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a b s t r a c t

Reliable modeling of river sediments transport is important as it is a defining factor of the economic
viability of dams, the durability of hydroelectric-equipment, river susceptibility to pollution, suitability
for navigation, and potential for aesthetics and fish habitat. The capability of a new machine learning
model, fuzzy c-means based neuro-fuzzy system calibrated using the hybrid particle swarm
optimization-gravitational search algorithm (ANFIS-FCM-PSOGSA) in improving the estimation accuracy
of river suspended sediment loads (SSLs) is investigated in the current study. The outcomes of the
proposed method were compared with those obtained using the fuzzy c-means based neuro-fuzzy
system calibrated using particle swarm optimization (ANFIS-FCM-PSO), ANFIS-FCM, and sediment rat-
ing curve (SRC) models. Various input combinations involving lagged river flow (Q) and suspended
sediment (S) values were used for model development. The effect of Q and S on the model's accuracy also
was assessed by including the difference between lagged Q and S values as inputs. The model perfor-
mance was assessed using the root mean square error (RMSE), mean absolute error (MAE), Nash
eSutcliffe Efficiency (NSE), and coefficient of determination (R2) and several graphical comparison
methods. The results showed that the proposed model enhanced the prediction performance of the
ANFIS-FCM-PSO (or ANFIS-FCM) models by 8.14% (1.72%), 14.7% (5.71%), 12.5% (2.27%), and 25.6% (1.86%),
in terms of the RMSE, MAE, NSE and R2, respectively. The current study established the potential of the
proposed ANFIS-FCM-PSOGSA model for simulation of the cumulative sediment load. The modeling
results revealed the potential effects of the river flow lags on the sediment transport quantification.
© 2021 International Research and Training Centre on Erosion and Sedimentation/the World Association

for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.
1. Introduction affects river water quality by reducing the dissolved oxygen con-
River sedimentation affects most water engineering projects
directly and significantly by reducing reservoir capacity, blocking
dam inlets, and reducing channel capacity (Buyukyildiz & Kumcu,
2017; Calsamiglia et al., 2018). The river sedimentation also
tment, Ilia State University,

g Centre on Erosion and Sediment
centration (Olyaie et al., 2015; Shiau & Chen, 2015). The effects of
sedimentation on the hydro-environment have made it an impor-
tant process in hydrology to be determined and accurately quan-
tified. The major causes of sedimentation are weathering and
erosion (Misset et al., 2019). However, the particle size and flow
condition are the factors that most influence the sediment trans-
portation (Zounemat-Kermani et al., 2020a). As erosion is the
major cause of sedimentation, river sedimentation also is signifi-
cantly influenced by various geomorphological, geological, and
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meteorological factors (Chang et al., 2019). Generally, suspended
sediment load (SSL) is estimated for the characterization of sedi-
ment in fluvial systems. Therefore, SSL is generally predicted to
understand the possible changes in river sedimentation and man-
agement of hydraulic structures and river water quality.

The influence of multiple hydro-climatic and geomorpholog-
ical factors on SSL and their complex interactions have made SSL
modeling a tedious task (Samantaray & Ghose, 2018). Previous
studies revealed that the pattern of SSL is highly complicated due
to the influence of various hydro-climatic and geomorphological
factors, including precipitation intensity, river discharge, and
river bed sediment texture (Himanshu et al., 2017; Zounemat-
Kermani et al., 2020b; €Ozger & Kabataş, 2015). This discussion
indicates both nonlinear and non-stationarity attributes charac-
terize SSL.

Various experimental and mathematical models are conven-
tionally applied for modeling of SSL. The major drawback of
experimental methods is their high cost. Further, experimental
studies involve several assumptions for physical modelling of
river flow, which add uncertainty in various model parameters,
and thus, uncertainty in SSL estimation is increased (Aytek &
Kişi, 2008; Ebtehaj et al., 2020; Shamaei & Kaedi, 2016). One of
the most popular empirical methods of sediment calculation is
the sediment rating curve (SRC) (Sharafati et al., 2020b; Tao et al.,
2019). The empirical formulation of the SRC, based on river
discharge is SSL ¼ aQb, where Q is the river flow, and a and b are
the rating curve parameters, respectively. Mathematical models
also are widely employed for numerical simulation of SSL (Cao &
Carling, 2003; Mohammadian et al., 2004). Conceptually, math-
ematical models are developed based on physical laws of fluvial
sediment transportation. Numerous hydro-climatic and
geomorphological parameters are required for developing SSL
numerical models.These paramers are often not known. This
makes the estimation accuracy of numerical models generally
very low. In recent years, several empirical and data-driven
models have been proposed to address the nonlinearity and
complexity associated with SSL estimation. The literature sug-
gests the higher capability of data-driven models compared to
experimental and mathematical models in terms of estimation
accuracy of SSL (Khan et al., 2019; Khosravi et al., 2018;
Samantaray & Ghose, 2018).

Data-driven models based on artificial intelligence (AI) algo-
rithms have been the choice for solving various engineering prob-
lems over the past decades (Fu, 2011;Hebert et al., 2014; Kleist, 2015;
Sakurai et al., 2015). Various hydro-climatological phenomena have
been successfully modeled using AI algorithms (Choubin et al.,
2018b; Goyal & Ojha, 2011; Hoang & Bui, 2018; Samadi et al.,
2014). Several review studies also reported the successful use of AI
algorithms in SSL simulation (Gupta et al., 2021; Rajaee & Jafari,
2020; Rezaei et al., 2021). These studies revealed AI as the best al-
ternatives for SSL estimation due to its simplicity and lower depen-
dence on prior knowledge to address specific issues and accuracy in
estimation (Salih et al., 2020). Furthermore, the convergence time of
AI-based SSL estimation models is considerably lower than that for
mathematical models. AI models can establish the patterns and
variations in time-series datasets and efficiently replicate the phys-
ical processes. However, the previous studies have revealed the
challenge in selecting themost appropriate data-driven algorithm in
developing the SSL estimation model (Talebi et al., 2017).

Aytek and Kişi (2008) used genetic programming (GP), artificial
neural network (ANN), and adaptive neuro-fuzzy inference system
(ANFIS) in SSL estimation and showed the better skill of GP. Lafdani
et al. (2013) evaluated the performance of ANN and support vector
machine (SVM) in estimating SSL from rainfall and streamflow data
and found ANN to outperform the SVMin. Tayfur et al. (2013)
showed that a hybridized ANN-GA model performs better than
the standalone ANN model in SSL estimation. Nourani and Andalib
(2015) assessed the least squares support vector machine (LSSVM)
and ANN models' performance in estimation SSL and found better
performance using the ANN model.

Talebi et al. (2017) used regression trees and model trees for
SSL estimation and reported better performance of the employed
models than an ANN model. Choubin et al. (2018a) reported a
better estimation of SSL using a classification and regression tree
(CART) model from hydro-meteorological data than other AI
models. The study also found the CART model was a good SSL
estimation method in basins with limited hydro-meteorological
data. Emamgholizadeh and Demneh (2019) studied the feasi-
bility of GP, ANN, and ANFIS models in estimation of SSL and
showed the better capability of GP. Adnan et al. (2019) predicted
SSL using three different soft computing models namely, dy-
namic evolving neural fuzzy inference system (DENFIS), adaptive
neuro-fuzzy inference system coupled with fuzzy c-means
(ANFIS-FCM), and multivariate adaptive regression splines
(MARS) models. They showed that the evolutionary fuzzy model
DENFIS is more capable of simulating SSL than the other models.
Khan et al. (2019) developed SSC estimation models using ANN
and showed the possibility of using the model for accurate SSC
estimation.

