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ABSTRACT 

Load-bearing and complex geometry structures such as aircraft wing spars, 

thick-walled chemical processing vessels, offshore platforms and jacket structures are 

designed based on damage-tolerant design philosophy. The design employs fracture 

mechanics and test data to ensure that structural cracks nucleating during the operation 

will not propagate before they are detected by periodic inspections. The fracture 

mechanics equation describing the crack tip stress field (𝐾-field) is expressed in terms 

of the far-field stress and relies on the crack geometry factor. Closed-form equations 

for the far-field stress and the crack geometry factors have been established for 

standard fracture test coupons and relatively simple structures. The unavailability of 

the crack geometry factor for complex structures and loading renders the use of the 

fracture mechanics equation impractical. Inaccurate assessment of the fatigue crack 

and crack growth rates could jeopardize the safety and integrity of the structures. An 

alternative approach employing fractal analysis to quantify the fatigue crack growth 

rates of single-phase metallic material is proposed and examined. The fractal approach 

avoids the need for the crack geometry factor when calculating the crack tip driving 

force. The fractal analysis is carried out on digital images of the crack with a precision 

of 1.19 pixel/µm2 employing the box-counting algorithm to determine the fractal 

dimension (𝑑𝐹) along the edge of the crack length. The analysis is confined to the 

power law crack growth rate stage (Paris crack growth regime). Compact tension, C(T) 

specimens fabricated from AISI 410 martensitic stainless steel provide the reference 

fatigue crack growth response. Results show that the crack initially exhibits a 

Euclidean nature (𝑑𝐹≈1.0). The fractal dimension increases steadily with increasing 

crack length in Paris region with 1.05<𝑑𝐹<1.24. The corresponding extent of disparity 

in the crack tip driving force range is between 18≤Δ𝐾≤40 MPa√m. The fractal 

dimension (𝑑𝐹) correlates linearly with the normalized crack tip driving force range 

(Δ𝐾/𝐾IC) within the Paris region. The coefficient of fractality (𝐶𝐹) is identified as a 

characteristic material parameter. This enables the multifractal crack growth rate semi-

empirical model to be established in terms of Paris coefficient and exponent, fractal 

characteristics, and fatigue fracture properties of the material. A significant statistical 

dispersion is noted which is typical of a fatigue response. Given this, a probabilistic 

model based on Walker’s crack growth rate equation considering the variability in the 

crack tip driving force range, Δ𝐾 and stress ratio, 𝑅 is developed. The model's validity 

is examined using selected sets of fatigue crack growth curves of Aℓ-7075-T6, Aℓ-

2024-351 and Ti-6Aℓ-4V alloys. A good fit of the experimental data is noted. The 

model variance shows a convergent trend with an increasing number of test coupons, 

thus providing the statistical means of establishing sample sufficiency. The 

probabilistic model is annexed to the fractal analysis to yield an integrated 

probabilistic-fractal fracture model. The application of the integrated model to the 

general structures that lack the crack geometry factor for fatigue crack growth analysis 

is demonstrated on a bell crack structure. The results are contrasted with Δ𝐾 estimate 

established through the contour integral (CI) approach using Abaqus software and a 

close resemblance is noted. Thus, the model could be employed for the prediction of 

the fatigue crack growth response of engineering structures where the crack geometry 

factor is not readily available.  
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ABSTRAK 

