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ABSTRACT 

Designing ships having large and complex systems involves prescribed design 

parameters development and is typically executed exhaustively through iterations. The 

processes become challenging as the design complexity increases. This is due to the 

simplistic and sequential approach of the conventional ship design spiral model. To 

mitigate this, a data-centric and integrated design approach with artificial intelligence 

(AI) was proposed as objective in this thesis. It was applied to simulate the passenger 

ship’s preliminary design developments based on the identified design goals, 

requirements, and data. The methodology was carried out in deriving a ship design 

methodological framework, ship design processes, knowledge graph, predictive 

models, and computer-based design tools. An extension to the integrated Quality 

Function Deployment and Axiomatic Design (QFD-AD) method was proposed to 

establish and analyse the design functional requirements, parameters, data, and tasks 

concurrencies. It was further explored using graph theory to represent the ship design, 

data, and their relationships. Finally, AI and deep learning (DL) methods were explored 

to develop and deploy prediction models at the graph nodes to determine the ship 

preliminary design principal parameters. These steps led to the development of a 

computer-based design tool to simulate and evaluate the ship design. The method was 

then applied to investigate and evaluate a generic passenger ship design model. The 

results from the design modelling, prediction model and empirical approximation were 

compared, evaluated, and discussed. While the stepwise empirical model algorithm 

was ten times faster, it was restricted by the set of hard rules that are based on 

assumptions. Though, the speed was highly influenced by the algorithm complexity 

and number of iterations till convergence. This phenomenon was observed in the brake 

power (P) prediction where the data-centric approach outperforms the Bailey’s rule-

based model by four times with a nearly accurate result. This work showed significant 

impact in terms of simplifying the existing ship design model, evoking design 

information, and producing fast and nearly optimal solution. It lightened the effort in 

initiating the design in terms of data collection, requirement analysis and planning in 

the conceptual and preliminary designs phases. Importantly, it shows the potential for 

a broad range of applications, scales, and design automation. 
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ABSTRAK 

Merekabentuk kapal dengan sistem yang besar dan kompleks melibatkan 

pembangunan parameter tetap rekabentuk yang biasa dilakukan secara mendalam 

melalui lelaran. Proses tersebut lebih mencabar apabila rekabentuk semakin rumit. Ini 

disebabkan pendekatan simplistik dan berurutan model rekabentuk kapal lingkaran 

konvensional. Untuk mengurangkan kesan ini, pendekatan berpusatkan data dan 

rekabentuk bersepadu dengan kecerdasan buatan (AI) dicadangkan sebagai objektif 

tesis ini. Ia dilaksanakan untuk mensimulasi pembangunan rekabentuk awal kapal 

penumpang berdasarkan matlamat rekabentuk, keperluan dan data. Metodologi ini 

dilaksanakan bagi menghasilkan satu rangka kerja metodologi rekabentuk kapal, 

proses rekabentuk kapal, graf pengetahuan, model ramalan, dan alat rekabentuk 

berbantu komputer. Satu lanjutan kepada kaedah Pembahagian Fungsi Kualiti dan 

Rekabentuk Aksiomatik (QFD-AD) bersepadu telah dicadangkan bagi menghasilkan 

dan menganalisa keperluan-keperluan fungsi, parameter-parameter, data dan kelarasan 

tugas rekabentuk. Ia seterusnya diterokai menggunakan teori graf untuk mewakili 

rekabentuk kapal, data dan hubungannya. Akhirnya, kaedah kecerdasan buatan dan 

pembelajaran dalam (DL) diterokai bagi membangun dan mengatur model ramalan 

pada nod-nod graf bagi menentukan parameter utama rekabentuk awal kapal. 

Langkah-langkah ini membawa kepada pembangunan alat rekabentuk berbantu 

komputer bagi mensimulasikan dan menilai rekabentuk kapal. Kaedah ini seterusnya 

digunakan untuk mengkaji dan menilai satu model generik rekabentuk kapal 

penumpang. Keputusan dari permodelan rekabentuk, model ramalan dan anggaran 

empirikal dibandingkan, dinilai dan dibincangkan. Sementara algoritma model 

empirikal adalah sepuluh kali lebih pantas, ia terkekang oleh peraturan yang ditetapkan 