The advanced version of AI models has recently been used to
improve the river's SSL predictability. For example, Ehteram et al.
(2019) developed four hybrid AI models: adaptive neuro fuzzy
system and bat algorithm (ANFIS-BA), adaptive neuro fuzzy system
with weed algorithm (ANFIS-WA), multilayer feed-forward neural
network with bat algorithm (MFNN-BA), and multilayer feed-
forward neural network with weed algorithm (MFNN-WA) for the
estimation of SSL in the Atrek River basin in Iran. They showed the
better skill of ANFIS-BA compared to the other models. Salih et al.
(2019) studied the properties of various advanced AI models, M5
model tree (M5P), attribute selected classifier (AS M5P), M5Rule
(M5R), and K Star (KS), in estimating SSL at the Trenton meteoro-
logical station in the USA and reported the best performance using
M5P. Banadkooki et al. (2020) employed the ANN-ant lion opti-
mization (ALO), ANN-bat algorithm (BA), and ANN-particle swarm
optimization (PSO) models in SSL estimation of a river in Iran and
reported the higher potential of ANN-ALO in development of an SSL
estimation model.

Recent studies have established that the hybridization of the
standalone AI models using advanced metaheuristics algorithms
can remarkably improve model efficiency. Over the past couple of
years, this has also been observed in simulating many other hy-
drological processes, such as streamflow (Yuan et al., 2018), rainfall
runoff (Adnan et al., 2021a), evaporation (Khosravi et al., 2019),
evapotranspiration (Alizamir et al., 2020), solar radiation (Hou
et al., 2018), hydraulics performance (Adnan et al., 2021b), water
availability (Kaur et al., 2021), and several others. However, limited
explorations have been done to assess the potential of hybrid
models in simulating SSL. Hence, the efforts for exploring new
advanced AI models in simulating sediment transport are still
ongoing. In the current study, the feasibility of binarymetaheuristic
optimization algorithms including PSO and gravitational search
algorithm (GSA) have been evaluated for tuning the parameters of
fuzzy c-means based neuro-fuzzy systems in simulating river
sediment load. The potential of themodel was investigated through
skill assessment of the models in simulating SSL using different
statistical indices and graphical comparison methods.
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2. Materials and methods

2.1. Case study

The Sacramento River basin was selected as the case study area
to assess the proposed hybrid AI model (Fig.1). The selected basin is
the largest and longest river basin of California and has a key role by
providing the 84% of the freshwater supply in California. The basin
drains a catchment area of about 6,900 km2. The yearly average
precipitation in the basin is 914 mm, and the annual runoff of
27,600 m3. The precipitation in the basin mainly occurs from
November to March. The basin was selected as it is the main
contributor of sediment to San Francisco Bay (produces 7 times
higher sediment load than the San Joaquin River and accounts for
almost 80% of the total sediment deposited to the San Francisco
Bay-Delta). Accurate estimation of SSL is important for the wetland
stability and ecology of the Bay-Delta.

Daily river flow and SSL data for the Sacramento River at Free-
port gauging station (USGS Code No: 11447650) for the period of
1966e2015 were downloaded from the webserver of the USGS
Fig. 1. Location map of the S
(http://co.water.usgs.gov/sediment/). The geographical location of
the gauging station in the basin is 38�27ʹ22Nʺ latitude and
121�30ʹ01Wʺ longitude. The gauging station is about 21 km
downstream from the confluence of American River within Sacra-
mento. The data for the period 1966e2005 was used for training,
and the remainder (2006e2015) were used for model testing.

Table 1 lists a brief statistical description of the data used in the
current study. The table shows that both streamflow and sediment
data are highly skewed (skewness ranges from 6.42 to 13.56).

2.2. Adaptive neuro-fuzzy inference system (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) (Jang, 1993)
is a robust hybrid, data-driven model. It can efficiently map the
complex input-output relation for solving complex problems.
ANFIS is designed as a hybrid model because it combines two
properties: structured in several layers similar to ANN and using an
inference engine based on the Takagi-Sugeno-Kang (TSK) fuzzy
inference system (FIS) from fuzzy logic (Enayatollahi et al., 2020),
based on a series of if-then rules and membership functions (MFs)
acramento River Basin.

http://co.water.usgs.gov/sediment/


Table 1
Statistical parameters of the Sacramento River data used in the current study.

All data Training Test

Streamflow (m3/s)
Mean 15.59 15.00 17.36
Min 0.016 0.016 0.055
Max 800 790 800
Median 4.96 4.75 5.48
Skewness 9.45 8.20 10.47
Std. dev. 40.9 37.6 49.7

Sediment load (t/d)
Mean 412 409 422
Min 0.002 0.002 0.055
Max 49,770 49,770 15,390
Median 40.80 35.83 57.85
Skewness 13.56 13.55 6.42
Std. dev. 1803 1,962 1,213

Note: Min ¼ minimum, Max ¼ maximum, Std. dev. ¼ standard deviation.
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(Soroush et al., 2019). Like other AI models, ANFIS contains two
parameters (Fig. 2): linear and nonlinear. Linear parameters (fifth
layer, Fig. 3), also called consequent parameters (pi, qi, and ri) are
optimized by the standard least squares method (LSM), while the
nonlinear parameters (ci and si) are tuned using a backpropagation
algorithm based on the principle of gradient descent (second layer,
Fig. 3).

During the training process, all linear and nonlinear parameters
are optimized simultaneously to determine the best relationships
among all possible fuzzy rules (Kisi et al., 2018). In ANFIS, the fuzzy
rules are created using the FIS. The fuzzification and defuzzification
are the most critical steps of ANFIS model development
(Muhammad Adnan et al., 2019). For simplicity, an ANFIS archi-
tecture utilized was consisting of only two inputs (x1, x2), one
output (f) and three fuzzy sets for each input (A1, A2, A3, and B1, B2,
B3, respectively) as indicated in Fig. 3. The proposed ANFIS model
consists of six layers: the input layer, fuzzification layer, the rules
(e.g., product) layer, the normalization layer, the defuzzification
layer, and the total output (e.g., summation) layer. Among them,
two are adaptive layers, and three are fixed layers (Adedeji et al.,
2020). The if-then rules for developing a fuzzy model can be
expressed as follows (Sharafati et al., 2020c):

Rule1¼ If ðx1 is A1Þandðx2 is B1ÞThenðf1¼p1x1þq1x2þ r1Þ (1)
Rule2¼ If ðx1 is A2Þandðx2 isB2ÞThenðf2¼p2x1þq2x2þ r2Þ (2)
Rule3¼ If ðx1 is A3Þandðx2 is B3ÞThenðf3¼p3x1þq3x2þ r3Þ (3)

where x1 and x2 are the input variables, Ai and Bi are the fuzzy sets,
{pi, qi, and ri} are the linear or consequent parameters of the fuzzy
rules, and f is the output variable. The layers are described as
follows:

Layer 1. This is a layer without any mathematical operator.
ANFIS takes the input variables (xi) through this layer.

