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ABSTRACT 

A multiscale finite element method (MsFEM) was introduced for high gradient 
Partial Differential Equation (PDE) constrained optimization problem. Starting with 
the traditional fournode finite element method, additional nodes were inserted 
automatically at high gradient regions by an adaptive algorithm based on refinement 
criteria. A posteriori error estimation and error indicator were formulated. The error 
estimation was residual-based, while the error indicator was gradient-based. Using the 
information from the gradient-based error indicator, a p-refinement indicator was used 
to decide whether a given element should be refined or not via adaptive algorithm. 
Two sets of elements were used to design the adaptive algorithm: the regular elements 
and transition elements. The regular elements are the linear and quadratic elements, 
while the transition elements are the elements having both quadratic and linear sides, 
useful in transitioning from linear to quadratic elements during the implementation of 
the adaptive algorithm. The coupling resulted in a MsFEM. An exact solution 
containing high-gradient and multivariate polynomial functions that satisfies the PDE 
constraint and minimizes the objective function was also created using MAPLE 
software. A PDE constrained error analysis was also developed and implemented. The 
proposed MsFEM was applied to PDE constrained optimization problem with 
localised high gradient to analyse and validate the performance and accuracy of the 
proposed technique. The obtained numerical results from the analysis in terms of 
relative error showed an encouraging and promising performance of the scheme. The 
numerical results showed that the technique could help in solving high gradient 
problems with accuracy and minimum error. 
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ABSTRAK 

Kaedah elemen terhingga berbilang skala (MsFEM) telah diperkenalkan untuk 
masalah pengoptimuman kekangan Persamaan Pembezaan Separa (PDE) 
berkecerunan tinggi. Bermula dengan kaedah unsur terhingga empat nod tradisional, 
nod tambahan telah dimasukkan secara automatik pada kawasan kecerunan tinggi 
melalui algoritma penyesuaian berdasarkan kriteria penghalusan. Anggaran ralat 
posterior dan penunjuk ralat telah dirumuskan. Anggaran ralat adalah berasaskan 
kaedah baki, manakala penunjuk ralat adalah berasaskan kecerunan. Menggunakan 
maklumat daripada penunjuk ralat berasaskan kecerunan, penunjuk penghalusan-p 
digunakan untuk memutuskan sama ada unsur tertentu perlu diperhalusi atau tidak 
melalui algoritma penyesuaian. Dua set unsur telah digunakan untuk mereka bentuk 
algoritma penyesuaian: unsur biasa dan unsur peralihan. Unsur biasa ialah unsur linear 
dan kuadratik, manakala unsur peralihan ialah unsur yang mempunyai kedua-dua sisi 
kuadratik dan linear, berguna dalam peralihan daripada unsur linear kepada kuadratik 
semasa pelaksanaan algoritma penyesuaian. Gandingan ini menghasilkan MsFEM. 
Penyelesaian tepat yang mengandungi fungsi polinomial kecerunan tinggi dan 
multivariat yang memenuhi kekangan PDE dan meminimumkan fungsi objektif juga 
dicipta menggunakan perisian MAPLE. Analisis ralat terhalang PDE juga 
dibangunkan dan dilaksanakan. MsFEM yang dicadangkan telah digunakan untuk 
masalah pengoptimuman terhad PDE dengan kecerunan tinggi setempat untuk 
menganalisis dan mengesahkan prestasi dan ketepatan teknik yang dicadangkan. 
Keputusan berangka yang diperoleh daripada analisis dari segi ralat relatif 
menunjukkan prestasi skim yang memberangsangkan dan menjanjikan. Keputusan 
berangka menunjukkan bahawa teknik ini dapat membantu menyelesaikan masalah 
kecerunan tinggi dengan ketepatan dan ralat yang minimum.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Problem Background 

This chapter addresses the two topics relevant to this work: optimization, 

partial differential equations (PDE). The main emphasis of this work is the application 

of multiscale technique for two-dimensional PDE constrained optimization problems. 

Therefore, an overview of the two topics, background, problem statement, research 

objectives, research questions, scope, and significance of the research are discussed in 

this chapter.  

1.2 Background 

Optimization is a fundamental instrument in the investigation of actual physical 

systems and could be characterized as the science of determining the best arrangement 

among every possible answer for a specific mathematical concern. Engineers must 

make decisions in constructions, designs, and even maintenance, and such choices are 

to either maximize gains or minimize efforts. These gains or efforts are often expressed 

as a function of certain design variables. Computational methods and solution 

procedures for optimization problems are selected based on the classification of the 

problems (constrained or unconstrained optimization problems). Figure 1.1 showcase 

a graphical representation of the characterization of optimization problems with 

specific spotlight on PDE constrained.  

