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ABSTRACT 

The suspension system is one of the mechanical systems in railway vehicles 

that offers greater ride quality to enhance ride comfort for passengers. However, the 

existing suspension system in a railway vehicle has a limitation in absorbing vibratory 

motion due to the lateral track irregularity. The unwanted vibratory motion reduces the 

ride performance of the railway vehicle system, thus leading to discomfort for railway 

vehicle passengers when excessive track interference occurs. Following this, it is 

essential to minimize unwanted vibratory motion so that the level of passenger comfort 

can be improved.  The overall goal of the study is to enhance the railway vehicle ride 

performance by implementing a semi-active secondary suspension system via 

magneto-rheological (MR) fluid damper. Initially, a seventeen degrees of freedom 

(DOF) railway vehicle simulation model was developed which included the motions 

of lateral body acceleration (�̈�c), yaw angle (ψc, ψb1, ψb2) and roll angle of vehicle body 

and two bogies, (θc, θb1, θb2) as well as lateral acceleration (�̈�w1, �̈�w2, �̈�w3, �̈�w4) and roll 

angle (θw1, θw2, θw3, θw4) of four wheelsets. The effects of primary and secondary 

suspension elements were analysed using MATLAB/Simulink software and the result 

identified that the lateral damper for secondary suspension improved the railway 

vehicle body’s comfort level more than others by around 69.6% based on �̈�c of the 

vehicle body. The study was then continued with the development of a small-scale 

railway vehicle test rig. The parameters for the test rig were obtained via dimensionless 

analysis study known as Pascal Modified method. Next, the experimental setup, 

calibration, modelling, and validation works on MR damper had been performed, and 

the force tracking control performance was assessed by using step, sinewave and saw-

tooth inputs. After the small-scale railway vehicle test rig and MR damper models 

were validated, the performance of the proposed control strategy, specifically Body-

based Modified Skyhook (BD-MS), Bogie-based Modified Skyhook (BG-MS), and 

Hybrid Body-based Bogie-based Modified Skyhook (HBB-MS) controllers optimized 

by Particle Swarm Optimization (PSO) were also examined against the passive system. 

The simulation results showed that the performances of BD-MS, BG-MS and HBB-

MS controllers respectively improved until 13.9%, 61.6%, 85.1% reduction of �̈�c, 

17.1%, 26.4%, 69.9% reduction of θc, and 18.5%, 29.6%, 58% for reduction of ψc. 

Lastly, the suspension system was further controlled by using a Hybrid Body-based 

Bogie-Based Fractional Modified Skyhook (HBB-FMS) controller to study the 

potential benefit of fractional gain in improving the railway vehicle body responses. 

The findings from the simulation work showed that the HBB-FMS controller provides 

better performance of about 43.5% in �̈�c, 31% in θc, and 44.9% in ψc against the HBB-

MS controller. Therefore, it can be concluded that the semi-active suspension system 

with HBB-FMS controller was found effective in enhancing the ride performance of 

the railway vehicle by mitigating the unwanted vibratory motion on the railway vehicle 

body due to lateral track irregularities.   
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ABSTRAK 

Sistem gantungan adalah salah satu sistem mekanikal dalam kenderaan 

keretapi yang menawarkan kualiti perjalanan yang lebih baik untuk meningkatkan 

keselesaan perjalanan kepada penumpang. Walau bagaimanapun, sistem gantungan 

sedia ada dalam kenderaan keretapi mempunyai had dalam menyerap gerakan getaran 

disebabkan oleh ketidakteraturan landasan sisi. Pergerakan getaran yang tidak diingini 