Layer 2. This is the fuzzification layer, in which every node, i is
an adaptive node with a node function. This layer maps xi to the
fuzzy sets Ai and Bi and decides the membership degree of the
corresponding fuzzy set (Jiang et al., 2020). This layer contains the
premise (nonlinear) parameters, which correspond to the param-
eters of the membership function.

Layer 3. This is the layer of rules. This layer's neurons are
labelled by П, which are fixed nodes and only act as a simple
multiplier. In practice, the equivalent of if-then part and the “AND”
rule are used to identify the corresponding firing power (Adıgüzel
et al., 2019).

Layer 4. This is known as the normalization layer, which consists
of neurons labelled by N. These are fixed nodes used for estimating
the normalized firing strength. The nodes calculate the part of the
contribution of the rule (Adıgüzel et al., 2019).

Layer 5. This is the defuzzification layer which is also called the
aggregation layer. These nodes are adaptive whose output is the
product of normalized firing strength (Adıgüzel et al., 2019).

Layer 6. This is a single node layer used to deliver the model
output. This node sums up all the signals to estimate the output.

An ANFIS model is trained to determine the best linear (pi, qi,
and ri) and nonlinear (ci and si) parameters. The training algorithm
often is hybridized or combined simultaneously with the back-
propagation algorithm using gradient descent for optimizing the
linear (consequent) parameters and the least squares method
(LSM) for optimizing the nonlinear (premise) parameters. However,
the critical step in training an ANFIS model is to find the optimum
number of fuzzy rules. Three methods are widely used for deter-
mining the number of fuzzy rules: (i) ANFIS with the gird partition
method called ANFIS_G, (ii) ANFIS with the subtractive clustering
(SC) called ANFIS_S, and (iii) ANFIS with fuzzy c-means clustering
(FCM) called ANFIS_FCM. It has been found that two clustering
methods (SC and FCM) are more suitable to avoid the so-called
“curse of dimensionality” encountered due to the use of the gird
partition method and the necessity of generating fewer fuzzy rules
(Zare & Koch, 2018). In current study, the FCM clustering technique
was applied for determining the number of fuzzy rules. For this
purpose, a cluster number was specified, and the correspondence
of each cluster to one fuzzy rule was determined. It has been
demonstrated that the FCM possess has several advantages,
including high speed, use of less rules, and higher accuracy
(Naderpour & Mirrashid, 2020).

2.3. Hybrid ANFIS models and metaheuristic optimization methods

During the optimization of the ANFIS parameters using the
backpropagation training algorithm, the convergence towards a
local minimum instead of the global minima is the most widely
encountered problem. One of the most and promising solutions
proposed in recent years to avoid trapping at local minima is the
use of the metaheuristic bioinspired methods, such as GSA, PSO,
firefly optimization algorithm (FFA), genetic algorithm (GA), grey
wolf optimizer (GWO), and the biogeography-based optimization
(BBO) among others. The metaheuristic methods transform the
problem into an optimization task to evade the localized trapping
(Enayatollahi et al., 2020). In this study, two algorithms, PSO and
GSA, were used to optimize ANFIS parameters. The hybrid
models were named ANFIS-FCM-PSO and ANFIS-FCM-PSOGSA,
respectively. Figure 2 shows the complete flowchart of the pro-
posed models. The models are described in the following
subsections.

2.4. ANFIS-FCM-PSO

PSO (Eberhart & Kennedy, 1995) is a metaheuristic bio-
inspired swarm intelligence approach inspired by birds and
fishes' biological and sociological behavior in finding food
(Enayatollahi et al., 2020; Sharafati et al., 2020a). A population of
particles called a swarm, which forms the search space, is used to
find the best solution considering each one as a solution to the
problem. An interaction between the particles in the population
forms the neighborhood topology. The particles are derived from



Fig. 2. Flowchart of the proposed models: (a) ANFIS-FCM-PSO and (b) ANFIS-FCM-PSOGSA.
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moving in the direction of a global solution. The velocities and
positions of the particles were randomly initialized in a multi-
dimensional search space in each iteration and, subsequently, the
location and speed of particles. The location and velocity of each
particle are updated using a fitness function in each iteration
(Mosa, 2020). From a mathematical point of view, each particle
has an individual best location (Pbest) and a global best (Gbest)
location, which is calculated considering the position among all
particles (Anemangely et al., 2017; Ray et al., 2021). Finally, the
new position of each particle is decided, depending on its best
previous location and the location of the best particle in the
entire population (Zanganeh, 2020). The iterative process con-
tinues until both conditions are ultimately satisfied according to
the defined fitness function. For a N dimensional optimization
size, at each generation, k, the particles' velocity and location are
updated as follows:



Fig. 3. Adaptive neuro-fuzzy inference system (ANFIS) with two input variables (x1, x2) and three fuzzy sets for each input variable.
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vi;nðtþ1Þ¼w * vi;nðtÞþC1r1
�
xdPbesti � xdi ðtÞ

�

þ C2r2
�
xdGbesti � xdi ðtÞ

�
ð4Þ

xdi ðtþ 1Þ¼ xdi ðtÞ þ vdi ðtþ1Þ (5)

where the constants C1 and C2 are referred to as the acceleration
constants, r1 and r2 are arbitrary values between 0 and 1, xPbest is
the preceding best location of the i-th particle in generation k, xGbest
is the preceeding global best location of the all particles in gener-
ation k, xi ¼ (xi1, xi2, …, xiD) represent the current position vector of
the particle in a D-dimensional search space, vi ¼ (vi1, vi2, …, viD)
represent the velocity of the i-th particle, and w is known as the
inertia weight (Eappen & Shankar, 2020; Mallick et al., 2013). PSO
was used for the optimization of the ANFIS-FCM model's hyper-
parameters. Figure 2a shows the flowchart of ANFIS-FCM-PSO
model.

2.5. ANFIS-FCM-PSOGSA

GSA (Rashedi et al., 2018) uses the concept of Newton's gravi-
tation law. GSA is a metaheuristic optimization approach that be-
longs to physics-based intelligent heuristic methods (€Ozkaraca,
2018). GSA has two major components: the agents and their cor-
respondingmasses. The agents responded to the force of gravity and
also exerted a pull on one another. Thus, thefinal response to gravity
is measured by their masses. Each object has four components: (i)
position, (ii) inertial mass, (iii) passive mass, and (iv) active gravi-
tational mass, and one solution governed by the gravitational and
inertia masses (Dokeroglu et al., 2019). The best solution in the GSA
algorithm corresponds to the heaviest agent, and consequently, all
other agents are attracted and move towards the best solution. A
fitness function is evaluated for each object in each iteration until
the optimal solution, which is the final location of the agent having
the highest inertial mass, is achieved (Jiang et al., 2020). GSA can be
formulated as follows. For N search masses (i.e., agents) in a search
spacewith n dimensions, the position of the i-th solution (i.e., mass)
can be expressed as vector Xi as follows (Faris et al., 2018):