mengikut andaian. Namun, kepantasan tersebut sangat dipengaruhi oleh kerumitan 

algoritma dan bilangan lelaran sehingga menumpu. Fenomena ini terlihat dalam 

ramalan kuasa brek (P) dimana pendekatan berpusatkan data menjangkau prestasi 

model berasaskan peraturan Bailey sebanyak empat kali dengan keputusan hampir 

tepat. Kerja ini menunjukkan impak ketara dalam meringkaskan model rekabentuk 

kapal sedia ada, membangkitkan maklumat rekabentuk dan menghasilkan 

penyelesaian yang cepat dan hampir optimum. Ia meringankan usaha dalam 

memulakan rekabentuk dari segi pengumpulan data, analisa keperluan dan 

perancangan bagi fasa rekabentuk konsep dan awal. Yang lebih penting, ia 

menunjukkan potensi untuk pelbagai aplikasi, skala dan automasi rekabentuk. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

The preference to domestic maritime transportation is due to the limited access 

to other transportation modes and cost. This enables coastal economies to gain benefits 

through volumes of cargo and frequent travels. Generally, maritime logistic and 

economic activities are explored on serving incoming and outgoing ships and 

operations. Additionally, they are identified as the principle for new ships designs and 

operational requirement.  

The ship design and operational criteria dictate her design goals, functional 

requirements, and design parameters. Often, the ship design information is inter-

dependent and conflicting thus require multi-criteria trade off. Particularly, modern 

passenger ships are described as large and complex systems. It performs multiple roles 

carrying passengers, vehicles and other cargo types delivering services at speeds and 

distances. This is further extended considering other design information such as the 

ship hull, machineries, and other operational requirements.   

Conventionally, practical ship design is carried out through the point-based 

approach known as the design spiral model (Evans, 1959). It describes the early 

prescriptive ship design model, performed iteratively and heuristically through 

stepwise procedures. Based on pre-identified concept design, the process estimates, 

refines, and subsequently converges. The overall process can be observed as in Figure 

1-1. In practice, the ship design is initiated through the parametric-based design (PBD) 

approach where the design parameters are estimated using on empirical formulas (Roh 

& Lee, 2018).   



 

2 

The increase in the design information causes challenges to the design process 

due to functional requirements incompatibilities. This makes the designers to re-assess 

the design parameters, and rationally compromise the conflicts. The process continues 

with design iteration until a balanced one is achieved. Consequently, this causes a 

longer design development cycle and thus affecting the overall cost and quality. This 

is widely observed in one-off ship designs. It is noted that the key limitations of the 

design spiral model are due to; 1) difficulties to explicitly define ship attributes and 

requirements, 2) solution-centred approach in design thinking and decision-making, 

and 3) highly constrained optimisation-centred design approach. 

 

Figure 1-1 Evan’s general ship design model (1959) 

 

  The progression to the ship design spiral model continues to introduce many 

variants. They are developed based on specific ship design perspectives and objectives, 

and mainly around the operational performance, techno-economic evaluations, and 

specific features. These criteria introduce more functional requirements and design 

parameters, prompting design changes and additional iterations. The additional 

information is typically assessed in an ad-hoc manner (Khairuddin et al., 2019). This 

makes exploring complex ship design through the design spiral model to be highly 
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challenging. Primarily, the restriction observed is due to the highly constrained 

sequential design processes.  

From the design synthesis context, Pawling et al., (2017) highlights ship design 

as a nonlinear and non-sequential process, proposing the need to consider alternative 

ship design approaches. They suggested the ‘problem-centred’ design approach to 

synthesise and develop complex ship design as opposed to the solution-centred 

approach. However, the holding back factors in applying the approach are due to 

implicit design assumptions, insufficient design information and uncertainties, poor 

requirement analysis and lack of systematic methodology especially for the early 

design stage.  

An approach to designing ship having large and complex systems is the “design 

building block” (DBB) by Andrew (2006) and highlighted again by Pawling et al., 

(2017). It integrates the PBD and simulation-based design (SBD) in observing the 

overall, complex ship design processes. Fundamentally, the method relies on human 

intervention for the design development and decision-making, outlining a traceable 

procedure into deducing workable designs using computer-based design tool. Based 

on the processes, it is acknowledged the requirement elucidation with detail design 

input serves to minimise uncertainties. This shows that the complex ship design and 

the design processes complexities are greatly influenced by set design goals, functional 

requirements and therefore, design parameters and their interactions.  