Struktur galas beban dan geometri kompleks seperti spar sayap pesawat, kapal 
pemprosesan kimia berdinding tebal, pelantar luar pesisir dan struktur jaket direka 
berdasarkan falsafah reka bentuk tahan kerosakan. Reka bentuk ini menggunakan 
mekanik patah dan data ujian untuk memastikan retakan struktur yang terbentuk 
semasa operasi tidak akan merebak sebelum ia dikesan melalui pemeriksaan berkala. 
Persamaan mekanik patah yang menentukan medan tegasan hujung retak (medan-𝐾) 
dinyatakan berdasar kepada tegasan medan jauh dan bergantung pada faktor geometri 
retak. Persamaan bentuk tertutup untuk tegasan medan jauh dan faktor geometri retak 
telah ditetapkan untuk kupon ujian patah standard dan struktur yang agak mudah. 
Ketiadaan faktor geometri retak untuk struktur kompleks dan beban menjadikan 
penggunaan persamaan mekanik patah tidak praktikal. Penilaian yang tidak tepat 
terhadap kadar pertumbuhan retak dan retakan lesu boleh menjejaskan keselamatan 
dan keutuhan struktur. Pendekatan alternatif yang menggunakan analisis fraktal untuk 
mengukur kadar pertumbuhan retak lesu untuk bahan logam fasa tunggal dicadangkan 
dan diteliti. Pendekatan fraktal mengelakkan keperluan faktor geometri retak semasa 
mengira daya penggerak hujung retak. Analisis fraktal dijalankan pada imej digital 
retakan dengan ketepatan ketepatan 1.19 piksel/µm2 menggunakan algoritma 
pengiraan kotak untuk menentukan dimensi fraktal (𝑑𝐹) di sepanjang pinggir panjang 
retakan. Analisis terhad kepada peringkat kadar pertumbuhan retak hukum kuasa 
(rejim pertumbuhan retak Paris). Ketegangan padat spesimen, C(T) yang terbikin dari 
keluli tahan karat martensit AISI 410 memberikan rujukan kepada tindak balas 
pertumbuhan retak lesu. Keputusan menunjukkan bahawa retakan pada mulanya 
menunjukkan sifat Euclidean (𝑑𝐹≈1.0). Dimensi fraktal meningkat secara berterusan 
dengan peningkatan panjang retak di rantau Paris dengan 1.05<𝑑𝐹<1.24. Tahap 
ketaksamaan yang sepadan dalam julat faktor keamatan tegasan adalah antara 
18≤Δ𝐾≤40 MPa√m. Dimensi fraktal (𝑑𝐹) menunjukkan hubungkait secara linear 
dengan julat faktor keamatan tegasan ternormal (Δ𝐾/𝐾IC) dalam rantau Paris. Pekali 
kefraktalan (𝐶𝐹) dikenal pasti sebagai parameter ciri bahan. Ini membolehkan model 
separa empirik dibentuk berdasar kepada kadar pertumbuhan retak berbilang fraktal 
yang terdiri daripada pekali dan eksponen Paris, ciri fraktal dan sifat patah lesu bahan. 
Sebaran statistik yang ketara dicatatkan yang merupakan tindak balas lazim lesu. 
Dengan ini, model kebarangkalian ini berdasarkan persamaan kadar pertumbuhan 
retak Walker dengan mengambil kira kebolehubahan dalam julat faktor keamatan 
tegasan, Δ𝐾 dan nisbah tegasan, 𝑅 dibentuk. Kesahihan model diperiksa menggunakan 
set lengkung pertumbuhan retak lesu dipilih dari set Aℓ-7075-T6, Aℓ-2024-351 dan 
aloi Ti-6Aℓ-4V. Kesesuaian dengan data eksperimen disahkan. Varians model 
menunjukkan trend penumpuan dengan peningkatan bilangan kupon ujian, sekali gus 
menyediakan kaedah statistik untuk mewujudkan kecukupan sampel. Model 
kebarangkalian ditambah kepada analisis fraktal untuk menghasilkan model retakan 
berkebarangkalian-fraktal bersepadu. Aplikasi model bersepadu pada struktur umum 
yang tidak mempunyai faktor geometri retak untuk analisis pertumbuhan retak lesu 
digunakan pada struktur loceng retak. Keputusan dibezakan dengan anggaran ΔK yang 
diwujudkan melalui pendekatan kamiran kontur (CI) menggunakan perisian Abaqus 
dan kemiripan rapat dicatatkan. Oleh itu, model fraktal boleh digunakan untuk 
meramalkan tindak balas pertumbuhan retak lesu struktur kejuruteraan di mana faktor 
geometri retak tidak tersedia.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Numerous critical structures such as the aircraft wing spars, the compressor 

blades for aero engines, and the components of a marine vessel are designed to tolerate 

a propagating crack within an inspection interval. The rate, at which a crack advances, 

determines the time to failure. At the material coupon level, fracture mechanics tests 

using standard specimen geometry and test setup provide crack growth data as a 

function of the applied fatigue loading. The phenomenological fatigue crack growth 

rates, 
d𝑎

d𝑁
 within the range that exhibits the power-law response (Stage 2) could be 

expressed as functions of the crack tip driving force range, ∆𝐾 as [1]: 

d𝑎

d𝑁
= 𝐶[Δ𝐾]𝑛 

(1.1) 