Xi ¼
�
x1i ; x

2
i ; :::; x

d
i ; :::x

n
i

�
; i¼1;2; :::;N (6)

where xdi is the position of i-th mass in d-th dimension, and n is the
dimension of the search space. At a specific time t, the gravitational
(mi) and inertial (Mi) masses for the i-th agent is linked to the
fitness function of that agent and updated as follows (Naganna
et al., 2019):
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miðtÞ¼
fitiðtÞ �worstðtÞ
bestðtÞ �worstðtÞ (7)

MiðtÞ¼
miðtÞ

PN
j¼1

mjðtÞ
(8)

where fiti(t) is the cost function (fitness) of the particle (i.e., agent i),
best(t) and worst(t) correspond to the best and worst of the
objective function among all agents at time t, respectively, andMi(t)
is the inertial mass of agent i. Consequently, during the training
process, the agents change their location at each iteration. The
velocity and location of the agents at the proceeding step are
modified as follow (Faris et al., 2018):

vdi ðtþ1Þ¼biv
d
i ðtÞ þ adi ðtÞ (9)

xdi ðtþ1Þ¼ xdi ðtÞ þ vdi ðtþ1Þ (10)

where b is a random number (0 � b � 1), x is the position of the
agent, ai is the acceleration of the i-th agent at the current iteration,
and t is calculated as follows (Faris et al., 2018):

adi ðtÞ¼
Fdi ðtÞ
MiðtÞ

(11)

where Mi is the mass of object i, and Fdi ðtÞ is the total gravitational
force acting on the i-th agent from agent j at the d-th dimension and
i-th iteration, and it can be calculated between two particles (i.e.,
agents) i and j as follows (Mirjalili et al., 2012):

FijðtÞ¼GðtÞMiðtÞ �MjðtÞ
R2

� �
xjðtÞ� xiðtÞ

�
(12)

where G is the gravitational constant and R is the distance between
particle j and particle i. Here xi and xj are the position vector of the i-
th and jth agents in the d-th dimension.

Recently, a new hybrid algorithm, composed of PSO and GSA,
has been developed to take advantage of the two paradigms (i.e.,
PSO and GSA). The idea behind the development of the PSOGSA is to
enhance the searching ability of Gbest in PSO and the local search
capability of the GSA. Several authors have highlighted the ad-
vantages and the benefits of combining the two paradigms: (i) the
high abilities of GSA in “exploitation” and PSO in “exploration” as-
pects (Bounar et al., 2019), (ii) GSA is excellent in local search while
PSO make the most rapid contribution for achieving the goal of an
optimum value very quickly (Eappen & Shankar, 2020), (iii)
balancing the “global searching” and “local searching” is of impor-
tance (Mirjalili et al., 2012), and (iv) each particle in the population
of the hybrid PSOGSA uses the PSO velocity and GSA acceleration to
update its position (Jiang et al., 2014). From amathematical point of
view, the position “x” and the velocity “v’’of any agent is calculated
as follows (Meshram et al., 2019a, 2019b):

viðtþ1Þ¼w�viðtÞþc;1�r1�aciðtÞþc;2�r2�ðGbest�XiðtÞÞ
(13)

Xiðtþ1Þ¼XiðtÞ þ viðtþ1Þ (14)

where vi(t) is the velocity of agent i at iteration t; w the inertia
weight; r1 and r2 are random numbers; aci(t) is the acceleration of
agent i at iteration t, c;1 and c;2 are the acceleration coefficients used
for adjusting the influence of PSO velocity and GSA acceleration,
respectively, and Gbest is the optimal solution (Meshram et al.,
2019a, 2019b; Sharafati et al., 2020a).

The current study used PSOGSA to optimize the linear (prem-
ise) and nonlinear (consequent) parameters of the ANFIS-FCM
model. The mean squared error (MSE) was used as the fitness
function. The flowchart of ANFIS-FCM-PSOGSAmodel is presented
in Fig. 2b.

2.6. Data preparation and model scenarios

Ten different input combinations consisting of lagged values
of river flow and SSL and their variability with time were used to
develop the SSL estimation models and quantify the variables'
influence on the SSL. Different input combinations utilized in this
study are listed in Table 2. The first four models were developed
using different combinations of the present and three antecedent
values of river flow (Qt, Qt-1, Qt-2, Qt-3) as inputs. Therefore, the
inputs for the first four models were river discharges, as listed in
Table 2. More lagged Q inputs beyond three steps (e.g., Qt-3) did
not improve the model accuracy. Next, three lagged values of SSL
(St to St-1, St-2, St-3) were added as inputs. Therefore, models 5 to 7
were developed using lagged SSL values (Table 2). The Best Q
(Best S) in Table 2 indicates the best input combination of Q(S),
which provides the best accuracy in the testing period. The Best
Q or Best S combination can change for each method. Therefore
these combinations could not be written in respect of Q and S
variables.

The effect of variation of Q and S with time was also considered
as inputs. Input combination 8 was the best Q, the best S, and river
flow difference between two periods, QteQt-1. Similarly, the varia-
tion of SSL between two periods, St-1eSt-2 was considered the input
for combination 9. The combined effect of the best Q, the best S, and
the variations of both inputs were considered in input combination
10. After selecting the 10 input combinations for the three selected
algorithms, normalization of input and output data was done to
scale the data in the range of 0e1 using the following equation:

ðQ=SÞn ¼ ðQ=SÞa � minðQ=SÞ
max ðQ=SÞ � min ðQ=SÞ (15)

where (Q/S)n and (Q/S)a are the normalized and actual Q or S data,
respectively, and the min(Q/S) and max(Q/S) are the minimum and
maximum values of Q or S dataset, respectively.

For the development of ANFIS-FCM models, different mem-
bership functions were evaluated for the different numbers of
clusters. The major parameters selected for standalone ANFIS-
FCM and hybrid ANFIS-FCM-PSO and ANFIS-FCM-PSOGSA
models are enlisted in Table 3. The Gaussian membership func-
tion was finally utilized with cluster size ranges from 2 to 10. The
effects of input combination on estimation accuracy were evalu-
ated based on the performance of the standalone ANFIS-FCM
model and both hybrid models. Swarm size for the PSO was
selected as 100 because a greater number did not improve the
model accuracy.

2.7. Evaluation metrics

The ability of the hybrid ANFIS-FCM-PSOGSA model in esti-
mating daily SSL in comparison to hybrid ANFIS-FCM-PSO and
standalone ANFIS-FCMmodels was evaluated using three statistical
metrics which are defined as follows:



Table 2
Different input combinations used for the selection of optimal input combination for the estimation of sediment loads.

