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ABSTRACT 

Wind energy is the cheapest way to create additional renewable electric 

generating capacity. Nonetheless, it is proportional to the cubic of wind speed, which 

means that regions with low wind speeds, such as countries near the equator, have 

limited wind energy potential. Such limitation can be addressed with Diffuser 

Augmented Wind Turbine (DAWT), which can accelerate the flow and increase the 

efficiency of the wind turbine to exceed the Betz limit. However, the flow separation 

that occurs on the inner walls of DAWT is the main problem in degrading the DAWT 

performance. Furthermore, the flow is vulnerable to laminar separation at low wind 

speeds. Therefore, this study aimed to develop a DAWT that can operate at wind 

speeds lower than 5 m/s and investigate the possibility of using the number of rotor 

blades as a passive boundary layer control. The design of DAWT was developed by 

designing a bare wind turbine and a diffuser suitable for low wind speeds. The thin 

airfoil SD2030 was used as the blade profile of the bare turbine, while the suction 

surface of the same airfoil was also used as the profile of the diffuser to overcome 

laminar separation. In addition, the diffuser design was completed following a 

parameter study that evaluated flange configuration and height,  diffuser cross-section 

profile, and diffuser opening angle. The final diffuser configuration has a flat flange 

with a height to rotor diameter ratio of 0.05 to minimize the total reference area of 

DAWT. Velocity vector analysis revealed that employing the suction surface of the 

airfoil SD2030 as the diffuser cross-section profile improved the flow structure by 

delaying stall at a wider opening angle, allowing the opening angle to be extended to 

15°. After finalizing the DAWT design and its parameters, the effects of the rotor's 

blade numbers and solidity were evaluated by studying the 2-blade, 3-blade, and 4-

blade DAWT. This research was conducted using computational fluid dynamics 

(CFD) simulations with Ansys CFX. Eventually, the final design was tested in a wind 

tunnel to validate the CFD results. The test findings show that the developed 3-blade 

DAWT has a low starting speed of 1m/s and effectively operates with a power 

coefficient of 0.599 at a low wind speed of 5m/s, which agrees with CFD results. By 

analyzing the velocity contours behind the rotor's plane, it was found that increasing 

the number of the rotor's blades increased the kinetic energy at the rotor's tips which 

helped energize the flow close to the diffuser’s inner walls. Consequently, this helped 

the boundary layer stay attached to the diffuser's walls and avoid separation. Velocity 

vectors from CFD results showed that the 4-blade DAWT has the flow fully attached 

to the diffuser at an opening angle of 20° compared to the 3-blade and 2-blade DAWT, 

which had the flow completely separated at the same opening angle. These results 

proved that the rotor's blade number can be used as a passive boundary layer control. 

In conclusion, a DAWT which is suitable for low wind speeds has been successfully 

developed, benefiting nations with low average wind speeds like Malaysia. The 

potential of rotor's blade number as a passive boundary layer control has also been 

successfully investigated, which contributed to broadening the DAWT's 

understanding.
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ABSTRAK 

Tenaga angin adalah cara termurah untuk menghasilkan kapasiti penjanaan 

elektrik tambahan yang dapat diperbaharui. Tetapi, tenaga angin adalah berkadar 

dengan kelajuan angin kuasa tiga yang mana kawasan dengan kelajuan angin rendah 

seperti negara-negara berhampiran khatulistiwa, mempunyai potensi tenaga angin 

yang terhad. Kekangan ini mampu diatasi dengan Turbin Angin Tambahan Peresap 

(DAWT) yang berupaya untuk mempercepatkan dan meningkatkan kecekapan turbin 

angin melebihi had Betz. Walau bagaimanapun, pemisahan aliran yang berlaku pada 

dinding dalaman DAWT adalah masalah utama yang menjejaskan prestasi DAWT. 