 



 
 

 
Figure 1.1: Classification of optimization problems 

 

 

1.2.1 PDE Constrained Optimization Problems 

PDEs are generally used to model physical phenomena, and the solution to 

such problems poses a serious challenge, especially where the problem is complex and 

exact solution does not exist. There are many problems in physics, chemistry, 

mechanics, finance, biology, engineering, and other fields that involve complex 

systems. These include elasticity, plastic, fluid flow, quantum mechanics, 

electrodynamics, acoustic and heat transfer (Peinke et al. 2019); (Aliev et al. 2018); 

(Fowler et al. ;2019); (Chernikov 2017); (Khan et al. 2019); (Liu 2018); (Fang et al. 

2019); (Casati et al. 2020); (Brezis and Browder 1998); (Phong 2019); (Arrigo 2019); 

(Collins, 2019). Often, modelling of such complex systems results in solving PDEs. 

The general form of  PDEs with two independent variables, according to (Zhang and 

Khalique 2018) is given in Equation (1.1).  

( ) ( ), , ( , ), ( , ), ( , ) , , , , 0.x y x yF x y u x y u x y u x y F x y u u u= =  (1.1) 

 
 

Mathematically, PDEs represent an ample range of common logical 

occurrences, and in turn, applications in engineering and life sciences ubiquitously 
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give rise to problems formulated as PDE-constrained optimization (PDECO) problems 

as shown in Equation (1.2), (Stoll and Breiten 2015); (Zhang and Zhang 2011); (Al-

Smadi et al. 2017); (Tariq and Seadawy 2017); (Ruthotto and Haber 2018). A PDE-

constrained optimization (PDECO) problem is a modelled used to find the optimal 

solution satisfying its PDE constraints, boundary conditions and the objective 

function. PDECO problems arise in such diverse areas as environmental engineering, 

aerodynamics, and medicine (Salmoiraghi et al. 2018); (Hammad et al. 2020); 

(Gkaragkounis et al. 2020). The solution to PDE-constrained optimization problems 

are naturally challenging considering the PDE constraint but for the advancement in 

optimization techniques and increase in the power of computing as evident in PDE 

solvers and many of which have been studied in recent times by (Antil et al. 2018); 

(Leithäuser et al. 2018); (Kaercher et al. 2018); (Herzog et al. 2018); (Hintermüller et 

al. 2018); (Mang et al. 2018). The general form of PDE-constrained optimization 

problem is as shown in Equation (1.2) below. 

( )

( )
,

min  ,

s.t.  , 0
u q

f u q

c u q =
 

 

 (1.2) 

 where 𝑓𝑓(𝑢𝑢, 𝑞𝑞) is the functional (objective function) and 𝑐𝑐(𝑢𝑢, 𝑞𝑞)  represents the 

differential operator, 𝑢𝑢 is the state variable and 𝑞𝑞 is the control variable. 

 

PDECO is a relatively young and rapidly developing area of research. PDECO 

problem is applicable in flow simulation (see Figure 1.2), PDECO tries, for example, 

to minimize fuel consumption, in order to optimize flight trajectory, or to minimize 

manufacture cost. Also, in  Figure 1.3 (elastic deformation), PDECO attempts to 

optimize material strength in order to reduce production expenses, or to optimize its 

stress under heavy loads. In thermal control, PDECO is used to optimize the 

temperature of an object, for example, an optimal component’s temperature will result 

in optimal performance in electrical devices. In electric cars, PDECO is used to extend 

battery life span Alqarni.  PDE-constrained optimization (PDECO) problems also 

occur in various fields, like atmospheric and oceanic sciences (variational data 

assimilation) to predict the weather for several days, in medical image analysis (image 



 
 

registration) to find point-wise correspondences between images, in mathematical 

finance (inverse problem of option pricing), in shape optimization and thermal control 

(optimal heat control) Alqarni (2019). The most classical PDE constrained 

optimization problems emerge in the context of design and control of engineering 

systems. These problems promise to deliver engineering systems with superior 

performance than otherwise possible. They will have the greatest impact in highly 

complex situations where intuition breaks down and experimentation are expensive, 

difficult, or dangerous (Zahr, 2016); (Qian et al. 2017). The design and state variables 

of these problems all exhibit large numbers. 