Input combinations Models

ANFIS-FCM ANFIS-FCM-PSO ANFIS-FCM-PSOGSA

1 Qt ANFIS-FCM1 ANFIS-FCM-PSO1 ANFIS-FCM-PSOGSA1
2 Qt-1 and Qt ANFIS-FCM2 ANFIS-FCM-PSO2 ANFIS-FCM-PSOGSA2
3 Qt-2, Qt-1, and Qt ANFIS-FCM3 ANFIS-FCM-PSO3 ANFIS-FCM-PSOGSA3
4 Qt-3, Qt-2, Qt-1, and Qt ANFIS-FCM4 ANFIS-FCM-PSO4 ANFIS-FCM-PSOGSA4
5 Best Q and St-1 ANFIS-FCM5 ANFIS-FCM-PSO5 ANFIS-FCM-PSOGSA5
6 Best Q, St-1, and St-2 ANFIS-FCM6 ANFIS-FCM-PSO6 ANFIS-FCM-PSOGSA6
7 Best Q, St-1, St-2, and St-3 ANFIS-FCM7 ANFIS-FCM-PSO7 ANFIS-FCM-PSOGSA7

Variation input included
8 Best Q, Best S, QteQt-1 ANFIS-FCM8 ANFIS-FCM-PSO8 ANFIS-FCM-PSOGSA8
9 Best Q, Best S, St-1eSt-2 ANFIS-FCM9 ANFIS-FCM-PSO9 ANFIS-FCM-PSOGSA9
10 Best Q, Best S, QteQt-1, St-1eSt-2 ANFIS-FCM10 ANFIS-FCM-PSO10 ANFIS-FCM-PSOGSA10

Best Q (Best S) indicates the best input combination of Q(S) which provides the best accuracy for the testing period.

R.M. Adnan et al. / International Journal of Sediment Research 37 (2022) 383e398390
Mean absolute error ðMAEÞ¼ 1
N

XN ��ðS0Þi �ðSCÞi
�� (16)
i¼1

Root mean square error ðRMSEÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

�ðS0Þi � ðSCÞi
�2

vuut

(17)

NasheSutcliffe Efficiency ðNSEÞ

ðNash & Sutcliffe; 1970Þ¼1�
PN

i¼1
�ðS0Þi � ðSCÞi

�2
PN

i¼1
�ðS0Þi � S0

�2 (18)

Coefficient of Determination
�
R2

�

¼
PN

i¼1
��ðS0Þi � ðS0Þ

	�ðSCÞi � ðScÞ
	�

PN
i¼1

�ðScÞi � ðScÞ
�2PN

i¼1
�ðS0Þi � ðS0Þ

�2 (19)

where N is the data number; So, Sc, S0, and Sc are the observed,
computed, mean of observed daily, and mean of computed daily
SSL, respectively.
Table 3
Major parameters of ANFIS-FCM, ANFIS-FCM-PSO, and ANFIS-FCM-PSOGSA models
optimized for improved estimation of sediment loads.

Model Parameter Description/
Value

ANFIS-FCM Membership Function Type Gaussian
Output Membership Function Type Linear
Membership Function Range 2e10
Inputs/Output 1e10/1
Fuzzy Structure Takagi-Sugeno
Cluster Range 2e10
Number of fuzzy rules 10
Number of epochs 100
Initial Step size 0.01
Step size decrease rate/step size increase
rate

0.9/1.1

ANFIS-FCM-PSO Number of Iteration 1,000
Cognitive acceleration (c1) 1
Social acceleration (c1) 2
Swarm size 100

ANFIS-FCM-
PSOGSA

Number of Iteration 1,000
Initial Gravitational constant 1
Descending coefficient 20
Swarm size 100
3. Results

The performance of the standalone ANFIS-FCM in estimating
the SSL for 10 different input combinations during training and
testing based on different statistical indicators are listed in
Table 4. When only river flow was considered as the inputs (i.e.,
ANFIS-FCM1 to ANFIS-FCM4), the models showed low accuracy,
with the mean values of RMSE, MAE, NSE, and R2 of 4,429 t/d,
2,179 t/d, 0.145, and 0.538 in the testing phase, respectively. The
best Q-based input combination for the ANFIS-FCM model for the
testing phase was found for the first input combination (i.e.,
ANFIS-FCM1) consisting of only river flow at time t (Qt) or the
present river flow. The estimation accuracy was noticed to
decrease gradually from ANFIS-FCM1 to ANFIS-FCM4. Compared
to ANFIS-FCM4, ANFIS-FCM1 provided a 5.55% lower RMSE, 18.4%
lower MAE, 43.9% higher NSE, and 4.6% higher R2 in the testing
phase. Next, the performance using the best SSL input combina-
tion in addition to the best Q input combination (ANFIS-FCM1)
was evaluated. Table 4 shows a strong influence of the lagged SSL
values on model estimation accuracy. Adding just one lagged
value of SSL as input with Qt (ANFIS-FCM5), the RMSE and MAE
decreased 59.4% and 62.8%, and the NSE and R2 increased 320%
and 55.9%, respectively, compared to ANFIS-FCM1 in the testing
phase.

For input combinations of 5e7, all ANFIS-FCM models (ANFIS-
FCM5eANFIS-FCM7) showed improvement in SSL estimation
according to the mean RMSE, MAE, NSE and R2 (1,640 t/d,
729.6 t/d, 0.883 and 0.890, respectively) in the testing phase.
Therefore, the three lagged values of SSL (St-1, St-2, St-3) were
selected as the best S input combination (ANFIS-FCM7) along
with Qt. The evaluation of the effect of the variation of Q and S
with time on SSL estimation accuracy yielded no improvement in
the estimation accuracy of ANFIS-FCM model in the testing phase
(ANFIS-FCM8 and ANFIS-FCM9) (Table 4). Compared to the
combination of the best S and best Q inputs (ANFIS-FCM7),
ANFIS-FCM8 showed higher RMSE, 1,628 t/d (2.26%) and MAE,
785 t/d (7.97%) and lower NSE, 0.884 (0. 67%) and lower R2, 0.893
(0.44%) in the testing phase. However, in comparison to the best
Q input combination (ANFIS-FCM1), ANFIS-FCM8 showed an
improvement in estimation accuracy with reduction in RMSE
from 4,163 to 1,262 (60.9%), MAE from 1,940 to 785 (59.5) and
increase in NSE and R2 from 0.207 to 0.884 (327%), and from
0.561 to 0.893 (59.1%), respectively. The variation of sediment
load as input could not be evaluated for standalone ANFIS-FCM
models due to an error in simulation. The 10th input combina-
tion produced the same results as the 8th input combination.



Table 4
Results of the ANFIS-FCM in modeling suspended sediment load.

Input Cluster number Training R2 Test R2

RMSE MAE NSE RMSE MAE NSE

ANFIS-FCM1 10 6,287 2,409 0.653 0.653 4,163 1,940 0.244 0.561
ANFIS-FCM2 6 5,958 2,349 0.688 0.688 4,329 1,966 0.183 0.523
ANFIS-FCM3 2 6,270 2,689 0.655 0.655 424 2,278 0.147 0.533
ANFIS-FCM4 2 6,146 2,696 0.668 0.669 4,503 2,337 0.116 0.536
ANFIS-FCM5 2 3,653 1,180 0.883 0.883 1,732 735 0.869 0.871
ANFIS-FCM6 2 3,280 1,078 0.906 0.906 1,596 727 0.889 0.892
ANFIS-FCM7 2 3,241 1,084 0.908 0.908 1,592 727 0.889 0.897
ANFIS-FCM8 2 2,855 1,006 0.928 0.928 1,628 785 0.884 0.893
ANFIS-FCM9 None None None None None None None None None
ANFIS-FCM10 2 2,855 1,006 0.928 0.928 1,628 785 0.884 0.893

Note: RMSE and MAE are in t/d.
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Table 4 shows that most of the input combinations found 2 as the
optimal number of clusters. However, ANFIS-FCM1 and ANFIS-
FCM2 produced the best results for 10 and 6 clusters,
respectively.