  

where                            ∆𝐾 = ∆𝜎 √𝜋𝑎 Y (
𝑎

𝑊
) (1.2) 

The crack tip driving force, ∆𝐾 assumes the value of ∆𝐾𝐼 or ∆𝐾𝐼𝐼 under the 

Mode I (opening) or Mode II (shearing) crack tip loading, respectively. The term, ∆𝜎 

is the remotely applied stress range, 𝑎 is the crack length, and Y (
𝑎

𝑊
) is the crack 

geometry factor of the test specimen. The coefficient, 𝐶 and exponent, 𝑛 are curve 

fitting parameters. Variations of Eqn (1.1) and (1.2) to account for the mean stress 

effect have been established [2–12]. These models could also represent the threshold 

crack growth rate (Stage 1) and the fast fracture regime (Stage 3). However, the 

unavailability of the crack geometry factor for calculating the crack tip driving force 

range, ∆𝐾 of Eqn (1.2) for numerous structural members poses the greatest challenge 

in establishing the crack growth rate response of the material. In this respect, several 

numerical approaches employing the FE method has been examined in quantifying ∆𝐾 
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of a structural crack. Commercial FE packages like FRANC3D, NASGRO, and 

ADAPCRACK3D have been developed. FE solutions are viable when failure 

recurrence is high and only one type of crack is critical.  The inaccuracies resulting 

from ill-defined loading conditions, specifically in multiple crack systems, are well-

discussed and documented [13]. 

Fortunately, a propagating fatigue crack inherits signature fractal features 

along the crack length and surfaces. A crack in a continuum is created through the 

breaking of the bonds between atoms in the atomic structure under the imposed stress 

field. A tortuous topology of various degrees is exhibited in the wake of the crack. The 

different observed morphology of the crack surface and along the edge is manifested 

by the different intensities of the crack tip stress field. Studies have demonstrated that 

the crack edges along the crack length could be described as a fractal continuum 

exhibiting multifractal characteristics at the mesoscale. The fractal modeling of the 

physical systems encompasses an enormous diversity of intractable phenomena 

including structural cracking. The real cracks embodying a rugged trajectory are 

unfathomable through Euclidean settings [14–17]. The homoeomorphic deformations 

applied to the cracking process, generating twain detached fracture surfaces, spark 

severe concerns about the Euclidean assumption of the classical Griffith-Irwin-

Orowan fracture theory [18]. The rifts in the classical theory appear as geometry 

correction factors in mathematical formulations of the cracking process, vide eq. (1.2). 

Conversely, the fractals provide a more realistic mathematical description of the 

cracking process and the rugged topology [19–21]. The chain of events that the crack 

experiences lodge on the fracture surface as obscurely arranged micro features. Current 

research banks on the conjecture that the fractal analysis can recuperate the defunct 

information by quantifying the fractality of crack micro-features, thereby facilitating 

the backtracking of the crack-tip variables, particularly the crack tip driving force. 

Thus, the fractal analysis can potentially weed out the requirement on the crack 

geometry factors. A significant statistical dispersion is expected due to the inherent 

random nature of fatigue crack growth rate, which demands annexation to a stochastic 

analysis for reliable fatigue life estimates. 
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Thus, a gap in the current knowledge exists due to reliance of fracture 

mechanics equations on the crack geometry factor, Y (
𝑎

𝑊
). This research develops an 

integrated probabilistic-fractal fracture model to estimate fatigue crack growth rate 

(d𝑎/d𝑁) in structures independent of the crack geometry. The material used is AISI 

410 martensitic stainless steel. C(T) specimens provide baseline fatigue crack growth 

response of the material. The box-counting method is adopted for quantification of 

piecewise fractality at the crack edge. The model is validated on a complex structure 

of practical importance. The probabilistic analysis is based on Walker crack growth 

rate equation. The experimental data in the literature is digitized and used to validate 

the probabilistic model. 