 

Figure 1.2: Mach contours and streamlines for an aeroelastic simulation on the 
surface of an aircraft at Mach 0.9 Alqarni (2019) 
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Figure 1.3: The front and back of a stem before and after applying a force to get 
the desired shape (Alqarni, 2019) 

 
According to (Alqarni, 2019), PDECO problems are significant because they 

occur in various fields, for example, in atmospheric and oceanic sciences (variational 

data assimilation) to predict the weather for several days (Qiu et al. 2018), in medical 

image analysis (image registration) to find point-wise correspondences between images, 

in mathematical finance (inverse problem of option pricing) (Karatzas et al. 1998), in 

shape optimization, (He et al. 2019) and thermal control (optimal heat control). PDE 

constrained problem can also be an automatic parameter searching in which organized 

computational arrangement replaces interactively modify-and-try iterations. While an 

objective function is designed to represent the goal, the aim is to know the PDE 

parameter that gives an optimum (a minimum) (Neitzel et al. 2019). Most often, the 

objective is dependent on just the PDE’s solution, the state variable that indirectly can 

be affected by the changes of the control variable 𝑞𝑞 through the PDE constraint Huber 

(2013). It is established in many applications of PDE constrained optimization 

problems based on the way the PDE parameters influence the state variables (Huber, 

2013); (Choi, 2012). 

In shape optimization, one tries to optimize some functional quantity (e.g., drag 

or lift of a wing) by varying the shape of an object (e.g., a wing or a car). The pump of 

arteries in medicine is also an example of shape optimization, and the aim is to 

minimize the shear rate to avoid thrombus formation or red blood cell damage at the 

device surfaces (Huber 2013). The governing equations in most examples in this class 

of PDE-constrained optimization problems are non-linear Navier-Stokes equations. 



 
 

Inequality constraints prevent substantially trivial parameter settings, such as a very 

small wing sweep angle or a negative local mass for a structural element. Shape 

optimization has also been used in biological applications, e.g., to design the shape of 

the incoming branch of the aorta-coronary bypass (Zahr, 2016). 

In inverse problems or parameter identification, the aim is to find properties of 

a substantial structure based on a given analysis. To solve an inverse problem is the aim 

of parameter estimation. In this problem set, the idea is to seek PDE parameters, called 

the model, that are very logical with analysis. The parameters (usually material 

parameters) affect the differential operator, and solving such problems is generally 

more difficult than optimal control problems. Most medical image methods are based 

on inverse problems. For example, in tomography, electrical impedance, to mention a 

few, the body’s surface is being supplied current. An electrical capacity that depends 

on the heat inside the body is developed.  The location-dependent heat is considered a 

PDE parameter varied to minimize the difference between actual analysis value and 

simulation value. The same approach can be applied in direct current (DC) resistivity 

assessment and groundwater modelling (Huber 2013). 

1.2.2 High Gradient Problems 

High-gradient problems are problems that exhibit rapid changes or sharp fronts 

or wiggles in their numerical solutions. Wiggles are spurious node-to-node oscillations 

affecting solutions and are vital since they usually harbour remarkable physical 

phenomena such as shock formulations, turbulence, and boundary layers and typically 

localised (Gresho and Lee, 1981).  Advection-dominated problems which naturally 

occur in fluid dynamics can be considered a high gradient problem. These problems 

commonly exhibit high gradients near domain boundaries (boundary layers) and inside 

the domain (shocks).  

It is typically necessary to stabilize the standard FEM in order to keep away 

from spurious oscillations in the high gradient region (Abbas et al., 2010). It has been 

shown that even with stabilization, high gradients are insufficiently represented 

accurately on coarse meshes. Thus, the only way to eliminate problems like this is to 



 

7 
 

severely refine the mesh, such that convection no longer dominates on an element 

level. 

1.3 Types of PDE Constrained Optimization 

Different types of PDECO exist, and this depends on how the PDE parameters 

affect the state variable. Since the PDE is the constraint to the function to be minimized, 

and it also plays a significant role in the numerical solution of the PDECO, it is vital 

to examine the class of the problem by stating the type of PDE constrained problem 

and the PDE, which are typically solved. Both the objective function and the constraint 

(PDE) can be of the same type as linear, nonlinear, time-dependent, time-independent, 

or different types. However, in this study, we focus on a quadratic time-independent 

objective function and time-independent linear PDE as a constraint.  

1.3.1 Distributed Control Problem 

A PDE-constrained problem in which the control is applied over the entire 

domain is a distributed control problem as shown in Equations (1.3) and (1.4) below. 