Examining the ship design optimisation, Marzi et al., (2018) explores the 

approach proposed by Papanikolaou et al., (2010) , termed ‘HOLISHIP’. It applies the 

systems approach and concurrent engineering for complex ship design processes 

through SBD. Like DBB, it considers detailed design inputs at the early design phase 

to eliminate design uncertainties. The method utilises computer-based applications as 

a common software platform to integrate and communicate design activities. The 

concurrent design adopted in the method allows for multi-disciplinary collaborations, 

aggregated design and analysis modules observing the overall ship design. 
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In comparison to the PBD, the SBD approach is initiated based on detailed 

design requirements, technical analysis, and design validation in the early design 

stages. However, general SBD tends to emphasise on the single design parameter 

optimisation approach. This is mainly due to disaggregated methods, tools, and 

complex procedures (Vernengo et al., 2016; Yang & Huang, 2016). Exploring the 

PBD, SBD and computer-based platforms seems to provide greater design insight to 

project members and decision-makers thus reducing design uncertainties. It also 

delivers better communication especially to multi-disciplinary organisations through 

common information sharing and architecture.  

Another approach is proposed by observing the ships’ physical architectures 

and systems distributions through the ‘network-based’ method (Brefort, et al., 2018; 

Brownlow et al., 2021; Pawling & Andrews, 2018; Shields et al., 2017). It is devised 

to investigate ship physical systems interdependencies. The method is performed by 

analysing the relationships between the ship design and processes, emphasising on the 

design intents and functional decompositions leading to the overall ship design 

formulation. It enables designers to synthesise designs by providing minimum input to 

generate and tabulate design physical architecture and distributed systems into 

generating a design solution, assessing the design characteristic and performance 

(Brefort, et al., 2018; Brownlow et al., 2021).  

Whilst it is observed that the conventional ship design processes emphasis on 

the classical systems approach with focus on the ship design optimisation. Due to the 

point-based and sequential design approaches, the challenges remain on the design and 

its organisational parts. To overcome this, research works have been carried out on 

finding the alternative methods, techniques, and tools particularly in applying the 

modern systems engineering and concurrent engineering approaches (Khairuddin et 

al., 2019; Papanikolaou, et al., 2019; Trivyza et al., 2022; Gianni et al., 2021). Recent 

works are observed exploring the approaches as method improvements to the current 

ship design and building processes (Dullen et al., 2021; Shallcross et al., 2020; 

Specking et al., 2018; Sullivan et al., 2021)  
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1.2 Problem Statement 

Design functional requirements and parameters are presented as systems, sub-

systems, and components. Conventionally, they are explored heuristically through the 

PBD and SBD, often in an ad-hoc basis thus contributing to design and process 

complexities. Their integrations present significant challenges to the designers and 

shipbuilders due the sequential model, isolated processes, discrepancy in multi-

disciplinary project organisation and decision-making. 

Based on the state of the art, it is acknowledged that the ship design complexity 

is influenced by the modern design and operating requirements. However, the 

existential issue on how to observe and assess the overall complex ship design and 

processes are still not well addressed. The issue is also amplified by the lack of 

systematic methodology in extracting and presenting the design and processes as 

knowledge. It is also acknowledged that the challenges are due to ineffective and 

disaggregated design methods, techniques, and tools. 

The modern systems engineering, and concurrent engineering approaches have 

gained considerable attention for its capability to allow multi-disciplinary and 

integrative design approaches. It centres on solidifying the functional requirements at 

the early design stage as well performing the design solution synthesis and validation 

considering the whole design problem. Therefore, the approaches are highlighted as 

the potential solution, set as the basis for this research. 

1.3 Research Goal 

The outcome of the study is aimed at producing fast and effective near optimal 

preliminary ship design process that is scalable, flexible to changes and to support 

concurrent design process. To achieve this, data-centric, integrated systems and 

concurrent engineering approaches with artificial intelligence (AI) application is 

proposed. 
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1.3.1 Research Objectives 

The research is achieved through these objectives: 

1. To propose and verify integrated systems and concurrent engineering 

approaches, methods, techniques, and tools for large and complex ship design  

2. To model and evaluate generic passenger ship design model, data and 

characteristics for the design knowledge representation  

3. To develop and demonstrate alternative ship design model, methods, 

techniques, and tool for passenger ship design using the proposed approach 

4. To verify and validate the proposed models and computer-based tool for 

passenger ship design development 

 

1.4 Research Scopes 

This study is proposed to investigate ship preliminary design within the 

planning and preliminary design development phases. It is conducted through the 

proposed design methodological framework and the use of a developed computer-

based design tool. 

