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ABSTRACT

In many industrial processes, several quality characteristics are inevitably 

related. In this situation, the mean vector and covariance matrix must be 

simultaneously monitored and controlled to determine whether a multivariate process 

is in control. W ith the increase in the number o f variables, the performance o f control 

charts is significantly reduced, and the time delay between the actual time of change 

in the process and the warning time of the control chart increases, which is one of the 

main challenges when using multivariable control charts. Between the real-time and 

the change time (called the change-point - CP), especially during the simultaneous 

monitoring and controlling of the parameters, the mean vector, and the covariance 

matrix cause problems such as delay or stoppage of the production lines or services, 

as well as inconsistent production of products or services. To improve this, a new way 

of estimating the CP will help statistical process control (SPC) professionals identify 

the cause(s) of out-of-control (OC) conditions, thus providing better feedback for 

process improvement. This study presented a new method based on an artificial neural 

network (ANN), which first examined the OC conditions for a multivariate process 

using the multivariate exponentially weighted moving average (MEWMA) and 

multivariate exponentially weighted mean square (MEWMS) control charts. Then, the 

ANN-fitting method was used to diagnose the cause(s) o f OC conditions using the 

machine learning (M L)-classifier and estimating the length o f delay time. Finally, the 

change point (CP) was estimated by integrating all these methods. The performance of 

the new approach was validated by comparing it with the results from another study. 

It also validated the proposed method developed by evaluating the accuracy and 

precision o f this research. As a conclusion, the MEWMS chart was the best for 

detecting the OC condition while the support vector machines (SVM) gaussian model 

best to diagnoses the cause(s) o f the OC condition. The model provided has estimated 

the change point on one sample with difference over 10,000 tested cases (simulated) 

with a probability o f 99%, which is an accurate and reliable model for a practical 

approach.
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ABSTRAK

Dalam banyak proses perindustrian, beberapa situasi berkaitan ciri kualiti tidak 

dapat dielakkan. Dalam keadaan ini, vektor min dan matriks kovarian mesti dipantau 

dan dikawal secara serentak untuk menentukan sama ada proses multivariat berada 

dalam kawalan. Dengan peningkatan dalam bilangan pembolehubah, prestasi carta 

kawalan akan berkurangan dengan ketara, dan kelewatan masa antara masa sebenar 

perubahan dalam proses serta masa amaran carta kawalan akan meningkat, dimana ia 

merupakan salah satu cabaran utama apabila menggunakan carta kawalan pelbagai 

pembolehubah. Antara masa nyata dan masa perubahan (dipanggil titik perubahan - 

CP), terutamanya semasa pemantauan dan kawalan serentak parameter; vektor min 

dan matriks kovarians menyebabkan masalah seperti kelewatan atau pemberhentian 

talian pengeluaran atau perkhidmatan, serta pengeluaran produk atau perkhidmatan 

yang tidak konsisten. Sebagai penambahbaikan, cara baru untuk menganggarkan CP 

akan membantu profesional statistical process control (SPC) mengenal pasti punca 

keadaan luar kawalan (OC), sekali gus memberikan maklum balas yang lebih baik 

untuk penambahbaikan proses. Kajian ini membentangkan kaedah baharu berdasarkan 

rangkaian saraf tiruan (ANN), yang terlebih dahulu mengkaji keadaan OC untuk 

proses multivariate menggunakan carta kawalan multivariate exponentially weighted 

moving average (MEWMA) and multivariate exponentially weighted mean square 

(MEWMS) control charts. Kemudian, kaedah pemasangan ANN digunakan untuk 

mendiagnosis punca keadaan OC menggunakan pengelasan pembelajaran mesin (ML) 

dan menganggarkan tempoh kelewatan masa. Akhirnya, titik perubahan (CP) 

dianggarkan dengan menyepadukan semua kaedah ini. Prestasi pendekatan baharu 

telah disahkan dengan membandingkannya bersama keputusan daripada kajian lain. Ia 

juga mengesahkan kaedah yang dicadangkan untuk dibangunkan dengan menilai 

ketepatan dan kejituan penyelidikan ini. Sebagai kesimpulan, carta MEWMS adalah 

yang terbaik untuk mengesan keadaan OC, manakala model support vector machines 

(SVM) gaussian adalah baik untuk mendiagnosis punca keadaan OC. Model yang 

disediakan telah menganggarkan CP bagi satu sampel dengan perbezaan daripada 

10,000 kes yang diuji (simulasi) dengan kebarangkalian 99%, di mana ia merupakan 

model yang tepat dan boleh dipercayai untuk pendekatan praktikal.
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C H A P T E R  1