However, PDE constrained optimization problems are not restricted to this. 

Consider the PDE constrained below, 

( )2 2

,

1min
2 2u q

u u d q dβ

Ω Ω

− Ω+ Ω∫ ∫   

(1.3) 

  
subject to: 

2 ,
, D

u q
u g

−∇ = Ω


= ∂Ω 
 

 

(1.4) 

  



 
 

where, 𝑞𝑞,𝑢𝑢 represent the control and state variables respectively,  𝑢𝑢� is the given 

target or desired variable, 𝛽𝛽 > 0 is the regularization parameter (Tikhonov parameter) 

added to functional to avoid ill-conditioning,  g  is the Dirichlet boundary condition. 

The state variable and control variables belong to space of twice differentiable 

functions ( )( )2u C∈ Ω  and ( )( )2q C∈ Ω , (Hinze et al., 2008). 

Theoretically, when the significant addition of control into the system is 

penalized, it could be to make the state and the desired variables very close. for this type 

of problem, In physical term or real situation,  this may be seen as penalizing the energy 

input into such system Figure and (Stoll 2013); (Pearson et al. 2012); (Pearson et.al 

2020). The state variable can be light intensity, temperature, humidity, or a 

combination of these parameters. The energy put into the system to achieve the desired 

variable or conditions could be the control variable.  The PDE could be heat equation 

or an equation of a similar structure in the problem set-up.  

1.3.2 Boundary Control Problem 

It is imperative to know that besides the distributed control problem discussed 

above, subdomain and Neumann boundary control problems are mentioned below. 

Consider 

( )2 2

,

1min
2 2u h

u u d q dβ

Ω Γ

− Ω+ Γ∫ ∫   

(1.5) 

  
Subject to: 

2 ,

,

u h
u q
n

−∇ = Ω

∂

= ∂Γ∂ 

 
 

(1.6) 
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where, 𝑞𝑞,𝑢𝑢 represent the control and state variables respectively, ℎ is the source 

term and 𝑢𝑢� is the target or desired variable, 𝛽𝛽 > 0 is the regularization parameter 

(Tikhonov parameter) added to functional to avoid ill-conditioning. The state variable 

and control variables belong to space of twice differentiable function ( )( )2u C∈ Ω  and

( )( )2q C∈ ∂Ω , (Hinze et al., 2008). 

Contrary to distributed control problem as mentioned above, control is enforced 

at the boundary in this case. This class of problem is more practical and realistic in 

real-life situations, especially in any application that has to do with flows because the 

boundary might be the only physical feature open to control. The main class of this 

problem is Neumann boundary control. It implies that the control is applied to the PDE 

like natural boundary conditions. The penalized term on the control, rather than being 

measured as an integral over the whole domain, is now measured as a boundary 

integral. In solving such a problem numerically, it is logical to seek for discretization 

scheme like the Finite Element Method that can handle both regular and irregular 

geometries. Also, the state variable and the control variable must consist of different 

shape functions corresponding to the boundary alone and the entire domain, 

respectively. 

1.3.3 Subdomain Control Problems 

The subdomain control problem is another class of PDECO, in which the matrix 

structure is like that of boundary control problems. In this class of problem, control is 

enforced on the interior subdomain Ωsub of the domain Ω. It happens where only parts 

of the domain can be controlled. For example, it is natural, in a flow, for the entry 

region of the domain to be subjected to control. For Poisson’s equation, the Subdomain 

control problem can be written as 

( )2 2

,

1min
2 2u q

u u d q dβ

Ω Ω

− Ω+ Ω∫ ∫   

(1.7) 



 
 

Subject to: 

 

 

2

( )

,
0, \

sub

sub

q
u

Ω ⊂Ω−∇ = Ω Ω 
 

 

(1.8) 

Though the system formulation of the problem shows that the control may only 

be enforced on the subdomain Ωsub, but there is a need to control the quantity (𝑢𝑢 − 𝑢𝑢�) 

on the whole domain Ω.  

1.4 Problem Statement 

It is well known that problems can be solved for practical and effective 

interpretation if they can be represented mathematically. Nowadays, PDE constrained 

optimization problem is one of the significant ways that real-life problems are modelled 

and represented. 

Mathematical optimization problems govern a significant number of important 

and challenging applications in mathematics as well as engineering. One important 

class of these problems that have broad applications in virtually all fields of human 

endeavours like biological mechanisms and chemicals, fluid flow, and medical 

imaging is PDE constrained optimization (PDECO). Though such problems can 

typically be written precisely, generating correct numerical solutions to such problems 

where the PDEs are of the high gradient is a very non-trivial task. Moreover, it is time-

consuming and computationally expensive due to the size and complexity of the 

resulting system of equations. 

