nipis 

telah dicirikan menggunakan analisis pembelauan sinar-X (XRD), mikroskopi daya atom 

(AFM), spektroskopi Raman, mikroskop imbasan pancaran medan elektron (FESEM) dan 

penduga empat titik. Kesan kepelbagaian substrat, suhu pensinteran dan kiraan lapisan kepada 

sifat struktur, morfologi dan elektrik filem nipis ini telah dinilai. Tambahan lagi, filem nipis 

optimum dipilih untuk menunjukkan kelangsungannya sebagai elektrolit SOFC yang 

berkesan. Analisis XRD menunjukkan bahawa filem YSZ yang dimendapkan pada substrat 

kaca dan nilam masing-masing adalah sangat amorfus dan berhablur. Oleh itu, substrat nilam 

telah dipilih untuk pemendapan filem selanjutnya. Bagi menambah baik ciri-ciri keseluruhan 

filem YSZ, dua jenis rawatan iaitu pensinteran dan penormalan telah dilakukan. Filem yang 

disinter pada suhu 1300 °C mendedahkan pembentukan hablur dengan ketumpatan yang lebih 

rendah daripada filem yang dinormalkan. Sebaliknya, filem yang disinter di atas 1300 °C 

menunjukkan morfologi yang lebih baik berbanding dengan yang diperoleh menggunakan 

rawatan haba ternormal. Filem YSZ lapisan tunggal yang disinter pada suhu 1300 °C 

mempamerkan kehabluran yang sangat baik, morfologi yang tumpat dengan retakan yang 

sedikit, keliangan yang sangat rendah dan kekonduksian elektrik yang tinggi (2.9047 S/m). 

Dua lapisan filem YSZ yang disinter pada suhu 1400 °C memaparkan kekonduksian tertinggi 

(3.5516 S/m) dan ketumpatan hablur terbaik (5.976 g/cm3). Peningkatan bilangan lapisan 

daripada tiga ke sepuluh lapisan didapati merendahkan kehabluran, ketumpatan dan morfologi 

filem. Filem elektrolit YSZ yang dimendapkan sebanyak tiga lapisan ke atas tidak sesuai untuk 

kegunaan praktikal dalam SOFC. Oleh itu, dua lapisan filem yang disinter pada suhu 1400 °C 

telah dipilih sebagai sampel yang optimum. Pertumbuhan filem telah dijelaskan dengan 

kepelbagaian mekanisme untuk memberikan pandangan yang baru tentang penyediaan filem 

nipis elektrolit YSZ dengan sifat yang sesuai melalui kaedah yang berkos rendah dan mudah 

pada suhu rendah. Walaupun kajian ini hanya tertumpu kepada dua jenis substrat, beberapa 

suhu pensinteran dan satu kaedah penyediaan, bagaimanapun, kaedah sintesis, substrat dan 

teknik pencirian yang lain seperti salutan putaran, alumina anodik berliang dan spektroskopi 

penyerapan atau pelepasan ultralembayung-cahaya nampak, masing-masing mungkin berguna 

untuk pengoptimuman sampel yang lebih baik. Penggunaan suhu yang lebih rendah untuk 

filem nipis boleh menghasilkan elektrolit dengan kekonduksian eletrik yang lebih tinggi untuk 

digunakan dalam SOFC beroperasi suhu bilik. Berdasarkan keputusan ini, ia dapat 

disimpulkan bahawa interaksi diantara jenis substrat, suhu pensinteran dan bilangan lapisan 

salutan memainkan peranan penting dalam mendapatkan filem nipis elektrolit berkualiti tinggi 

lantas menunjukkan bahawa sintesis filem nipis YSZ adalah penting justeru itu sampel yang 

terbaik telah dibuktikan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

A thin film is a low-dimensional substance made by condensing atomic, 

molecular, or ionic species of matter one at a time. A thin film's thickness is usually 

less than a few microns. For more than half a century, thin films have been used in 

electrical appliances, hard coatings industry, optical coatings, and aesthetic 

components. Thin films are still being made on a regular basis these days, as they are 

an important component in the creation of novel materials in the twenty-first century, 

such as nanometre materials. Since the quantity utilized is restricted to only the surface 

or as a thin film layer, the materials and equipment necessary for making thin films 

with the least amount of hazardous ingredients are accessible. Thin film processing 

can also minimise energy usage during production, making it an ecologically friendly 

material technology for the twenty-first century (Wasa et al., 2004).  