IN TR O D U C TIO N

1.1 B ackground  of Study

Statistical process control (SPC) is a powerful set o f quality control (QC) tools 

used in the industrial and services sector that effectively improves the processes and 

increases efficiency by reducing variability and errors. One of the main goals of SPC 

is to detect process changes by getting an out-of-control (OC) signal from the process 

so that the causes of such changes can be investigated and identified quickly. Then, a 

related corrective action taken by experts could eliminate that cause(s). The reason (s) 

for change are generally divided into two categories: common ( natural) causes and 

assignable ( special) causes. The common causes have to do with the innate nature of 

the process. They can never be eliminated without changing the process, for example, 

lighting, noise, pollution, temperature, and ventilation. The assignable causes o f 

variation interfere with the process. They are not difficult to detect and should be 

eliminated. However, seeing these causes also requires procedure for detect them 

involving experts in during process, for example, operator error and device 

malfunction (Montgomery, 2020).

A control chart is one o f the SPC's most powerful and useful tools compared 

to other tools. A control chart contains the measures and detects if  the fundamental 

probability distribution remains stable over time. In 1921, Control charts were 

presented by W alter Shewhart in Bell Telephone Laboratories. The Shewhart control 

chart, exponentially weighted moving average (EWMA), and cumulative sum 

(CUSUM) are popular control charts used to monitor and control univariate processes 

(Hahs-Vaughn and Lomax, 2020; Park and Jun, 2015).
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Subsequently, many researchers started to employ multivariate quality control 

involving several dependent quality characteristics for many industrial and service 

operations. In multivariate methods, the process's two or more quality characteristics 

are monitored and controlled simultaneously. Hence, the quality characteristics of the 

multivariate process are correlated and cannot be monitored independently and 

individually. Therefore, the multivariate statistical process control (MSPC) offers an 

approach that simultaneously monitors several quality characteristics of the process. 

In 1947, Hotelling identified the MSPC procedure to monitor the mean vector of 

multivariate processes by applying the (T2) T-square statistics for the first time (Ajadi 

et al., 2020).

MSPC has different types, including Hotelling (T2) charts, Chi-square (x2) 

charts, multivariate exponentially weighted moving average (MEWMA) charts, and 

multivariate cumulative sum (MCUSUM) as the most important well-known control 

charts in the field of multivariate process monitoring. Control charts monitor the 

process and detect cause deviations before many nonconforming products are 

produced (Gunaratne, 2018). Notably, monitoring o f deviations is important on the 

control charts. The mission o f the control charts has been to distinguish common 

causes from assignable causes. Normally, the assignable cause is the reason for the OC 

condition in control charts, So this is a problem in the production process in the QC 

system. Thus, it should be found and remove the reason for the OC condition before 

any defective products and poor services are rendered (Sogandi et al., 2018).

Each of these control charts, in addition to being sensitive to the number of 

variables, is also sensitive to each parameter. Therefore, need to :

a) M onitor the mean vector of the process (sensitive to mean vector).

b) Analyze the covariance matrix of the process (sensitive to variation).

For example, the M EW M A control chart is sensitive to the mean vector. In the 

last decade, some researchers used another control chart called MEW MS (multivariate 

exponentially weighted mean square). This chart is sensitive to variance.
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One of the other problems in quality control, the control chart detects 

deviations with a time delay from real-time. One o f the most efficient ways to identify 

the sources of the defect in the process is to identify the real-time deviation causing 

the change in the process. The exact real-time change in the process is called a change 

point (CP) . The estimated CP helps manufacturing engineers search within a shorter 

period to discover the assignable cause(s) and remove them by taking corrective action 

to improve quality (Ahmadzadeh, 2018; Atashgar and Rafiee, 2020; Yeganeh et al.,

2021).