Considering the above, this research develops a robust and accurate multiscale 

technique coupled with finite element method (multiscale method) that detects the 

region of high gradient through automation for proper discretization without 

sacrificing any component of the problem, thereby reduce the cost of computation of 

the generated linear system. 
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1.5 Research Questions 

Consider the peculiarity of the two different areas of research in this study (PDE 

and Optimization), as stated in Equations  (1.3) and (1.4), the following questions are 

raised 

1. How can a numerical method detect the high gradient area automatically in a 
domain of interest? 
 

2. How to create a numerical procedure to solve the PDE Constrained 
optimization problem in high gradient? 
 

3. Is the PDECO problem well-posed? 
 

4. Does the solution converge? 

1.6 Research Objectives 

The primary aim of this study is to develop adaptive multiscale finite element 

method that will enhance solution to PDE constrained optimization problem in high 

gradient. The following are the main objectives to achieve the goal: 

1. To develop a 𝑝𝑝-adaptive multiscale finite element method (AFEM) by 
applying automation of critical region detection.  

 

2. To apply 𝑝𝑝-adaptive multiscale finite element method (AFEM) to PDE 

Constrained optimization problem.  

 

3. To design a well posed test problem to be used in the assessment of the 

viability of the proposed method. 

 

4. To provide a method for the calculation of assessment error.  

 



 
 

1.7 Scope of the Research 

Several method of discretization exit in literature, however, this study focuses 

on p-adaptive multiscale finite element method for solving PDE constrained 

optimization problems. The formulation and application of the anticipated new 

technique is restricted to high gradient problems in two-dimension and Poisson 

equation. The tools used to compute the numerical results are codes written in MAPLE 

and OCTAVE programming languages. OCTAVE been a free software is used for the 

simulation. 

1.8 Significance of the Research 

Most of the previous studies on adaptive finite element for PDE constrained 

optimization considered the ℎ-adaptive finite element for PDE constrained 

optimization. This created a gap in the study and application of 𝑝𝑝-adaptive finite 

element in PDE constrained optimization. To bridge the gap, this work is based on 

formulating a 𝑝𝑝-adaptive finite element for PDE constrained optimization.   The work 

is premised on the qualities of 𝑝𝑝-adaptive algorithm which are: (i) better conditioned 

matrices; (ii) required no alteration of the mesh and can easily be used in the adaptive 

analysis (iii) can predict accurate solutions for a simple structure; (iv) tend to give the 

same accurate results with far fewer degrees of freedom (DOF) than the h-version; (v) 

can overcome some locking problems; and (vi) have less program challenges compare 

to ℎ𝑝𝑝-version (Leung, 2007). The proposed 𝑝𝑝-adaptive finite element envisaged as the 

research outcome, can produce higher precision results. This makes it a veritable 

technique for solving high gradient PDE constrained optimization problems. In 

addition, the outcomes can stimulate new gaps that can be leveraged upon for further 

research in related areas. 
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1.9 Summary and Organization of the Thesis 

The work consists of six chapters, and the chapters are arranged as follows: 

Chapter 1 presents the problem’s background, followed by the statement of the problem, 

research questions, and study objectives. Also, the scope and significance of the study 

is stated. Finally, the format of the thesis is established. 

Chapter 2 presents a comprehensive review of earlier studies on the numerical 

techniques for PDE-constrained optimization problems and the research gap 

Chapter 3 captured the detailed description of finite element method (FEM) 

and multiscale technique (the 𝑝𝑝-adaptive finite element method (𝑝𝑝-AFEM)), the error 

estimation and the selection of the high gradient region to achieve the research 

objectives. The validation techniques and robust residual error analysis theorem based 

on matrix condition numbers are discussed. 

Chapters 4 entails the formulation of linear system from distributed PDE 

constrained optimization problem. Also exact solution in polynomial form that 

satisfies both the PDE constraint and minimize the objective function was created 

using MAPLE software. The Objective value and PDECO error analysis were also 

discussed. 

Chapters 5 give the numerical performance of the proposed multiscale 

technique as discussed in chapter 3. Compare the proposed method with traditional 

finite element method in terms of error and confirms the convergence of the error and 

the objective value of the proposed method. 

Lastly, in Chapters 6, the conclusions are drawn and the recommendations for 

future and further research illustrated. 
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