1.2 Problem Statement 

This research hypothesizes that fracture resistance, being a material 

phenomenon, should not depend on the geometry of the cracked structure. The 

geometry factor Y (
𝑎

𝑊
) appearing in mathematical formulations indicate flaws in the 

classical theory due to Euclidean approximation and homeomorphic deformation 

assumption. The fractal features of a fatigue fracture surface are indicative of the 

fracture mechanism [22] and could be exploited to obtain the crack tip driving force, 

Δ𝐾. While the fractal features have been evaluated and linked to material properties, 

in literature, correlation with the fracture parameters, dependence and correlation with 

the applied stress field has been widely ignored. To the author’s knowledge, no work 

exists that could correlate fractal features in the crack wake with the crack tip crack tip 

driving force range, Δ𝐾. The existence of a correlation between the crack tip driving 

force and the fractality at the crack edge could assist in eliminating the geometry 

factors dependence of fracture mechanics equations and answer the following research 

problem: “How to reliably quantify the fatigue crack growth rate of a structure where 

the crack geometry factor is unavailable?” 
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1.3 Research Objectives 

The objectives of the research are: 

1. To establish relevant material properties and benchmark fatigue crack growth 

behavior of AISI 410 martensitic stainless steel. 

2. To develop a multifractal fatigue crack growth model based on crack edge 

fractal features. 

3. To develop a robust probabilistic model of the fatigue crack growth rate of 

metallic materials. 

4. To validate the multifractal fatigue crack growth model for intricate structures 

where the crack geometry factor is not available. 

1.4 Scope of the Study 

This research develops an integrated probabilistic-fractal fatigue crack growth 

model of metallic materials and covers the following: 

1. AISI 410 martensitic stainless steel is employed as the case study material. The 

mechanical behavior of the material is established through mechanical tests 

and metallurgical examinations.  

2. Mechanical Tests 

a) The tension test is carried out on a dog-bone-shaped specimen of 

overall dimensions: 100×32×5 mm3 wire-cut from the stock material 

using Sodick AQ900L Electrical Discharge Machine (EDM). The test 

is conducted on an Instron Universal Testing Machine (Model 5982). 

b) The hardness testing is performed on a Vicker Hardness Testing using 

a square-base right-pyramid diamond indenter having an angle of 136o 

between the opposite faces. 
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c) The fatigue testing is carried out on six (06) compact tension specimens 

of AISI 410 stainless steel labeled CT1, CT2,…, and CT6. The 

specimens are prepared per ASTM E647 standard. The tests are 

performed using ±100 kN servo-hydraulic closed-loop Shimadzu 

Fatigue Testing Machine under load-controlled mode. IMT Solutions® 

microscopic camera mounted on a traveling platform with 

magnification up to 50X is used to precisely locate the crack tip. 

3. Metallurgical and Fractographic Analysis 

a) The chemical analysis is conducted on a LEGO Glow Discharge 

Spectrometer (GDS) machine using a specimen of size 20×20×2 mm3. 

The composition is reported as weight percentage (wt%). 

b) The microstructural examination of the material is performed using 

Nikon Microphot-FXL Optical Microscope equipped with Image 

Analyzer Software. The etching solution consists of 5 ml HCl, 100 ml 

Ethyl Alcohol and 2gr Picric acid. 

c) The fractographic studies are done using a variable-pressure Scanning 

Electron Microscope (VP-SEM) at magnifications up to 5000X. 

4. The fractal analysis is carried out on the crack edge imaged at a magnification 

of 100X and a spatial resolution of 1090 pixel/mm using Olympus BX51M 

metallurgical microscope. The box-counting algorithm is coded in Python 

programming language (v3.10.7) 

5. The probabilistic model is structured per Walker crack growth rate equation. 

The maximum likelihood technique is used to obtain parameter estimates.  