In the last 20 years, most research has focused on developing different CP 

estimating methods for monitoring shifts in the process mean. For example, it can find 

some reviews o f these developments in Atashgar (2013), Shadman (2015), Lu (2016), 

Ahmadzadeh (2018), and Amiri (2018). However, this research also includes reviews 

on estimating CP multivariate processes for monitoring shifts in a covariance matrix, 

and their development has been limited. Accordingly, several control charts, such as 

MEW MS chart , have been developed to monitor the covariance matrix o f multivariate 

processes. This issue indicates the importance of controlling the variability of 

qualitative characteristics in the process. It is noteworthy that the covariance matrix 

and the mean vector should be monitored in multivariate techniques and 

simultaneously estimate the CP (Gunaratne, 2018). Many researchers have studied 

different methods for estimating CP, but most research has been done in multivariate 

processes related to estimating CP, considering only the mean vector (Amiri and 

Allahyari, 2012).

The change point estimation in the control charts was examined by Nishina, 

(1992) using two control charts, CUSUM and EW M A control charts. Although the 

two control charts previously mentioned were used initially to detect OC conditions, 

they have also been used to estimate the change point of the process after receiving a 

warning from the control chart. However, in recent years, researchers have shown that 

control charts are inefficient for accurate CP estimation because of the control chart 

limitations, including the increase of shifts, increased variables, and the sensitivity of 

each control chart on each parameter mean vector and variety (Atashgar, 2015).
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Another method of estimating the change point is to use the maximum 

likelihood estimator (MLE). This method was introduced by Samuel et al. (1998) to 

evaluate the CP in the mean o f the normal process. The use o f M LE is one o f the most 

popular methods o f assessing the change point. In addition to the methods as 

mentioned above, researchers have studied other techniques, including learning-based 

methods, clustering, decision tree, and artificial neural networks (ANNs). Some 

researchers also have estimated CP with two methods and then comparison together. 

For example, Ahmadzadeh (2018) and Amiri et al. (2018) have estimated CP using 

two models, ANN and MLE. After comparing these models, the result of the ANN 

model was quickly and more accurate than the M LE method in detecting CP.

1.2 S tatem ent of P roblem

The increasing practice of SPC in various industrial and service sectors 

demanded the use more effective methods that can detect changes in quality level 

quickly. The quality characteristics o f the multivariate process must be correlated, and 

they cannot be monitored independently and individually. Previous studies found that 

changes in the mean do not affect the covariance, while changes in the covariance 

matrix affect the mean vector. Lack o f this type o f control and monitoring system leads 

to the production o f non-conforming goods, production line downtime or service waste 

time, energy loss, and high costs to processes, especially multivariate processes, and 

this is because there has been a correlation between parameters. Therefore, 

multivariate statistical process control (MSPC) offers methods that simultaneously 

monitor several quality parameters o f the process. Hotelling, Chi-square, MCUSUM, 

MEWMA, and MEWMS are among the popular control charts for multivariate process 

monitoring (Gunaratne, 2018).

As mentioned in the background of the study, each of these control charts is 

sensitive to a specific parameter. For example, Figure 1.1 compares two different 

control charts (M EW MA and MEW M S) with the correlated quality parameters and 

1000 simulation samples data, with p=0.5 as the correlation coefficient, where the OC 

condition is different. The MEWMA chart did not show any signal and looked nearly 

perfect. In contrast, the MEWMS chart shows an OC signal at around two hundred.
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Figure 1.1 M ultivariate control charts (MEW MA and MEW M S) , p=0.5 and 
simulation 1000 samples data.

Therefore, according to the above problem, the question arises whether there 

is a need for a new approach that can identify the O C conditions when using the 

mentioned control charts, according to the sensitivity o f each one on a parameter? 

Because this problem in multivariable industries will be making non-conforming 

products during production, at the same time, the system is still under control. Thus, a 

new efficient method is needed to quickly find the point as the assignable cause that 

caused this problem to the OC condition in the process.