mengurangkan prestasi tunggangan sistem kenderaan keretapi, sekali gus membawa 

kepada ketidakselesaan kepada penumpang kenderaan keretapi apabila gangguan trek 

yang berlebihan berlaku. Disebabkan ini, adalah penting untuk meminimumkan 

gerakan getaran yang tidak diingini supaya tahap keselesaan penumpang dapat 

dipertingkatkan. Matlamat keseluruhan kajian adalah untuk meningkatkan prestasi 

tunggangan kenderaan keretapi dengan melaksanakan sistem gantungan sekunder 

separa aktif melalui peredam bendalir magneto-rheological (MR). Pada mulanya, 

model simulasi kenderaan keretapi dengan tujuh belas darjah kebebasan (DOF) telah 

dibangunkan berdasarkan undang-undang kedua Newton yang merangkumi gerakan 

pecutan badan sisi (�̈�c), sudut rewang (ψc, ψb1, ψb2) dan sudut guling  bagi badan 

kenderaan dan dua bogi (θc, θb1, θb2), serta pecutan badan sisi (�̈�w1, �̈�w2, �̈�w3, �̈�w4) dan 

sudut guling (θw1, θw2, θw3, θw4) bagi empat set roda. Kesan unsur suspensi primer dan 

sekunder dianalisis menggunakan perisian MATLAB/Simulink dan keputusannya 

mengenal pasti peredam sisi untuk suspensi sekunder meningkatkan tahap keselesaan 

badan kenderaan keretapi lebih daripada yang lain sekitar 69.6% berdasarkan �̈�c bagi 

badan keretapi. Kajian itu kemudiannya diteruskan dengan pembangunan pelantar 

ujian kenderaan keretapi berskala kecil. Parameter bagi pelantar ujian diperolehi 

melalui kajian analisis tanpa dimensi yang dikenali sebagai kaedah Modifikasi Pascal. 

Kemudian, model simulasi telah disahkan menggunakan data eksperimen dari pelantar 

ujian. Seterusnya, kerja-kerja persediaan eksperimen, penentukuran, pemodelan dan 

pengesahan pada peredam MR telah dilakukan, dan prestasi pengawal pengesanan 

daya dinilai. Selepas pelantar ujian kenderaan keretapi berskala kecil dan model 

peredam MR disahkan, prestasi strategi kawalan yang dicadangkan, khususnya 

Modifikasi Skyhook Berasaskan-Badan (BD-MS), Modifikasi Skyhook Berasaskan-

Bogi (BG-MS) dan Pengawal Modifikasi Skyhook Hibrid berasaskan Badan-Bogi 

(HBB-MS) dioptimumkan oleh Pengoptimuman Kawanan Zarah (PSO) juga telah 

diperiksa terhadap sistem pasif. Keputusan menunjukkan bahawa pengawal BD-MS, 

BG-MS dan HBB-MS masing-masing bertambah baik sehingga 13.9%, 61.6%, 85.1% 

pengurangan pada �̈�c, 17.1%, 26.4%, 69.9% pengurangan pada θc, dan 18.5%, 29.6%, 

58% pengurangan pada ψc. Akhir sekali, sistem penggantungan dikawal lagi dengan 

menggunakan pengawal Pecahan Modifikasi Skyhook Hibrid berasaskan Badan-Bogi 

(HBB-FMS) untuk mengkaji potensi kelebihan pecahan gandaan dalam menambah 

baik tindak balas badan kenderaan keretapi disebabkan pelbagai ketidakteraturan 

keadaan penyelewengan trek. Hasil penemuan menunjukkan bahawa pengawal HBB-

FMS boleh memberikan prestasi yang lebih baik kira-kira 43.5% untuk �̈�c, 31% untuk 

θc, dan 44.9% untuk ψc terhadap pengawal HBB-MS. Maka, dapat disimpulkan 

bahawa sistem gantungan separa aktif dengan pengawal HBB-FMS didapati berkesan 

dalam meningkatkan prestasi tunggangan kenderaan keretapi dengan mengurangkan 

gerakan getaran yang tidak diingini yang dihasilkan pada badan kenderaan keretapi 

disebabkan oleh penyelewengan trek sisi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Overview 

In a big city such as Kuala Lumpur, the railway vehicle transportation system 

is one of the transport systems of choice by the urban community as a more effective 

public transport than other public vehicles. The main contribution factor is the 

exceptional vehicle service experiences, which are free from traffic jams, comfortable 

in travelling, fast, and punctual that enable the entire passenger to manage their 

itinerary effectively. Concerning this situation, railway transportation industries and 

companies are putting remarkable effort in fulfilling their passengers’ satisfaction with 

the provided services in terms of timeliness, operational efficiency, safety, and 

passenger comfort levels.  