The estimation accuracies of the hybrid ANFIS-FCM-PSO
models during training and testing are listed in Table 5. The re-
sults indicate that for the testing phase, only the river flow as
input (Qt) provided a more accurate estimation than its combi-
nation with antecedent river flow values. The ANFIS-FCM-PSO1
model's estimation accuracy was much higher than the ANFIS-
FCM-PSO4 model. The RMSE of ANFIS-FCM-PSO1 model was
4.51% lower than that for the ANFIS-FCM-PSO4, MAE was less by
12.9% and NSE and R2 were higher by 28.3% and 5.54% in the
testing phase, respectively. Similar to the performance of ANFIS-
FCM model, the inclusion of the lagged values of SSL as inputs
with Qt as input yielded a large improvement in estimation
accuracy for the ANFIS-FCM-PSO models. The ANFIS-FCM-PSO7
(St-1, St-2, St-3, and Qt) was found to be the best model with
both the best S and Q combinations as input. ANFIS-FCM7
reduced the RMSE from 4,265 to 1,576 t/d (63.0%), MAE from
1,974 to 649 t/d (67.1%), and increased the NSE and R2 from 0.207
to 0.892 (331%) and 0.567 to 0.900 (58.7%), respectively,
compared to ANFIS-FCM-PSO1 (best model with Qt as input) in
the testing phase.

In contrast with the performance of the ANFIS-FCM model, the
inclusion of variations in Q and S with time yielded an improve-
ment in estimation accuracy of the ANFIS-FCM-PSO models with
mean RMSE, MAE, NSE, and R2 of 1,557 t/d, 627 t/d, 0.894 and 0.902
in the testing phase, respectively. ANFIS-FCM-PSO8 composed of
best Q, best S, and variation of Q with time (QteQt-1) as inputs
provided more accuracy in estimation compared to ANFIS-FCM7
Table 5
Results of the ANFIS-FCM-PSO in modeling suspended sediment load.

Input Cluster number Training

RMSE MAE N

ANFIS-FCM-PSO1 2 6,440 2,422 0
ANFIS-FCM-PSO2 3 6,617 2,528 0
ANFIS-FCM-PSO3 2 6,263 2,849 0
ANFIS-FCM-PSO4 2 5,862 2,250 0
ANFIS-FCM-PSO5 2 3,628 1,140 0
ANFIS-FCM-PSO6 3 3,252 979 0
ANFIS-FCM-PSO7 5 3,215 972 0
ANFIS-FCM-PSO8 4 2,885 863 0
ANFIS-FCM-PSO9 5 4,134 1,125 0
ANFIS-FCM-PSO10 5 4,338 1,126 0

Note: RMSE and MAE are in t/d.
with a lower RMSE of 1,557 t/d (1.21%), MAE of 627 t/d (3.38),
and higher NSE and R2 of 0.894 (0.22%) and 0.902 (0.22%), respec-
tively, in the testing phase. Tables 4 and 5 also show an improve-
ment in the performance of the standalone ANFIS-FCM model
when its parameters were optimized using the PSO optimization
algorithm. Overall, ANFIS-FCM-PSOmodels were able to reduce the
estimation error of the standalone ANFIS-FCM models by reducing
the mean RMSE from 2,876 to 2,681 t/d (6.81%), mean MAE from
1,386 to 1,253 t/d (9.57%), and increasing the mean NSE from 0.554
to 0.610 (9.98%) and 0.731 to 0.752 (2.82%), respectively, in the
testing phase. The hybrid models also indicated that the lagged
values of SSL have key roles in the estimation of SSL.

The hybrid ANFIS-FCM-PSOGSA models' performance is sum-
marized in Table 6. Like the other two models, ANFIS-FCM-
PSOGSA1 model comprising only the present river flow as input
(Qt) showed higher performance in the testing phase than the
models with other antecedent river flow values as input. ANFIS-
FCM-PSOGSA1 reduced the RMSE and MAE compared to ANFIS-
FCM-PSOGSA4 by 5.26% and 3.48%, respectively, and increased
NSE and R2 by 30.1% and 4.72%, respectively, in the testing phase.
Similar to the other two modeling algorithms, the inclusion of lag-
ged values of SSL along with Qt as inputs increased the estimation
accuracy with mean RMSE of 1603 t/d, MAE of 639 t/d, NSE of 0.888,
and R2 of 0.895. ANFIS-FCM-PSOGSA7 performed the best indicating
St-1, St-2, St-3, andQt as the best input combination for estimating SSL.
ANFIS-FCM-PSOGSA7 reduced the RMSE from 4,107 to 1,554 t/
d (62.1%), MAE from 1,925 to 628 t/d (67.4%), and increased the NSE
and R2 from 0.265 to 0.895 (238%) and from 0.581 to 0.902 (55.3%),
respectively, compared to ANFIS-FCM-PSOGSA1 model in the
testing phase. Variation of SSL and Q with time as input positively
impacted the performance of ANFIS-FCM-PSOGSA models. The
R2 Test R2

SE RMSE MAE NSE

.636 0.636 4,265 1,974 0.207 0.567

.616 0.616 4,524 2,128 0.108 0.553

.656 0.661 4,353 2,364 0.174 0.548

.698 0.699 4,351 2,192 0.175 0.543

.884 0.884 1,731 687 0.869 0.874

.907 0.907 1,588 685 0.890 0.898

.909 0.909 1,576 649 0.892 0.900

.927 0.927 1,557 627 0.894 0.902

.850 0.861 1,556 666 0.894 0.900

.835 0.859 1,606 759 0.888 0.896



Table 6
Results of the ANFIS-FCM-PSOGSA in modeling suspended sediment load.

Model Cluster number Training R2 Test R2

RMSE MAE NSE RMSE MAE NSE

ANFIS-FCM-PSOGSA1 10 6,324 2,437 0.649 0.649 4,107 1,925 0.265 0.581
ANFIS-FCM-PSOGSA2 5 5,920 2,371 0.692 0.692 4,184 1,946 0.237 0.574
ANFIS-FCM-PSOGSA3 10 5,755 2,371 0.709 0.709 4,262 2,017 0.208 0.563
ANFIS-FCM-PSOGSA4 5 6,068 2,542 0.677 0.677 4,323 1,992 0.185 0.555
ANFIS-FCM-PSOGSA5 3 3,651 1,162 0.883 0.883 1,678 662 0.877 0.881
ANFIS-FCM-PSOGSA6 3 3,237 1,058 0.908 0.908 1,578 629 0.892 0.900
ANFIS-FCM-PSOGSA7 5 3,245 1,011 0.908 0.908 1,554 628 0.895 0.902
ANFIS-FCM-PSOGSA8 5 2,827 930 0.930 0.930 1,520 611 0.899 0.904
ANFIS-FCM-PSOGSA9 5 3,176 1,048 0.911 0.911 1,541 658 0.896 0.903
ANFIS-FCM-PSOGSA10 3 2,845 983 0.929 0.929 1,602 750 0.888 0.895

Note: RMSE and MAE are in t/d.
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ANFIS-FCM-PSOGSA8 to ANFIS-FCM-PSOGSA10 models showed a
mean RMSE of 1554 t/d, MAE of 673 t/d, NSE of 0.894, and R2 of 0.901
in the testing phase. ANFIS-FCM-PSOGSA8 improved the estimation
accuracy of ANFIS-FCM-PSOGSA7 model by 2.18%, 2.71%, 0.446%,
and 0.22% in terms of RMSE, MAE, NSE, and R2, respectively.