Tambahan pula, aliran udara terdedah kepada pemisahan lamina pada kelajuan angin 

yang rendah. Oleh itu, kajian ini bertujuan untuk membangunkan DAWT yang boleh 

beroperasi pada kelajuan angin lebih rendah daripada 5m/s dan menyiasat 

kemungkinan untuk menggunakan bilangan bilah pemutar sebagai kawalan lapisan 

sempadan pasif. Reka bentuk DAWT telah dibangunkan dengan mereka bentuk turbin 

angin kosong dan peresap yang sesuai untuk kelajuan angin rendah. Kerajang udara 

nipis SD2030 digunakan sebagai profil bilah turbin kosong tersebut, sementara 

permukaan sedutan bagi kerajang udara yang sama juga digunakan sebagai profil 

peresap untuk mengatasi pemisahan lamina. Reka bentuk peresap merangkumi kajian 

parameter untuk menilai konfigurasi bebibir dan ketinggian, profil keratan rentas, dan 

sudut bukaan peresap. Konfigurasi akhir peresap mempunyai nisbah ketinggian 

bebibir berbanding diameter pemutar dengan nilai 0.05 untuk meminimumkan jumlah 

keluasan kawasan rujukan DAWT. Analisis vektor halaju menunjukkan bahawa profil 

peresap SD2030 telah melengahkan tegun pada sudut bukaan setinggi 15°. Selepas 

memuktamadkan reka bentuk DAWT dan parameternya, kesan nombor bilah pemutar 

dan kepejalannya dinilai dengan mengkaji DAWT 2-bilah, 3-bilah dan 4-bilah. 

Penyelidikan ini dijalankan menggunakan simulasi pengiraan dinamik bendalir (CFD) 

dengan Ansys CFX. Akhirnya, reka bentuk akhir telah diuji dalam terowong angin 

untuk mengesahkan keputusan CFD. Penemuan ujian menunjukkan bahawa DAWT 3 

bilah yang dibangunkan mempunyai kelajuan permulaan yang rendah iaitu 1m/s dan 

berkesan beroperasi dengan pekali kuasa 0.599 pada kelajuan angin serendah 5m/s, 

konsisten dengan keputusan CFD. Dengan menganalisis kontur halaju di belakang 

satah pemutar, didapati bahawa menaikkan bilangan bilah rotor dapat meningkatkan 

tenaga kinetik pada hujung pemutar yang membantu memberi tenaga aliran dekat 

dengan dinding dalam peresap. Seterusnya ia membantu lapisan sempadan kekal 

melekat pada dinding peresap dan elakkan pemisahan. Vektor halaju daripada 

keputusan CFD menunjukkan bahawa DAWT 4-bilah mempunyai aliran yang melekat 

sepenuhnya pada peresap pada sudut bukaan 20° berbanding DAWT 3-bilah dan 2-

bilah, yang mempunyai aliran dipisahkan sepenuhnya pada sudut bukaan yang sama. 

Keputusan CFD ini membuktikan bahawa nombor bilah pemutar boleh digunakan 

sebagai kawalan lapisan sempadan pasif. Kesimpulannya, reka bentuk DAWT yang 

sesuai untuk angin berkelajuan rendah telah berjaya dibangunkan, memberi manfaat 

kepada negara-negara yang mempunyai kelajuan angin purata rendah seperti 

Malaysia. Potensi bilangan bilah rotor sebagai kawalan lapisan sempadan pasif juga 

telah berjaya diselidiki, yang menyumbang untuk memperluas pemahaman DAWT. 
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 CHAPTER1 

 

 

INTRODUCTION 

1.1 Introduction 

Wind energy is one of the fastest expanding sources of new energy capacity. 

In 2020, the globe generated 743 GW of electricity (1), accounting for 6% of global 

production. Wind energy production increased by 93 GW compared to 2019, with an 

almost 14% growth rate. Many nations, such as Denmark, achieved 20% wind energy 

output, with wind energy accounting for 57 % of total power generation in 2019. (2). 

Figure 1.1 shows the share of renewable energy in the world's electricity production 

by 2020. 

 

Figure 1.1 Global Electricity Production End-2020 (1). 