Thermal evaporation, chemical breakdown, or irradiation of energetic particles 

or photons are all methods for depositing thin films on a substrate. Film structure, 

crystal phase and orientation, thickness, and microstructure are all important variables 

to consider. All of these properties can be controlled by deposition conditions. Other 

than these, thin film acquires several unique properties compared to bulk materials, 

such as the unique properties of materials  from the atomic growth process and the size 

of the effect can be characterized by the thickness,  orientation of crystallization and 

multilayer characteristics (Wasa et al., 2004). 

Thin film technology can be used in energy applications like fuel cells and solar 

cells. It is needed in improving the usefulness of the cells, reducing working 

temperature and expanding their life span. Fuel cells produce electrical energy from 

chemical energy. They generate energy through the oxidation of natural gas, hydrogen 
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or other fuels. They can operate continuously as long as they can access to the supply 

such as hydrogen and oxygen. Fuel cell applications may be divided into three 

categories: portable power production, fixed power generation, and transportation 

power. There are many different types of fuel cells, but they always include an anode, 

a cathode, and an electrolyte that permits positively charged hydrogen ions to travel 

between them. Solid Oxide Fuel Cells (SOFCs) is a major area of interest within the 

field of fuel cells. SOFCs use a solid ceramic oxide as an electrolyte. SOFCs operate 

at a high operating temperature of around 800 °C to 1000 °C. Current research tends 

to focus on lowering the operating temperature so that SOFCs can also be applied to 

suitable portable devices such as for transportation or mobile devices. Usually, power 

generation for residential use is around 1-10kW, while for commercial use, it is around 

2-250MW (Choudhury et al., 2013). However, by decreasing the operating 

temperature, the electrolyte ohmic resistance losses will increase due to the thermally 

activated behaviour of ionic transport (Litzelman et al., 2008). Introducing thin 

electrolyte layers into SOFCs can decrease the internal cell resistance and thus 

drastically enhance the power density (Menzler et al., 2013). 

This SOFC research has been using thin film for a long time since this 

technology is the most suitable for SOFC application. William Groove introduced the 

fuel cell idea for the first time in 1893. Grove was studying the electrolysis of water 

when he noticed that when the current was turned off, a small current continued to 

flow through the circuit in the opposite direction as a result of a reaction between the 

electrolysis products, hydrogen and oxygen, which was catalysed by the platinum 

electrodes. Grove also made the critically important insight that there must be a 

"notable surface of action" between the gas, the electrode, and the electrolyte phases 

in a cell. Grove recognised the idea of connecting several of these in series to create a 

gaseous voltaic battery. Maximizing the "triple-phase boundary," or the area of contact 

between the electrode, electrolyte, and gaseous reagent, continues to be at the forefront 

of fuel cell research and development (Ormerod, 2003)  

The choice of YSZ as the material of electrolyte based on its high ionic 

conductivity material, stable in both oxidizing and reducing environments and good 

high temperature mechanical properties (Jacobson, 2010).  
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Ultimately, we are targeting to contribute by giving ideas in relation to solid 

oxide fuel cells, to achieve high-efficiency cells to make it applicable in people’s daily 

lives. By achieving this, energy would be saved at a time when the climate is changing 

and global energy demand is continuously increasing. Thus, we have undertaken the 

task by increasing the output performance of SOFC electrolyte thin films.  

On 25 September 2015, United Nations Member States met at the United 

Nations in New York and adopted the 2030 Agenda for Sustainable Development. 

These 17 Sustainable Development Goals (SDGs) set out an agenda for sustainable 

development, peace and prosperity for all people and the planet, for now and for a 

future that embraces growth in the economy and social inclusion while protecting the 

environment. Some issues supported in the SDGs were water accessibility, energy 

security, urbanization, transportation and climate crisis. Out of 17 SDGs, this research 

had targeted 4 goals and would be able to directly contribute to 2 goals. They were 

Goal 7: Affordable and Clean Energy and Goal 13: Climate Action. Another 2 goals 

which we have indirectly focused on were Goal 3: Good Health and Well-being and 

Goal 11: Sustainable Cities and Communities (Kroll et al., 2019). 