The comparison of the performance of the best optimal models
developed using the three soft computing algorithms is listed in
Table 7. The ANFIS-FCM-PSOGSA8 and ANFIS-FCM-PSO8 were
considered the best hybrid models based on their performances
listed in Tables 5 and 6, whereas ANFIS-FCM7was considered as the
best standalone model as the variation of inputs with time showed
no effect on estimation accuracy for the ANFIS-FCM based models.
The ANFIS based methods also were compared with the standard
sediment rating curve (SRC) model. The obtained SRC expression is

SSL¼0:000003Q2:0504 (20)

Table 7 indicates that the SRC model provides inferior results
compared to ANFIS based models with higher RMSE (4,172 t/d),
MAE (1,705 t/d), and lower R2 (0.495) and NSE (0.241) in the testing
phase. Among the ANFIS based models, the standalone optimal
ANFIS-FCMmodel was less accurate than the optimal hybrid ANFIS-
FCM-PSO and ANFIS-FCM-PSOGSA models. PSO and PSOGSA based
hybrid optimal ANFIS-FCM models improved the estimation accu-
racy of the standalone optimal ANFIS-FCM model by 2.20%e4.52%,
13.7%e15.9%, 0.449%e1.01%, and 0.557%e0.780%, in terms of RMSE,
MAE, NSE and R2, respectively, in the testing phase. Overall the
comparison of model performance for the different input combi-
nations revealed that PSOGSA was more accurate with a mean
RMSE of 2,634 t/d, MAE of 1,181 t/d, NSE of 0.624, and R2 of 0.766. It
improved the performance compared to ANFIS-FCM-PSO and
ANFIS-FCM by 8.14% and 1.72%, 14.7% and 5.71%, 12.5% and 2.27%,
and 25.6% and 1.86%, respectively, in terms of RMSE, MAE, NSE, and
R2 in the testing phase. Overall, the models can be graded based on
their performance as ANFIS-FCM-PSOGSA > ANFIS-FCM-
PSO > ANFIS-FCM. The results established that the optimization of
model parameters significantly improve the estimation accuracy of
ANFIS-FCM models.
Table 7
Comparison of the ANFIS-FCM-PSOGSA, ANFIS-FCM-PSO, ANFIS-FCM, and SRC in modeli

Method Input Cluster number Trainin

RMSE

ANFIS-FCM-PSOGSA Qt, QteQt-1, St-1, St-2, St-3 5 2,827
ANFIS-FCM-PSO Qt, QteQt-1, St-1, St-2, St-3 4 2,885
ANFIS-FCM Qt, St-1, St-2 and St-3 2 3,241
SRC Qt d 6,973

Note: RMSE and MAE are in t/d.
Visual representations of the metrics were used to evaluate the
level of agreement between the observed and modeled SSL in a
more comprehensive way. For this purpose, five types of visual
representation plots were prepared: (i) time series plot of simu-
lated and observed SSL; (ii) scatterplots of the observed and esti-
mated SSL; (iii) cumulative SSL graph; (iv) violin plots; and (v)
Taylor diagram. Time-series graphs (Fig. 4) demonstrate that the
simulated SSL from ANFIS-FCM-PSOGSA was much closer to the
observed SSL than that from the ANFIS-FCM-PSO, standalone
ANFIS-FCM, and SRC models in the testing phase.

Scatter plots (Fig. 5) also indicate the superiority of ANFIS-FCM-
PSOGSA model over the other models as the ANFIS-FCM-PSOGSA
simulated SSL was found to be less scattered compared to the
other models.

Fig. 6 shows that the ANFIS-FCM-PSOGSAmodel was superior in
simulating cumulative SSL amounts in the testing phase compared
to the other three models. Violin plots of all models were drawn to
show the RMSE, MAE, and NSE.

The violin plots for the ANFIS-FCM-PSOGSA model showed
lesser variation in RMSE, MAE, and NSE with flatter and shorter
violins in comparison to longer and thinner violins for the other
models in the testing phase (Fig. 7).

Fig. 8 shows that the standard deviation (SD) and correlation
coefficient (CC) of the SRC, ANFIS-FCM, ANFIS-FCM-PSO, and
ANFIS-FCMePSOGSA models on a Taylor diagram. Taylor diagram
also indicates the better estimation using the proposed opti-
mized hybrid ANFIS-FCM-PSOGSA model as its estimates were
closer to the observed data compared to the hybrid ANFIS-FCM-
PSO, standalone ANFIS-FCM, and SRC models for the testing
phase.

Precise estimation of the peak SSL is important for better
management and operation of hydraulic structures, especially
during a storm. Therefore, the SSL peak estimation capability of
the proposed methods also was evaluated. Obtained results are
presented in Table 8, which show the better capacity of the
ANFIS-FCM-PSOGSA model in reconstructing the peak SSL than
the ANFIS-FCM-PSO, ANFIS-FCM, and SRC models (see the ab-
solute total of relative errors) in the testing phase. For example,
ng suspended sediment load.

g Test

MAE NSE R2 RMSE MAE NSE R2

930 0.930 0.930 1,520 611 0.899 0.904
863 0.927 0.927 1,557 627 0.894 0.902
1,084 0.908 0.908 1,592 727 0.890 0.897
2,453 0.573 0.578 4,172 1,705 0.241 0.495



Fig. 4. Time-series plot of the observed and estimated sediment loads using the ANFIS-FCM-PSOGSA, ANFIS-FCM-PSO, ANFIS-FCM, and SRC models in the testing phase (two graphs
in the bottom illustrates the two periods from the overall graph in detail).
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the observed peak sediment load of 52,900 t/d was estimated by
the ANFIS-PSOGSA as 38,189 t/d or underestimated by 28%. In
contrast, ANFIS-FCM-PSO, ANFIS-FCM, and SRC estimated the
peak sediment load as 35,805, 32,796, and 5,762 t/d or under-
estimated by 32%, 38%, and 89%, respectively. The ANFIS-FCM-
PSOGSA model showed an absolute total error of 333, indi-
cating a higher performance in estimating peak SSL than the
ANFIS-FCM-PSO (356), ANFIS-FCM (463), and SRC (1,045)
models.