6. The finite element analysis of the compact tension specimen and the bell crank 

structure is performed using Abaqus commercial software. 

7. The research is limited to the Paris region within the linear elastic fracture 

mechanics (LEFM) regime. 
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1.5 Significance of the Study 

The study enables the crack tip driving force be quantified in the absence of 

the crack geometry factor. Thus, it extends the applicability of fracture mechanics 

equations to determine fatigue crack growth rate. Knowing the crack growth rate is 

imperative to damage tolerance analysis (DTA). Leaning on the crack geometry factors 

curtails the capability of fracture mechanics equations to precisely quantify the crack 

tip driving force (Δ𝐾), a parameter of vital importance to crack growth rate evaluation. 

The unreliable estimate of Δ𝐾 risks the structure's integrity, jeopardizing its survival 

during the intended service life or inspection period. The current research enacts an 

alternate route to evaluate Δ𝐾. The fracture features in the crack wake allow retrieving 

the load information using fractal analysis. Optical measurements could capture the 

hi-res digital mosaics of the crack microfeatures. Therefore Δ𝐾 could be determined 

by optical measurements without cognizance of the geometry factor for intricate 

geometries where fracture mechanics equations alone succumb to despair. Once Δ𝐾 is 

established through fractal analysis, it is possible to assess the crack's onrush and 

criticality using the Paris or equivalent law to appraise if an inspection interval is of 

appropriate length and extent of damage is sustainable until the next inspection. 

Therefore, the existing fracture mechanics equations could be explored for larger 

applications, specifically the intricate structures, not possible before. In addition, the 

suggested methodology for getting Δ𝐾 inherits high fidelity, being an outcome of the 

direct experimental measurements on the actual crack which encountered field 

loadings. For cases where FE solutions are practical, the fractal analysis could be 

deployed, in concert, to validate FE results 

1.6 Thesis Layout 

The thesis consists of seven chapters arranged to establish and validate an 

integrated probabilistic-fractal fatigue crack growth model. The contents of each 

chapter are summarized here to aid in linking them with the specific objectives and 

scope of the research. 
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Chapter 1 starts with the research background. The factors hindering the 

determination of the crack growth rate for intricate designs are highlighted. It is 

discussed how the fractal features of a propagating fatigue crack could help decipher 

the crack tip driving force. The main problem is divided into four specific research 

objectives, which interlink to eliminate dependence on crack geometry factors. 

Chapter 2 provides the theoretical foundations of the work based on current 

literature. An exhaustive review of existing techniques for quantifying fractal features 

and the probabilistic analysis methodologies is presented. The predictive performance 

of thresholding algorithms to quantify the crack's fractality is surveyed and examined. 

The finite element (FE) practices used to establish 𝐾-solutions are discussed. 

Chapter 3 portrays the research framework and methodology adopted for the 

probabilistic and fractal analysis to achieve the specific objectives presented in 

Chapter 1. Steps assumed for crack image analysis are enlisted. The method for 

obtaining the probabilistic model parameters is discussed. The procedure for 

correlating the crack tip driving force and the fractality is adequately detailed. The 

integration of the fractal and probabilistic models is outlined. 

Chapter 4 discusses the outcomes of the crack's fractal analysis. The fatigue 

response of AISI 410 martensitic stainless steel is established. The correlation of the 

crack's fractal features with the crack tip driving force is explicated. 

Chapter 5 provides the probabilistic analysis results of the fatigue crack growth 

rate. The model formulation and the background mathematics are outlined. The 

model's validation in the context of literature data is presented for numerous load cases. 

Chapter 6 validates and illustrates the application of the established model on 

a bell crank structure. The fractal and probabilistic analysis results are compared with 

their experimental and FE counterpart. 
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Chapter 7 summarizes the findings of the research work and the conclusion 

drawn to assess how effectively the research objectives are achieved. The main 

contributions anent to the work are described in adequate detail. The recommendations 

for future work are provided for expanding the knowledge base in the field. 
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