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ABSTRACT 

Ballast water discharge may introduce and transport unwanted marine 

organisms to the discharging area. The Marine Environment Protection Committee 

(MEPC) of the International Maritime Organization (IMO) considers ballast water 

hazardous due to possibly have a negative impact on the receiving ecosystems. Many 

researchers have investigated possible solutions for the management of ballast water 

to minimize the risks, including the ballast-free system. However, the application of 

the ballast-free system has created a new issue on the hull resistance. Many techniques 

have been developed in order to reduce the frictional resistance of ship navigation. The 

need to have an advanced Liquefied Natural Gas (LNG) ship with environmentally 

friendly and low fuel consumption has brought to the application of an LNG ship with 

an air-injection ballast-free system.  This research aims to determine the effect of 

resistance on the LNG ship which has been fitted with ballast-free system and to 

evaluate how the air-injected pressured bubbles reduce ship resistance and improve 

the system performance. Firstly, the total hull resistance of the LNG model with a one-

sided system was determined by simulation using ANSYS CFX and validated by 

laboratory experiment. Secondly, the resistance of the two-sided system was generated 

using ANSYS CFX. The experiment and simulation were limited to Froude number 

Fr=0.17 to Fr=0.22 at the ballast draft. The total resistance in the model’s scale was 

extrapolated to the ship’s scale according to the International Towing Tank Conference 

(ITTC – 1957) equations. From the extrapolated result, the LNG hull with the ballast-

free system has increased the total bare hull resistance by 7.58% and 23.71% for one-

sided and two-sided systems, respectively. The increment of resistance is due to the 

additional wetted surface area of the ballast tanks and pipes. Meanwhile, the 0.5 bar 

air injection shows the optimum resistance reduction compared to the other air 

injection pressures. The 0.5 bar air injection has reduced the total bare hull resistance 

by 20.17% and 24.67% for one-sided and two-sided systems, respectively. The 

reduction of resistance from the two systems is due to more area on the hull’s bottom 

surface has been surrounded by air bubbles. Thus, these findings can be a guideline 

for the estimation of power calculation and future improvement from the current 

works. 
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ABSTRAK 

Pembuangan air balast mungkin mendatangkan dan memindahkan organisma marin 

yang tidak diinginkan ke kawasan pembuangan. Jawatankuasa Perlindungan Persekitaran 

Marin (MEPC) di bawah Organisasi Maritim Antarabangsa (IMO) menganggap air balast 

berbahaya kerana ia mungkin berimpak negatif kepada ekosistem penerima. Banyak 

penyelidikan dalam pengurusan air balast telah dijalankan bagi meminimumkan risikonya, 

termasuk sistem bebas balast. Namun, penggunaan sistem bebas balast menimbulkan masalah 

baru pada rintangan kapal. Banyak teknik telah dikembangkan untuk mengurangkan rintangan 

geseran dalam pelayaran kapal. Keperluan untuk memiliki kapal Gas Asli Cecair (LNG) yang 

mesra alam dan menjimatkan kos penggunaan bahan api telah membawa kepada aplikasi kapal 

LNG yang dilengkapi dengan sistem bebas balast suntikan udara. Tujuan kajian ini adalah 

untuk menentukan kesan rintangan pada kapal LNG yang dipasang sistem bebas balast dan 

mengkaji bagaimana peranan gelembung udara bertekanan yang disuntik dapat mengurangkan 

rintangan kapal serta meningkatkan prestasi sistem. Pertama, jumlah rintangan model kapal 

LNG bagi sistem satu-sisi ditentukan oleh simulasi dengan menggunakan ANSYS CFX dan 

disahkan melalui eksperimen. Kedua, rintangan model bagi system dua-sisi dihasilkan dengan 

menggunakan ANSYS CFX. Eksperimen dan simulasi dihadkan pada nombor Froude Fr=0.17 

hingga Fr=0.22 pada draf balast. Jumlah rintangan dalam skala model diekstrapolasi kepada 

skala kapal mengikut persamaan Persidangan Tangki Tunda Antarabangsa (ITTC – 1957). 

Dari keputusan yang diektrapolasi, kapal LNG dengan sistem bebas balast telah meningkatkan 

jumlah rintangan badan kapal licin sebanyak 7.58% dan 23.71% bagi sistem satu-sisi dan 

sistem dua-sisi masing-masing. Kenaikan rintangan adalah disebabkan oleh pertambahan luas 

permukaan basah tangki balast dan paip. Sementara itu, suntikan udara 0.5 bar menunjukkan 

pengurangan rintangan optimum berbanding tekanan suntikan udara yang lain. Suntikan udara 