The suspension system in railway vehicles is dissimilar from the automotive 

vehicle suspension system especially in terms of suspension layout. It has two levels 

of suspension system known as primary and secondary suspension systems. The 

primary and secondary suspensions in railway vehicles have their own responsibility. 

The primary suspension that connects the railway vehicle bogie with the wheelset 

serves as a system that controls the stability and performance of the bogie, especially 

during curving. Meanwhile, the secondary suspension system works to maintain the 

level of ride quality resulting from vibrations caused by the track irregularity.[1]. 

The suspension system for railway vehicle can be passive, semi-active, or fully 

active. Current suspension technology in railway vehicles, especially in Malaysia, are 

mostly using passive or conventional suspension system configuration. However, this 

type of suspension has limitations to cancel out unwanted motions, especially when 

the railway vehicle experiences disturbance from the track, which beyond the 

capability of passive suspension. This conventional technology needs to be improved 
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with the new system technology that can adapt to various ranges of speed and track 

disturbances, and the system technology that can overcome this problem is controllable 

or adjustable suspension technology. Therefore, the study on the semi-active system is 

very necessary to solve the problem of the passive system in maintaining the comfort 

level of train passengers caused by track irregularity [2]. 

According to Hudha [3], controllable suspension technology in railway 

vehicles can be divided into two general categories. The first is to increase running 

stability and wheelset guidance, and the second is to improve the ride quality of the 

railway vehicle. The bogie stability and wheelset guidance performance can be 

improved by focusing on the primary suspension system modification, while the ride 

quality has the potential to be improved by modifying the secondary suspension 

system. This advanced suspension technology can be applied to the primary and 

secondary suspension system simultaneously, but it requires a lot of time to work on 

it, and high operational costs. However, it can still be applied separately, either on the 

primary or secondary suspense system, depending on the purpose and objective. In this 

study, emphasis will be given to the secondary suspension system which uses an 

electronic control system on the lateral suspension system located between the vehicle 

body and bogie that covers the yawing and rolling modes as well as all the responses 

in a lateral direction. 

The main objective of this study is to determine the performance of railway 

vehicle suspension featuring a semi-active magnetorheological (MR) damper. The 

control strategy for the lateral movement was measured to improve ride quality due to 

the track irregularities. To study the lateral vibration of the railway vehicle, a small-

scale railway vehicle test rig had been developed. A 17 DOF of the suspension model 

was developed following the test rig design. The semi-active dampers were located at 

both the front and rear of secondary suspensions that connects the bogie to the body of 

the railway vehicle.  
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1.2 Problem Statement 

Many investigations have been done by researchers and engineers globally, on 

suspension system of the railway vehicle. The ride quality is a term used as a 

performance evaluation of railway vehicle suspension and is usually interpreted as the 

capability of the suspension system to reject unwanted motions or maintain within the 

range of human comfort. The ride quality of a railway vehicle depends on vertical and 

lateral motions (displacement, acceleration, and rate of change of acceleration). 

Generally, railway companies in developing countries such as Malaysia are still using 

conventional suspension system in their railway vehicle system. From a technical 

perspective, the conventional suspension system in railway vehicle is designed to 

achieve certain conditions, which require a compromise between the ride comfort and 

stability. To achieve a good compromise between these two performances, the purpose 

of the main elements of a suspension system which are the spring and damper need to 

be understood. Technically their characteristics are fixed and only valid to work in a 

certain condition. A soft suspension is needed when the goals are towards the ride 

comfort. Meanwhile, a hard suspension setting will be selected for better ride stability. 