As noted in the background o f the study, the main problem is the use of 

multivariate control charts for simultaneous monitoring o f the covariance matrix and 

the mean vector for estimating CP. In the CP estimation problems, according to 

Gunaratne (2018) nad Rahimi et al.(2019), and in addition to the mean vector, the 

variability o f the covariance matrix is important for evaluating whether the process is 

in control. Especially, as the number o f variables becomes larger, the time required for 

the simulation increases, and the multivariate quality charts could not accurately CP 

estimation when monitoring the covariance matrix and the mean vector
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simultaneously. For example,

Figure 1.2 MEW MS chart, p=0.5 and simulations 1000 samples data, for 

different shifts for p and 5 shows three shifts for the different quality parameters as 

change. Part A shows that the mean has shifted, and variability has been constant. As 

shown in this section, despite the problem in the system, the charts does not offer any 

OC conditions. In Part B, the covariance shifted, and the mean was no shift. Despite 

the problem and the upward trend o f the system to near the upper control, it still does 

not show the control chart OC condition. In Part C, both quality parameters shifted 

simultaneously and got a warning condition.
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Figure 1.2 MEW MS chart, p=0.5 and simulations 1000 samples data, for 
different shifts for p and 5

The example above shows the importance o f monitoring the mean and covariance 

simultaneously in multivariate processes. According to the above examples and 

previous studies (Amiri et al,2018 and Ahmadzadeh,2018), it is clear that multivariable 

control charts have problems accurately diagnosing OC conditions and finding the 

cause(s) o f OC conditions. In addition, each o f the n and o parameters, alone or 

simultaneously, will create different patterns, causing many errors in detecting delay­

time (Yeganeh et al., 2021; Atashgar and Rafiee, 2020).

Now the question arises, which o f these two parameters is the cause o f out-of­

control conditions? Because o f in the proposed method, according to the change of 

patterns in different shifts in p and o, there is a need for ways that can detect causes of

7



the OC condition. In addition, is there a need for a new method to find the length of 

the delay time o f change in the assumed model? Furthermore, considering the two 

proposed models for detecting OC conditions and their cause (s) and estimating the 

delay length, there is a need for a one-to-one model that can do all the above 

automatically to calculate the CP.

Similarly, considering the two proposed models for detecting OC conditions 

and their cause (s) and estimating the delay length, there is a need for a one-to-one 

model that can do all the above automatically to calculate the CP. After estimating the 

CP using the new approach involving the mean and covariance simultaneously, the 

developed model's effectiveness needs to be verified and validated.

1.3 R esearch  Q uestions

The following questions have been followed to investigate the statement of 

problems:

1) According to the initial problem, is there a need for a new approach to 

identify the OC conditions when using the mentioned control charts 

(MEW MA and MEW MS), according to the sensitivity o f each one on a 

parameter?

2) the second question arises, which o f these two parameters (p  and o) is the 

cause(s) o f OC conditions? Because o f the proposed method, according to 

the change o f patterns in different shifts in p and o, there is a need for ways 

that can detect the causes o f the OC condition. In addition, is there a need 

for a new method to find the length o f the delay time o f change in the 

assumed model?

8



3) Considering the two proposed models for detecting OC conditions and their 

cause (s) and estimating the delay length, there is a need for a one-to-one 

model that can do all the above automatically to calculate the CP ?

4) After estimating the CP with the new proposed model involving the mean 

and covariance simultaneously, how does the developed model's 

effectiveness needs to be verified and validated?

1.4 O bjectives of R esearch

This research aims to develop a new CP estimating procedure for multivariate 

processes. The following objectives have been conformed to investigate the main aim 

and research questions:

1) To design a simulation algorithm by comparing two types o f multivariate 

control charts: M EW M A and MEWMS, towards best performance to 

determine OC conditions quickly and accurately.

2) To design new methods for diagnosing the cause(s) o f OC conditions 

using the machine learning (ML)-classifier and estimate the length of 

delay time using the ANN-fitting method.

3) To integrate the methods developed to determine OC condition as well as 

ANN(fitting)-ML(classifier) algorithm for CP estimation by considering 

the mean vector and covariance matrix parameters simultaneously.

4) To validate the proposed method developed by evaluating the accuracy and

precision and benchmark their accurateness with the results from another

study.
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1.5 Scope of Study

The scope for this dissertation is as follows:

1) The process understudy has a multivariate normal distribution.

2) The studies have been performed in phase II. Since the parameters o f the 

quantitative characteristics o f the process have a normal distribution, the 

covariance matrix and mean vector are known based on the results of 

the phase I analysis.

3) The M onte-Carlo (MC) simulation is used to investigate and evaluate 

the performance o f our proposed estimator.

4) For simplicity, the simulation research settings are constructed for the 

bivariate and will be examined these performance indicators.