0.5 bar telah mengurangkan rintangan badan kapal licin sebanyak 20.17% dan 24.67% bagi 

sistem satu-sisi dan sistem dua-sisi masing-masing. Pengurangan rintangan tersebut 

disebabkan oleh lebih banyak permukaan bawah badan kapal telah dilitupi oleh gelembung 

udara. Dengan demikian, hasil kajian ini boleh dijadikan garis panduan untuk anggaran 

pengiraan kuasa dan penambahbaikan masa hadapan daripada kerja-kerja semasa. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

 Most ships, such as cargo and liquid containers need adequate weight to 

submerge their propellers into the water so that they can safely operate by maintaining 

its stability, preventing structural damage and to provide good maneuverability with 

good efficiency that leading to affect fuel consumption of the ship. Sufficient weight 

is required for the ship to replace the weight that has been discharged in port. Thus, 

sea water will be pumped in through the valve into the ballast tank to stabilize the ship.  

 

 However, taking water from one area and discharging it to other areas can be 

likened to the transport of marine organisms to discharging areas. Mixing various 

marine organisms from various areas causes the emergence of new environments that 

may alter and impact the receiving ecosystems. As a solution, the water should be 

treated during the process of ballast water being pumped into the ship. Ballast water 

treatment consists of filtering large particles, ultraviolet (UV) radiation, ballast water 

heating, and chlorination of ballast water (Armstrong, 1997). According to IMO 

(2004), all ships shall remove and dispose of sediments from ballast spaces during 

exchanging process. Ballast water shall discharge 10 biotas per cubic meter greater 

than or equal to 50 microns and discharge fewer than 10 biotas per milliliter between 

10 microns to 50 microns in minimum dimension. 

 

 In conjunction with the need to reduce ecosystem-related problems and avoid 

costly ballast water treatment, a Ballast Free Ship (BFS) Concept for bulk carriers was 

invented by Kotinis (2005) and extended by the research by Kotinis and Parsons until 

2011. Rather than pumping in water into ballast tanks in the double bottom and side 

tanks, longitudinal structural tunnels have been introduced throughout the ship length, 

allowing water to flood through a forward plenum and discharge out from an aft 
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plenum. As demonstrated by the above authors, the total ballast free system requires 

raising the double bottom height to sufficiently bodily sink the ship for full propeller 

submergence. Consequently, the ship depth needs to be increased to compensate for 

the loss of cargo space. The ballast-free concept is suitable for large container vessel 

because this type of ship significantly uses ballast water to replace the weight that has 

been discharged at the port.   

 

 Other than that, in dealing with ballast water management solutions, there are 

three projects in which the concept of a ship with zero ballast water (NOBS) has been 

developed (GESAMP Reports – 2011): (i) Det Norse Veritas (DNV) – Volume Cargo 

Ship, (ii) Delft University of Technology (DUT) – Monomaran Hull, (iii) Daewoo 

Shipbuilding & Marine Management (DSME) – Solid Ballast Ship. The DNV concept 

is a tri-hull concept that provides a high level of stability, while the DUT concept 

indicates a monomer hull by adopting a catamaran shape to the underside of a single 

broad hull. When a ship operates in unloaded condition, its stability without ballast 

water requires adequate buoyancy. Both the DNV and DUT concepts achieved this by 

moving the displacement volume outward from the centerline and widening the ship’s 

beam. In the case of the DSME concept, the ballast water is replaced by 25-tonne solid 

ballast in standard containers so that the conventional displacement hull is retained. 

However, this method is applicable to cargo ships only. 

 

Meanwhile, Arai et al. (2010) has introduced a series of converted 

conventional ballast tanks that submerged to provide enough draught in the ballast 

condition and then continuously discharged at normal speed to ensure efficient 

exchange without the need uses of pumps. The concept can be fitted to existing 

conventional ballast ships as well as new installations for new ship builds. The 

seawater enters each ballast compartment through an inlet near the ship's centreline 

and then discharges through two valves positioned at the aft end compartment port and 

starboard. The position is to maximize the water pressure differential to drive and 

increase the water flushing process as the ship moves forward. However, the water 

inlet and outlet under the hull affect the pressure resistance.  

 

 In 2012, the concept of ballast free ship suggested by Kotinis and Parsons was 

improved by Godey et al. In the concept, there are no plenum chambers and flow 
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through elliptical pipes as longitudinal tanks are provided in place of the conventional 

double bottom tanks throughout the length of the crude oil tanker to reduce the 

buoyancy in ballast condition. These pipes are equipped with valves at the forward and 

aft ends of the ship, which can be controlled. To ensure the loss of buoyancy, the valves 

are to be open to the sea during the ballast voyage and closed during the loaded 

departure with pipes emptied of ballast water. The introduction of elliptical pipes 

caused ballast capacity reduction. 