4. Discussion

The PSO and PSOGSA based hybrid optimal ANFIS-FCM
models enhanced the estimation skill of standalone optimal
ANFIS-FCM model by 2.20%e4.52%, 13.7%e15.9%, 0.449%e1.01%,
and 0.557%e0.780%, in terms of RMSE, MAE, NSE and R2,
respectively in the testing phase. Overall the comparison of
model performance for different input combinations revealed
that PSOGSA produced more accuracy with a mean RMSE of
2,634 t/d, MAE of 1,181 t/d, NSE of 0.624, and R2 of 0.766, and
improved the performance compared to ANFIS-FCM-PSO and
ANFIS-FCM by 8.14% and 1.72%, 14.7% and 5.71%, 12.5% and 2.27%,
and 25.6% and 1.86%, respectively, for the RMSE, MAE, NSE, and
R2 in the testing phase. Overall, the models' rank, based on the
results, ANFIS-FCM-PSOGSA > ANFIS-FCM-PSO > ANFIS-FCM. The
comparison outcomes show the importance of optimizing model
parameters to significantly improve the estimation accuracy of
ANFIS-FCM models. Recent studies in the literature also have
found the higher skills of hybrid models compared to standalone
models in SSL estimation. The fact is that hybrid models aid in
finding the optimal results by reducing the drawbacks of
standalone soft computing models (Kargar et al., 2021; Meshram
et al., 2021; Mohammadi et al., 2021; Panahi et al., 2021; Safari,
2020).

Recent literature also showed the effectiveness of the pro-
posed PSOGSA algorithm in finding better optimal values of
model parameters, and, thus, improvement of model estimation
accuracy in comparison to other optimization algorithms (Liu &
Chen, 2020; Safari et al., 2020; Xu & Liu, 2020; Zhu et al.,
2018). For a robust and generalized optimization algorithm, it
is expected that the algorithm would able to search the best
parameter for a machine learning model. The classical PSO often
fails to find these parameters appropriately. Therefore, GSA al-
gorithm is used in the current study with PSO considering their
better exploitation ability. Current study also found the effec-
tiveness of PSOGSA based ANFIS-FCM models by improving
exploration and exploitation capabilities. The proposed hybrid
optimization structure called PSOGSA has proved to be more
effective than other optimization algorithms.

The graphical presentation revealed that all the methods
overpredicted the SSL values. This can be explained by the
different ranges of the training (0.02e49,770 t/d) and testing
(0.055e15,390 t/d) SSL data. The models calibrated with high
SSL data in the training phase tend to overpredict lower SSL data
in the testing phase. This is the main disadvantage of the data-
driven (DD) approaches for simulation. The other main disad-
vantage of the data-driven approaches is that they cannot
consider the possible changes in the basin's physical and/or
morphological characteristics in the modeling process. Extend-
ing the developed models to other watersheds is limited



Fig. 5. Scatterplots of the observed and estimated sediment loads using the ANFIS-FCM-PSOGSA, ANFIS-FCM-PSO, ANFIS-FCM, and SRC models in the testing phase.

Fig. 6. Cumulative sediment loads estimated using the ANFIS-FCM-PSOGSA, ANFIS-FCM-PSO, ANFIS-FCM, and SRC models in the testing phase.
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because they should be carefully calibrated with new data with
a sufficient sample size. One important limitation of the current
study is that the developed models use previous sediment data
in estimating SSL. In the case of missing or unavailable sediment
data (especially in developing countries), such models cannot be
applied to estimate future SSL values. Measuring SSL is a very
difficult task, and in developing countries, sufficient sediment
data are not available because of technical reasons. For future
research, the input parameters of the predictive models can be
determined using some statistical techniques such as Gama-Test
(Dehghani et al., 2019; Seifi & Riahi, 2020).

5. Conclusions

The current study investigated the capability of a new hybrid
algorithm known as ANFIS-FCM-PSOGSA in modeling daily sus-
pended sediment load. The skill of the new method was compared
to the ANFIS-FCM-PSO, ANFIS-FCM, and conventional sediment
rating curve methods for various input combinations, including
lagged river flow and sediment values. Variation of river flow and
suspended sediment with time also was considered as input to
improve estimation accuracy. The current study found the
following conclusions:

1) Based on the investigated river,flowdischarge,Q, at time t, or the
concurrent river flow significantly influenced SSL estimation.

2) Compared to Q-based inputs, antecedent SSL values (St-1 to St-3)
significantly influenced SSL estimation.

3) Inclusion of river flow and SSL variations with time as inputs
improved the estimation capability of ANFIS-FCM-PSOGSA and
ANFIS-FCM-PSO models. The improvement for ANFIS-FCM-
PSOGSA was by 2.18%, 2.71%, 0.446%, and 0.22% in terms of
RMSE, MAE, NSE, and R2, respectively. The accuracy of ANFIS-
FCM-PSOGSA model was superior to that of the ANFIS-FCM and
ANFIS-FCM-PSOmodels. It improved theRMSE,MAE,NSE, andR2

of ANFIS-FCM by 8.14%, 14.7%, 12.5%, and 25.6%, respectively.



Fig. 7. Violin plots of the models showing their performance in terms of three statistical indices, NSE, MAE, and RMSE.
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Fig. 8. Taylor diagrams of the models in simulating sediment load during the testing phase.

Table 8
Comparison of the ANFIS-FCM-PSOGSA, ANFIS-FCM-PSO, ANFIS-FCM, and SRC models in estimating peak sediment load during the testing period of the models.

Peaks
>30,000
t/d

ANFIS-FCM-PSOGSA
(t/d)

ANFIS-FCM-PSO
(t/d)

ANFIS-FCM
(t/d)

SRC
(t/d)

Relative Error

ANFIS-FCM-PSOGSA
(%)

ANFIS-FCM-PSO
(%)

ANFIS-FCM
(%)

SRC
(%)

39,800 41,933 40,613 43,826 36,667 5 2 10 8
33,900 36,665 35,546 35,835 35,768 8 5 6 6
31,500 32,775 34,175 21,915 16,987 4 8 30 46
47,700 45,802 42,766 34,420 24,747 4 10 28 48
40,000 46,319 46,988 48,189 25,417 16 17 20 36
31,000 24,471 24,410 23,334 44,971 21 21 25 45
32,200 31,427 28,816 21,705 10,283 2 11 33 68
40,900 22,340 21,960 23,942 4057 45 46 41 90
35,700 36,162 35,205 39,948 2947 1 1 12 92
33,500 28,586 28,512 29,354 17,355 15 15 12 48
46,800 30,348 29,891 31,943 16,623 35 36 32 64
33,300 46,374 44,753 46,197 16,684 39 34 39 50
34,500 23,593 23,549 14,485 9006 32 32 58 74
50,100 43,077 40,091 44,092 11,003 14 20 12 78
42,300 48,978 49,649 46,701 14,356 16 17 10 66
33,000 35,954 34,816 34,761 15,150 9 6 5 54
52,900 38,189 35,805 32,796 5762 28 32 38 89
34,800 48,476 49,790 52,759 6227 39 43 52 82
Total (Absolute)¼ 333 356 463 1,045
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4) Comparison of the ability of the models in simulating cumula-
tive SSL amounts also revealed the superiority of the ANFIS-
FCM-PSOGSA model compared to the SRC, ANFIS-FCM, and
ANFIS-FCM-PSO models.

5) The proposed ANFIS-FCM-PSOGSA model provided a robust and
reliable tool that can be applied for SSL quantification with a
high degree of accuracy.
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