5) This study correlates quantitative characteristics o f the multivariate 

normal distribution and the value o f the correlation between the 

quantitative characteristics o f the process is constant over time.

6) The neural network-based method was utilised to estimate the CP where 

the characteristics and the changes in the process covariance variance 

matrix and the mean vector simultaneously occur. The type o f change 

made in the research is a single-step change.

7) MATLAB 2018b used for simulation and developing algorithm.
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1.6 Significance and Contribution of Study

M ultivariate processes involve more than one variable. Hence, if  there is a 

change in process parameters, the process analysis, monitoring, and controlling 

variables will be more difficult compared to the univariate process. There is no clear 

picture o f which variable caused the OC condition. This study focuses on a new ANN- 

based supervised learning approach to detect the point o f change with the covariance 

matrix and the mean vector simultaneously for the multivariate process in normal 

distribution. In addition, estimating the CP can also see the variable causing the 

deviation. The contribution o f the proposed method consists o f three parts that can 

detect such things as follow:

1) Detection uncontrolled conditions with multivariate control charts to detect OC 

conditions. The importance o f this part o f the research is to quickly show the 

OC conditions in the system that the control charts could not offer and may 

cause disruption in the production system and the product in the continuation 

o f production.

2) Determining the variables that caused the change with training classifier in 

M achine Learning (ML) algorithm, Also ANN-fitting for the estimated length 

o f CP. The importance o f this part is to show which parameter(s) cause OC 

condition in the process, also estimate delay time.

3) Estimating the CP in the multivariate process with mean vector and covariance 

matrix simultaneously, which helps quality engineers, will be done quickly and 

precisely in corrective action for this situation in the future.

This research covers three significant areas: engineering and services, statistics, and 

computer science:

1) Providing multivariate process control to industrial plants and other 

organizations by comparing engineering and service viewpoints. An industrial 

plant will be able to monitor production better, identify CP to multivariate 

control processes more effectively, and reduce production costs and waste.
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2) A new statistical method will be introduced to estimate the real-time in a 

multivariate normal process. The CP diagnostic statistics can help reduce the 

search time required to diagnose a control chart signal and reduce the cost of 

unnecessary experiments or adjustments to the process, thus saving valuable 

resources. The combination o f ANN and is one o f the M achine learning (ML) 

applications that have a significant ability to derive meaning from complex 

data. Therefore, this integrate model is appropriate to extract patterns and 

identify complex or imperceptible trends, to estimating delay time, saves both 

time and cost in the calculation.

3) As part o f the research in the computer sciences aspect, a new ANN algorithm 

will be adopted. Thus, this study may be beneficial academically for students 

and researchers concerned with statistical process control. Research institutes 

can also use statistical process calibration and control. Alternatively, the 

proposed method can be used in industries and service sectors to describe the 

quality and performance o f any product.

1.7 O rgan iza tion  of Thesis

This research is divided into five chapters:

1) The first chapter includes a brief introduction to quality control tools, the 

multivariate control process, and CP estimation problems. Research gaps, 

problem statements and the research objectives are then discussed. Finally, 

the research scope is defined to describe and analyse the significance and 

contribution o f the study.

2) The second chapter covers the literature review o f this study. It consists o f a 

brief introduction to statistical process control (SPC), multivariate control 

chart, artificial neural network (ANN), and support vector machine (SVM) as 

one o f the models o f classifier. Subsequently, the performance o f previous

12



research in estimating CP was reviewed, and their efficiency was compared.

1) The third chapter described the full methodology o f the study, including the 

method process and characterisation techniques for the proposed approach. 

First, it will explain the method for simulation and OC conditions. Then, the 

following will interpret the new method o f CP estimation by monitoring the 

mean vector and covariance matrix simultaneously with the proposed model. 

After that, how they evaluate this study's proposed methods' performance can 

be explained.

2) The fourth chapter explains the proposed ANN-classifier method for the CP 

estimation o f multivariate process by simultaneously considering the mean 

vector and covariance matrix. The accuracy and perception model were then 

evaluated and compared with the previous study. Finally, a discussion and an 

illustrated example are provided.

3) The fifth chapter provides a general conclusion based on the current study 

results. Several recommendations for future studies were presented to continue 

this investigation.
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