 

The ballast free concept proposed by Kotinis (2005) and Arai et al. (2010) 

looks more promising compared to the improved ballast free concept (Godey et al., 

2012) and no ballast ship (NOBS) concepts (GESAMP Reports – 2011) for advance 

LNG ship. Rather than changing hull form to obtain the required volume of ballast 

water to submerge the propeller, there is a need for the ballast free system is being 

coupled with the conventional ballast system (Hamid et al., 2012). The system aims at 

utilizing the existing ballast spaces without increasing the double bottom height. By 

adopting the ballast free ship concept in the development of advanced LNG ships, there 

are possibilities of technical implications (Kotinis, 2005) that need to be investigated.  

 

 Despite that, the research on ballast free concept by Kotinis (2005) and Godey 

et al. (2012) found that applying the concept to the ship will affect the total hull 

resistance that contributes to the fuel penalty. The contribution of increasing hull 

resistance is when the ballast water flows out through the outlet plenum at the stern of 

the ship that causing disruption of the flow boundary layer around propeller and 

additional wetted surface area that caused an increase in frictional resistance. 

Meanwhile, the increase in resistance in Arai et al. (2010) concept is due to positioning 

the water inlet and outlet as an appendage under hull. The possible solutions for ship 

resistance reduction need to be investigated if the ballast-free concept is applied to the 

ship for ballast water management solution.    

 

 Over the last three decades, naval architects have faced the crucial part of 

research and development on reduction in ship resistance. Many techniques have been 

developed in order to reduce the frictional skin drag of the ship navigation in water 

and the fluid transportation in pipes, including compliant coatings, microgroover (or 

riblets), addictive injections (such as surfactant, polymer, and micro-bubbles), active 
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blowing or suction, electromagnetic excitation and acoustic excitation (Janssen et al., 

1984 and Xu et al., 2002). The authors claimed that drag reduction technology by 

micro-bubbles gives more advantages such as easy operations, environmentally 

friendly, low costs, and high saving energy, and it is able to achieve a drag reduction 

rate as high as 80%. Skudamov et al. (2005) and Lu et al. (2005) revealed that even a 

small reduction of the total drag could result in a significant fuel saving for both naval 

ships and commercial or shortened transit time. 

 

 The need to have an advanced LNG ship with environmentally friendly and 

save on fuel consumption cost has brought to the discussion the application of LNG 

ship fitted with an air-injection ballast free system. However, factors need to be 

considered when the injected pressure bubbles method is applied to the system. 

According to Kodama et al. (2000), when dealing with the bubbles injection method 

for drag reduction, bubble size is one of the major factors influencing frictional 

resistance. When bubbles are ejected through a porous plate or hole, bubble size is 

decided by the airflow rate and the main flow velocity and not by the size of the hole 

(Moriguchi and Kato, 2002 and Ceccio, 2010). Based on the experiment by Sayaadi 

and Nematollahi (2013) on the determination of optimum injection flow rate to achieve 

maximum bubble drag reduction in ships, the drag reduction effect slows down at a 

higher injection flow rate. In addition, a higher injection flow rate also produced higher 

bubbles number that influenced the turbulence boundary layer. Therefore, the air-

injected bubble configuration should be analysed accordingly to ensure the 

effectiveness of producing acceptable resistance properties in various speed 

conditions.     

1.2 Problem Statement 

Discussion on the ballast free system concept to overcome the effect on the 

ecosystem has led to an increase in ship resistance due to the introduction of inlet/outlet 

(Kotinis, 2005 and Arai et al., 2010) and additional wetted surface area (Godey et al., 

2012). Currently, there are no proposed ballast free concepts that reduce total hull 

resistance. Hence, this needs to be solved in view of better ballast free system concept 
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during operation. Considering the injection bubbles method reduces the resistance 

(Sayaadi and Nematollahi, 2013, Lyu et al., 2014), the current ballast free system 

concept needs to be improved based on the concept using a hypothesis that ballast free 

systems have a better performance than air-injected pressure bubbles.    

 

The development of the concept of an air injection ballast free system needs to 

consider several factors to produce a concept that is efficient in ship’s operation and 

able to protect the ecosystem. The previous research on the ballast free system by 

Kotinis (2005) and Godey et al. (2012) highlighted that the opening of the inlet at the 

bow region helps relieve and reduce the wave height that reduces pressure resistance. 

Meanwhile, the outlet at the stern region will disturb the pressure contour on the hull. 

Hence, appropriate inlet and outlet locations should be developed to avoid increased 

resistance when a ballast free system is implemented.  

 

In the development of an air injection system, the system configuration, 

including the amount of injection pressure, should be analysed as varied characteristics 

from different air injection pressure influence the hull resistance due to the difference 

in generated flow velocity around the hull. Other than that, different injection pressure 

produces difference bubble size and bubble number, which also influences the hull 

resistance (Kawamura et al., 2004) and discharge water flowrate for the ballast free 

system.  