The ship design modelling is performed by exploring monohull type passenger 

ship design case study based on the actual data collected from the RINA Significant 

Ships and Significant Small Ships publications, UTM towing tank tests reports, and 

augmented data based on Bailey’s (1976) hull series experiment. The cleaned dataset 

is consisted of up to 110 and 12 features representing the passenger ship design 

principal parameters; 1) number of passengers (NPax), 2) number of vehicles (NVeh), 3) 

waterline length (LWL), 4) breadth (B), 5) draught (T), 6) displacement (Δ), 7) length 

to breadth ratio (L/B), 8) breadth to draught ratio (B/T), 9) block coefficient (CB), 10) 

service speed (VS), 11) Froude number (Fn), and 12) brake power (P). 
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The ship design model development and improvement are performed based on 

the generic preliminary ship design model by Molland (2011) to establish the principal 

passenger ship design parameters outlined. The model is developed and tested for the 

data range as in Table 1-1. Additionally, the case study explored for passenger ships 

carrying either both passengers and vehicles or passenger only.  

Table 1-1 Summary of the passenger ship principal design parameters data 

 

LWL 

(m) B (m) T (m) L/B B/T Δ (t) CB 

VS 

(kn) NPax NVeh 

P 

(kW) 

min 86.1 15.8 3.2 3.89 3.52 2519 0.51 14.7 150 25 4324 

max 205.7 31.8 7.8 8.60 5.32 26394 0.70 30.0 3200 1340 67200 

 

1.5 Research Significance 

This research is carried out to solve the research problem and the identified 

issues. It highlights the challenges in developing large and complex ship design that is 

practically observed through conventional ship design spiral models. This work 

acknowledges the needs to establish ship design information at the early design 

synthesis stage. Crucially, this work is proposed in-lined to the identified research aim 

and objectives. 

Firstly, this work is proposed to support structured design thinking, knowledge 

representation and reuse adopting the data centric integrated systems and concurrent 

engineering approaches with AI application to facilitate fast, effective and near optimal 

preliminary ship design. It emphasises on deriving the overall ship design architecture 

in extracting and assessing the ship design parameters and processes. Through this, the 

method is aimed to facilitate better design and processes organisation, assessments, 

visualisation, and manipulation, providing scalability and flexibility to design changes. 

Secondly, the approach emphasises on emulating designers’ experience and 

knowledge into an expert system, thus developed as a computer-based design tool. 
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Exploiting existing design data and information, it serves to effectively facilitate the 

ship design development. The application promotes in representing, preserving, and 

reusing the design knowledge, human-machine interaction and decision making. 

Therefore, the advantages of the proposed method are targeted at proposing alternative 

ship design methodology to improve the ship design quality and lead time.  

Finally, the proposed methodology is deemed suitable as the basis to 

incorporate AI assisted semi-supervised design. Here, the role of systems engineering, 

concurrent engineering, and data-centric design approaches are proposed to model and 

facilitate design solution search and decision-making. Therefore, introducing and 

implementing AI technologies are desirable to semi-automate repetitive design tasks, 

to support in handling design complexity and to minimise human intervention that can 

lead to design failure.  

The potential benefit of this research is expected to solve the current research 

needs in complementing if not replacing the conventional design spiral model through 

the advancement of computer technology and the use of data-centric design approach. 

Importantly, the proposed approach is devised as a complement to the existing ship 

design models, particularly observing the problem-centred preliminary design at the 

planning and preliminary design stages. 

1.6 Thesis outline 

This thesis encompasses the research works which are further described in the 

next four chapters. Chapter 2 presents the literature review that provide the background 

information of the research problem, state-of-the art of the ship design methodology 

and development approaches, the methods, techniques and tools in engineering design 

development, and the current AI applications in the ship and marine designs, and 

design process improvements. The chapter is summarised by proposing a systematic 

methodology and framework to develop an alternative, improved and effective 

passenger ship preliminary design processes. While chapter 3 describes and 

summarises the methodological means for developing, demonstrating, evaluating, and 
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validating the proposed method and design tool based on the generic passenger ship 

design model and actual data. The findings from the research work are described, 

explained, and discussed in chapter 4 based in the performed illustrative test case. 

Chapter 4 is summarised by highlighting the significance advantage observed from the 

proposed method. Finally, the research work is concluded in chapter 5 with 

recommendations for the future works. 
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