Countries located in the equatorial zone, such as Malaysia, considered one of 

the Doldrums countries (located slightly to the north of the equator), are characterized 

by frequent showers, thunderstorms, heavy rainfall, and light wind speed. Malaysia's 

average offshore wind speed is between 1.2 m/s to 4.1 m/s, while many regions 
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worldwide have an average wind speed of 10 m/s (3–6). The East Coast of Peninsular 

Malaysia has the highest potential, with an annual resultant wind speed vector of 4.1 

m/s (6). In the wind energy equation, wind speed is essential. The wind power is 

proportional to the cube of the wind speed and the square of the blade's diameter (7), 

as shown in Equation 1.1. Thus, countries with low wind speeds might have limited 

wind energy potential.   

𝑃 =
1

2
𝜌𝑉3𝐴   Equation (1.1) 

Diffuser ducts have been proved to speed up the airspeed in a free flow by 

suction effect. A diffuser is a duct that serves pressure recovery (8); a pressure 

difference is created across its length. The diffuser inlet has a pressure lower than the 

atmosphere, encouraging the upstream air to flow through the diffuser (9).  

The efficiency of wind turbines is limited to what is known by the Betz limit, 

which is 59.3% (7). Many researchers have demonstrated that adding a diffuser behind 

the turbine significantly increases power output, exceeding the Betz limit (10,11). 

Wind turbines shrouded with a diffuser are called diffuser augmented wind turbines 

(DAWT). 

The diffuser increases the mass flow rate through the rotor. It causes a pressure 

gradient downstream after the rotor because the diffuser must end up with Sub-

atmospheric pressure at its exit; the pressure directly behind the rotor is decreased. 

Hence, the pressure difference across the turbine increases, which increases the speed 

of air and hence the power(12,13).  Diffuser augmented wind turbines (DAWT) have 

been proven to have enhanced performance compared to bare turbines at low wind 

speeds (10). 

Two main parameters can increase the efficiency of the diffuser; the first one 

is increasing the area ratio between its inlet and outlet. However, increasing the area 

ratio is limited by the flow separation inside the diffuser walls. It was noticed that the 

turbine's wake mixed with the boundary layer shedding and reduced the separation 

(11,14). The second parameter is to decrease the exit pressure of the diffuser. Using 
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flanges at the exit of the diffuser creates vortex shedding behind it, which produces a 

low-pressure region at the diffuser exit (9,15).  

The aerodynamics of DAWT turbines at low wind speed could be challenging 

because of the laminar separation that happens at a low Reynolds number. Airflow 

usually separates at a low Reynolds number below 5 x 105, even though the boundary 

layer is still laminar and before the transition to turbulent. The laminar separation is 

usually accompanied by laminar separation bubbles, which cause extra drag force to 

the airfoil, known as the bubble drag (16,17). 

1.1 Problem Statement 

Diffuser Augmented wind turbines DAWT outperform bare turbines at low 

wind speeds. Flow separation happens at the inner walls of the diffuser walls because 

of the adverse pressure gradient. Laminar flow separation occurs at a low Reynolds 

number. Flow separation changes the effective shape of the diffuser, which limits its 

function. The number of the rotor's blades influences the energy and turbulent intensity 

of the wakes behind the turbine. The interaction between the turbine's wake and the 

flow passing inside the diffuser is critical to overall performance (14). There is 

insufficient knowledge about how the turbine's wake energy could be a factor in 

determining whether the flow separates the diffuser walls. 
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1.2 Objectives 

The primary aim of the research is to develop a DWAT that can operate at low 

wind speed, which is conducted by achieving the following objectives: 

1. To design a small horizontal axis wind turbine that can operate at low wind 

speeds. 

2. To design a diffuser with a flange suitable for wind speeds below 5 m/s.  

3. To evaluate the turbine’s number of blades and the solidity impact on the flow 

separation inside the diffuser. 

4. To investigate the possibility of using the number of rotor blades as a passive 

boundary layer control. 

1.3 Scope 

1. The influence of the geometrical parameter of the diffuser is investigated using 

3D CFD simulation. The parameters studied are the flange height, turbine 

position, opening angle, and diffuser profile. 

2. The optimum number of turbine blades that can help suppress the flow 

separation is investigated by studying 2-blade,3-blade, and 4-blade rotors. 

3. Wind tunnel testing is conducted for the prototype of the DAWT to measure 

the torque of the turbine using a torque sensor.
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