 

The contributing factors to the resistance of the LNG with ballast free system 

and LNG with air injected ballast free system should be analysed, and the pressure 

distribution and generated wave analysis should be performed to determine the effect 

of air injection and ballast free system on the LNG resistance components. Besides 

that, the performance of the water flow in the ballast tank should be analysed to 

determine the system's effectiveness. 

 

One of the concerns toward further improvement of the ballast free system 

concept with the air injection bubble method to actual ship is the fact that the energy 

required to supply air bubbles using conventional bubble generators is quite 

significant. The extrapolation of the hull resistance to actual ship scale is needed for 
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further research application in power calculation, which will provide information to 

optimize the air injected ballast free system concept and lead to further improvement.     

1.3 Research Questions 

The research was conducted based on the following research question:   

(a) What are the factors that contribute to the LNG hull resistance fitted with 

ballast free system? 

(b) How does the air-injected pressure configuration affect the ballast free LNG 

hull resistance components?  

(c) How to determine reduction of hull resistance by using air-injected ballast free 

system to the LNG vessels? 

1.4 Research Objectives 

The study aimed to analyse the LNG performance which considers the 

configuration of the air-injected ballast free system fitted to the hull. The objectives of 

the research were outlined as follows: 

 

(a) To determine the total hull resistance of the LNG fitted with and without air-

injected ballast free system.  

(b) To determine the contributing factors of the LNG hull resistance fitted with 

ballast free system.  

(c) To evaluate the role of the air injection pressure to the ballast free system and 

the LNG resistance components. 

(d) To extrapolate the hull resistance in actual ship’s scale.   
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1.5 Research Scopes 

The research is focused on the LNG hull performance in resistance and the role 

of air-injected pressure to the ballast free system and the LNG resistance components. 

The scope of the research was outlined as follows: 

(a) The research was performed by utilizing the LNG carrier model available in 

Marine Technology Centre, UTM and a part of UTM Research Grant, Flagship, 

to develop a ballast free system for advanced LNG ships. Because the model 

always carries a lot of ballast water to accommodate the weight being 

transferred, it was suitable to implement a ballast free system into it. 

(b) The study was limited to the hydrodynamics studies, including flow 

characteristics studies around the hull and the air-injected ballast free system. 

(c) The analysis was performed in deep water at the designed speed and at fully 

ballast draught in calm water conditions. The designed speed of the LNG ship 

is 19 knots. Hence, the range of the speed used in the research between 17 knots 

to 22 knots is equivalent to 0.17 to 0.22 of the Froude number.     

(d) The computational method used the Computational Fluid Dynamic of ANSYS 

CFX solver to simulate the case problem and the laboratory experimental 

method used a towing tank to validate the simulation results. 

(e) The analysis focused on the resistance of the LNG ship with and without ballast 

free system. Then, the resistance was analyzed when the air was injected into 

the ballast free system.   

1.6 Significance of Research 

Significance of the research lies in the concept that are convenient for ship 

development and reliable experimental modelling and computer simulation 

programming hence superior over the existing concepts.   
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 The significances of the research are as follows: 

 

i) The concept of Air-Injected Ballast Free System for LNG ship 

a. the proposed concept is environmentally friendly and save on fuel 

consumption cost where it can reduce the total hull resistance with the 

presence of the air bubbles.  

ii) The experimental modelling and computational simulation  

a. The findings are important to database and has a significant contribution 

particularly related to the application of air injection pressure to the ballast 

water free system that may be used by other researcher for further research.   

1.7 Thesis Outline 

The thesis consists of five chapters focusing on the topics below. 

Chapter 1 - Introduction of the research consists of the research's background, 

problem statement, research questions and objectives, and scopes of the research. 

Chapter 2 - Literature Review provides the review of the past research whose 

topics are significant for understanding the research details and the research 

methodology and possess the knowledge for discussing the research result and 

findings. The chapter reviews ballast free system performance and characteristics, ship 

hull resistance, the theory of bubble characteristics that reduced hull resistance, and 

the tool used to determine resistance.  

Chapter 3 – Research Methodology describes all the methods chosen for the 

research work towards achieving the research objectives. This chapter explained the 

basic theory and mathematical formulation of computational fluid dynamic simulation 

for the purposes of validation resistance tests. Besides that, the methodology to obtain 

the force distribution of total hull resistance using ANSYS CFX and the derived 

equation of the computational model for fluid dynamic simulation were explained. 

Resistance test by experiment also was described in this chapter.  
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Chapter 4 – Presented and elaborated the resistance components result of the 

LNG bare hull and hull fitted with air-injected ballast-free system in deep water at 

ballast draft and designed speed. The results comprised the experiment data and 

simulation results at the varying parameter of air-injected pressure. This chapter also 

presented discussed the simulation result of air-injected ballast free system 

characteristics.  

Chapter 5 – Concludes the current research, and valuable recommendations are 

provided for future works. 
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