1.2 Problem Statement 

During the last two decades, with the energy crisis and renewable energy 

development, SOFC materials have emerged as a starting material on the horizon of 

material science to overcome the problem of environmental pollution resulting from 

fossil fuel burning and excessive use of non-renewable energy such as from fossil fuel, 

crude oil and natural gas. Extensive research has been performed to find the optimum 

YSZ material for making the SOFC electrolyte (da Silva and de Souza, 2017; Abdalla 

et al., 2018; Zakaria et al., 2020). Various researchers have produced SOFC thin films  

mostly with high-temperature processing (more than 100 °C), but only a few reports 

exist on low-temperature processing (room temperature) (Ramesh et al., 2016; Son et 

al., 2018). However, the quality of the grown film depends on the optimum thickness, 

structural and morphological properties. To determine the effect of optimum growth 
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parameters on these properties’ thorough and careful characterization and preparation 

of the samples are required.  

Several studies have been performed to determine the effect of sintering 

temperature and sol-gel processing parameters using different methods. However, it 

has been found that growth temperature is the most crucial and significantly affects 

the layer properties and the layer thickness. Based on these facts, it has been found that 

most of the techniques had used  high temperature and had required a lot of other 

processing parameters which makes it more expensive and complicated compared to 

the low-temperature processing method, where samples prepared by sol-gel method 

can be used to achieve better properties (Lee et al., 2016; Ma et al., 2016; 

Venkataramana et al., 2017). One of the advantages of the sol-gel method compared 

to other methods is that densification can easily be achieved at low temperatures. As 

an inexpensive process, chemical composition of the product can be controlled. A 

small amount of base material  can be applied to the solution and can take part in 

affecting the final result (Lee et al., 2016). However, the regularity of the thin film 

structure, size of the particle and morphology of the particle distribution has not yet 

been clarified. In this view, the present study attempted to overcome the limitation of 

past studies to try to improve the properties by making a high-quality film for SOFC 

electrolyte application.  

The requirement for low temperature during thin films deposition is needed to 

obtain  high electrical conductivity of the electrolyte so that SOFC can be operated at 

room temperature since there has been increasing concern that SOFCs are being 

disadvantaged when operating at high temperature due to its start-up time, materials 

demand and application being limited to only large stationary sources (Timurkutluk et 

al., 2016).  

It is important to establish the correlation among the low-temperature 

processing, environmental friendliness and the cost-effectiveness of this sol-gel grown 

thin film.  Therefore, it was important for the SOFC application that any material must 

meet the environmental sustainability criteria, especially since the SOFC material was 
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for the renewable energy sector. As per this rationale, the present research work 

attempted to establish this yet-to-be established correlation. 

1.3 Research Objectives 

This research had three objectives, which were as follows: 

(a) To synthesis YSZ thin films in soda lime glass and sapphire substrates using 

sol-gel dip-coating technique; 

(b) To determine the effects of growth parameters such as substrates, coating layer 

numbers and sintering temperatures on the modified structural, morphological 

and electrical characteristics of YSZ thin films;  

(c) To optimize the growth parameters of YSZ thin films via structural, 

morphological and electrical characterizations                                                                                                                                                                     

useful for SOFC applications. 

 

1.4 Scope of Study 

The study used the method of sol-gel by dip-coating of YSZ electrolyte thin 

films. Growth parameters for the experiment included layers of coating (1 to 10 layers) 

and sintering temperature (300 °C to 1300 °C). The time of coating (60 seconds) and 

speed of coating (150 mm/min) remained constant.  

The solid electrolyte material had been chosen due to the general criteria, 

including strong ionic conductivity, low electronic conductivity, oxidizing and 

reducing environment durability, and excellent mechanical properties (Jacobson, 

2010; Biswas and Sadanala, 2013). Zirconia-based oxide ion fulfilled the criteria 

mentioned above. Addition of rare earth, alkaline earth and lanthanide oxides could 
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stabilize monoclinic zirconia to cubic fluorite phase at room temperature. The ionic 

conductivity also increases the oxygen partial pressure range during the SOFC 

operation. One of the oxides which needed to be used as a dopant for zirconia was 

yttria (Y2O3) (Figueiredo and Marques, 2013). Yttria-Stabilized Zirconia (YSZ) has a 

wide temperature range starting from room temperature until 2300 °C to achieve 

stability. In this study, special attention was given to the characteristic of the 

electrolyte thin film. Dense and low-porosity thin film is very important for ionic 

transportation when electrons transfer from anode to cathode. The stabilization of the 

cubic phase was needed to achieve very high ionic conductivity. The solid solution of 

cubic form induces the presence of oxygen vacancies according to the substitution of 

Zr4+ and Y3+ in the cationic network (Hidalgo et al., 2011; Figueiredo and Marques, 

2013). 