Unfortunately, these two goals cannot be realized through a conventional suspension 

system since it cannot provide both ride quality and stability simultaneously. Due to 

these conflicting demands, an ideal suspension system should be designed to capable 

of fulfilling these two requirements simultaneously. Thus, the implementation of an 

advanced suspension system is well suited for this purpose. 

Another method that can be considered for better ride quality performance is 

by maintaining the track condition from any irregularities. However, the cost of track 

maintenance is expensive, and it also requires a longer time to be fixed. The basic 

characteristics of the wheel-rail interface must be accurately managed although it is 

difficult to achieve and keep it under control. The main task of an engineer is to ensure 

that ride quality can be improved or at least maintain at an acceptable level even though 

the track conditions are poor. Due to this constraint, the idea of solving the problem is 

by focusing on the suspension system that can keep the vehicle body at an acceptable 

level with a significantly lower cost. The controllable and adjustable suspensions have 

been widely studied experimentally [4-8] and theoretically [9-13] for railway vehicles 
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due to the limitation of conventional suspension in dissipating energy that is 

transferred from the wheelset to the vehicle body. However, the passive, semi-active 

and active suspension has its advantages and disadvantages. Although the passive 

system provides low performance, but in terms of maintenance costs are less costly 

when compared to controllable suspension. Although both semi-active and active 

suspensions can provide better performance than passive system, the cost of 

maintenance, especially the active system makes it difficult for some railway 

companies to consider this. However, with the advantages of a semi-active system that 

can function as good as the active system, it is preferable since it is cheaper than an 

active system. 

Researches on semi-active suspension systems had been carried out by [3, 14-

17] and active systems by [18, 19] for body vibration control of the railways. Though, 

many challenges must be considered especially in the research and development of the 

semi-active system. Practical applications are limited because of the frequent 

occurrences of a system error, random error and also external disturbances [14]. In the 

area of heavy vehicles, a limited amount of research had been done, which resulting in 

no commercially available controllable damper that is suitable for railway vehicle 

suspension. To answer this problem, a scale model of a railway vehicle with a semi-

active secondary suspension system was developed for the experimental study. 

1.3 Research Objectives 

The general objective of this study is to improve the ride quality of railway 

vehicle suspension by developing controllers for a secondary suspension system to 

control the railway vehicle body response. The specific objectives of this research are 

stated as follows: 

(a) To develop and validate the mathematical model of railway vehicle with the 

full-scale validated model. 
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(b) To explore the effects of secondary lateral suspension on the ride performance 

of the railway vehicle. 

(c) To validate the small-scale railway vehicle lateral model with the small-scale 

railway vehicle test rig. 

(d) To evaluate the performance of the optimised controller using particle swarm 

optimization in rejecting unwanted railway vehicle body motions through 

computer simulation work. 

 

1.4 Research Scopes 

The scopes of the study are defined as follow: 

(a) The railway vehicle model was developed with the intended to study the lateral 

movement of the vehicle body, and not consider the movement in the vertical 

direction. 

(b) The small-scale railway vehicle test rig was developed and limited for the 

testing procedure in the laboratory environment. 

(c) Only the ride quality analysis is performed, and the railway vehicle ride 

stability is neglected. 

(d) The simulation work was carried out by using both railway vehicle validated 

model, and MR damper validated model. The response of the vehicle body was 

evaluated in terms of vehicle body lateral acceleration, roll angle and yaw 

angle.  

(e) Modelling of the semi-active controller for secondary lateral suspension 

system. 

(f) Controller performances are evaluated only using selected parameter scaling 

method 



6 

(g) The response of the passive and semi-active suspension system are compared 

in the time response only. 

(h) The simulation model of railway vehicle is modelled using 

MATLAB/Simulink software.  