Sapphire substrate was chosen in this research due to its nearest lattice 

mismatched between the substrate and thin film. YSZ lattice constant is 5.12 while 

sapphire is a: 4.785, c: 12.991. Additionally, to produce high crystallinity YSZ film, a 

high sintering temperature is needed. Sapphire substrate melting point can be up to 

2040 °C. Glass substrate was used to test and compare the results. However, glass 

substrate can only withstand up to 700 °C which is not sufficient for YSZ thin film to 

achieve crystallinity. The dip-coating method is the simplest method to produce a thin 

film. Apart from that, it is easier to control the thickness of the film and other growth 

parameters. Time (60 seconds) and speed (150 mm/min) of coating remained 

unchanged. For growth parameters, the layer of coating (1 to 10 layers) and sintering 

temperature (1000 °C to 1500 °C) (Zhou et al., 2014; Jang et al., 2016) were discussed. 

The sintering temperature and coating layers is a very important parameters in 

determining a suitable temperature to produce high-quality YSZ thin film.  

The properties of each component were to be characterized using X-ray 

Diffractometer (XRD) and field emission scanning electron microscope (FESEM) for 

the phase and structure of samples. Field Emission Scanning Electron Microscope 

(FESEM), Raman Spectroscopy (RAMAN) and atomic force microscope (AFM) were 

to be used for morphological characterization. The 4-point probe was to be used for 

conductivity and resistivity of electrolyte thin film as an application in SOFC. 



 

7 

Structural and electrical properties are important in producing YSZ thin film. From 

structural properties we can identify crystallization of thin film, phase structure and 

crystallite size. Morphologies of thin film would tell whether the thin film is dense as 

well as whether it had no-crack properties and pores. All these properties would help 

to get high conductivity and less resistivity in terms of electrical properties. 

1.5 Significance of Study 

The findings of this study may help other researchers when investigating the 

effects of Yttria-Stabilized Zirconia thin film using the sol-gel method in term of 

electrical, structural and morphological characteristics when deposited on the sapphire 

wafer and soda lime glass for the solid oxide fuel cell application. This study could 

also contribute to the improvement and development of low pollution and clean 

technology. The technique used in this study which is sol-gel dip-coating method is 

one of the simplest and low-cost method to fabricate thin film thus can contribute in 

cost-effectiveness of the sample. The use of thin film in this study also supports the 

increasing interest in nanotechnology. In the present, the thin film is useful for small 

and portable devices. So, this research could help researchers to improve the 

performance of SOFC electrolyte thin films. This study will also assist to gather new 

understanding and important to discover variations in resistivity, conductivity, crystal 

structure, morphologies, thickness, and porosity of a YSZ electrolyte useful for SOFC 

applications. 

1.6 Outline of Thesis 

This thesis explains the preparation and synthesis of growth YSZ thin film on 

soda lime glass and sapphire substrate, characterization and analysis of various 

properties of the thin film. The simple and less-cost wet deposition, which was the sol-

gel dip-coating method, was used to prepare the thin film. The sintering heat treatment 

process was applied to produce growth thin film. The optimization of the YSZ thin 

film finally were determined based on the analysis given.  
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Chapter 1 presents an introduction and the background of the current study. 

The problem statement, objectives, scope, limitations of the study and significance of 

the study have been discussed in this section.  

Chapter 2 explains relevant literature regarding SOFC applications including 

type of SOFC, components of SOFC, thin film technologies with growth mechanism 

explanation and technique used and lastly the mechanism of characterization used to 

analyse thin film.  

Chapter 3 describes the experimental procedure to prepare and to synthesize 

the YSZ thin film. In addition, information regarding the characterization of the thin 

film based on its structural and electrical properties have been emphasized.   

Chapter 4 highlights all the results obtained from the comparison test of the 

different substrates and choosing a suitable one. The growth parameter in terms of 

sintering temperature and different coating layers were chosen. The optimum result 

from the parameter was determined by characterization analysis using XRD, AFM, 

and Raman for structural properties, FESEM was used to study morphology and a 

four-point probe was used to investigate the electrical properties.  

Chapter 5 concludes the entire thesis that has been carried out to fulfil the 

objectives. The most optimized YSZ thin film electrolyte that could be used in SOFC 

application was prepared. By using the less-cost method, the production cost of the 

SOFC could be controlled, which is very useful as SOFC needs to be widely used and 

well-known in the future for better sustainable energy in line with protecting our 

environment with increased use of green energy. 
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