 

1.5 Research Contributions 

In general, the research study has contributed to the improvement of the 

railway vehicle dynamic behaviours utilizing the semi-active system located on the 

secondary lateral suspension in a railway vehicle. This work will significantly give 

advantages to the railway vehicle industry where the company of railway vehicles can 

use the output of this study for ride quality improvement. The major contributions of 

the study are summarized as follows:  

(a) A parametric study in analysing the influence of primary and secondary 

suspension system parameters on the railway vehicle dynamic behaviours. 

(b) A parameter scaling strategy was conducted through numerical analysis to gain 

the parameter values of the small-scale model from the parameters of a full-

scale railway vehicle model. 

(c) Developing a novel small-scale railway vehicle test rig and hence allowing for 

mathematical model validation. 

(d) A new controller was proposed in the railway vehicle simulation model with 

the semi-active suspension system. 

 

1.6 Structure and Layout of the Thesis 

The thesis consists of seven chapters, and the chapter is structured as follows: 

Chapter 1 explains in detail an overview of the railway vehicle suspension system. It 

is followed by the problem statement, objectives, scopes of study, and summary of 

research contribution. The outline of the thesis is also described in this chapter. 
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Chapter 2 describes the literature review on previous work and the research 

development accomplished by other researchers and academicians on the railway 

vehicle suspension system and MR damper. It concludes the general information of 

conventional and advanced railway vehicle suspensions system and research 

development in railway vehicle suspension. A review of recent articles related to the 

control strategies is also presented. Furthermore, the research gap of the study is also 

featured.  

Chapter 3 presents the research methodology used throughout the study to 

develop the semi-active suspension to improve the ride quality of railway vehicles. 

The study begins with the development of a 17 DOF railway vehicle full car. The 

modelling assumptions and parameter scaling strategy are presented. The development 

of a small-scale railway vehicle test rig used to validate the model is also described. 

The experimental setup of the test rig is also presented for validation purposes. The 

experimental set up for MR damper testing and its modelling are also described. 

Chapter 4 covers the mathematical model validation and analysis of the railway 

vehicle model with full-scale parameters. In the beginning, the model assumption is 

provided to analyse the performance of railway vehicle dynamic behaviours. The 

model is compared with the selected validated model found in the literature for initial 

evaluation before further analysis is done. The parametric study of suspension 

parameters is also described to study the influence of suspension elements on railway 

vehicle dynamics. Finally, the results of model verification and analysis on the effect 

of primary and secondary suspensions systems on the ride performance of the railway 

vehicle body are presented. 

Chapter 5 elaborates the study that being conducted on a small-scale model in 

gaining the data and tracking the behaviour of larger railway vehicle models as close 

as possible. This chapter also describes model validation based on the small-scale 

railway vehicle test rig, which is typically a reduced-size version of the full-scale 

model. Then, the experimental works are continued with the MR damper model where 

the behaviour of the MR damper was investigated. The mathematical modelling and 

force tracking control of the MR damper model were also discussed.  



8 

 Chapter 6 presents the controllers development of a railway vehicle 

suspension system featuring the MR damper. The proposed controller for the semi-

active suspension system are Body-based Modified Skyhook (BD-MS), Bogie-based 

Modified Skyhook (BG-MS) and Hybrid Body-based Bogie-based Modified Skyhook 

(HBB-MS) controllers.  The performances of the railway vehicle body responses are 

evaluated by compare the semi-active system with the responses of the passive 

suspension system. The railway vehicle model is tested with several track irregularity 

input namely the sinewave, periodical, and random track inputs. Chapter 6 also 

presents the possible improvement of the HBB-MS controller where the fractional gain 

is added into the BG-MS and BD-MS controllers. It transforms the linear hybrid to the 

non-linear controller and is named as Hybrid Body-based Bogie-based Fractional 

Modified Skyhook (HBB-FMS) controller. For the performance evaluation, the results 

obtained from the HBB-FMS controller are analysed and compared with the passive 

and HBB-MS controller. 

Finally, in Chapter 7, all the results are summarized and concluded, and some 

recommendations for future works are proposed. 
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