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ABSTRACT

Pipeline condition monitoring is essential in critical sectors such as the 

petrochemical, nuclear and energy sectors. The guided ultrasonic wave (GUW) 

monitoring system is an available pipeline condition monitoring system that is 

gaining much attention owing to its portability, long coverage and high sensitivity to 

damage. However, environmental and operational conditions (EOCs) effects, 

especially temperature and random noise may generate unwanted peaks, which are 

falsely identified as damage. Attempts to deal with EOC effects have not solved the 

problem, especially for small damage cases (damage equal to or less than 5% cross 

sectional area loss (CSAL)). In this study, a new damage feature extraction method 

based on the residual reliability criterion (RRC) is proposed. The performance of the 

proposed method is measured using the established receiver operating characteristics 

(ROCs) performance evaluation method. The findings show that this method 

performs well, with an AUC value greater than 0.9, based on numerical model under 

40 °C variations and 10% random noise level, and that the application of RRC is 

intuitively simple. To ensure the practicality of the method, a 6 metre long, 8 inches 

diameter experimental pipe model filled with liquid is used to form a GUW database 

of small damage under 30 C  variations by using Torsional T(0,1) excitation mode at 

26 kHz centre frequency. However, the RRC underperformed when experimental 

data is used because the random noise generated by healthy and damaged signals 

interferes and generates high amplitude noise. Therefore, this study proposed a 

denoising autoencoder (DAE) neural network to deal with the effects of EOCs. A 

DAE decodes high-dimensional data into low-dimensional features and reconstructs 

the original data from these low-dimensional features. By providing GUW signals at 

a reference temperature, this structure forces the DAE to learn the essential features 

hidden within complex data. The proposed DAE showed perfect detection (AUC 

value of 1.0) using numerical model and performs well (AUC greater than 0.9) using 

experimental model in terms of small damage identification. Moreover, the proposed 

method showed superiority among other advanced EOC compensation techniques 

using both numerical and experimental models.
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ABSTRAK

Pemantauan keadaan paip dalam sektor kritikal seperti bidang petrokimia, 
nuklear dan tenaga adalah sangat mustahak. Sistem pemantauan gelombang 
ultrasonik dibimbing (GUW) menarik perhatian besar atas kelebihannya dalam 
mudah alihan, liputan yang panjang, dan sensitiviti yang tinggi terhadap kerosakan. 
Namun, kesan daripada alam sekitar dan operasi (EOCs), terutamanya suhu dan 
bunyi rawak, boleh menghasilkan puncak yang tidak diingini, yang dikenal pasti 
secara kerosakan palsu. Percubaan untuk menangani kesan EOC tidak menyelesaikan 
masalah, terutamanya untuk kes kerosakan kecil (5% kehilangan luas keratan rentas 
(CSAL)). Dalam kajian ini, pengekstrakan ciri kerosakan baharu berdasarkan 
residual reliability criterion (RRC) telah dicadangkan. Prestasi kaedah yang 
dicadangkan diukur menggunakan kaedah penilaian receiver operating 
characteristic. Penemuan kajian ini menunjukkan prestasi yang baik (AUC melebihi
0.9) apabila pengunaan keputusan model numerical dalam perbezaan 40 darjah 
celcius dan 10% tahap bunyi rawak, dan menunjukkan kemudah fahaman aplikasi 
RRC. Untuk memastikan kepraktisan kaedah, sebatang paip (6 m panjang dan 8 inchi 
diameter) yang diisi cecair telah digunakan untuk membentuk pangkalan data GUW 
yang merangkumi isyarat GUW kerosakan kecil dalam perbezaan 30 darjah celcius 
dengan menggunakan mod pengujaan Torsional (0,1) di 26 kHz kekerapan. Namun, 
aplikasi RRC menunjukkan prestasi yang kurang baik semasa data eksperimen 
digunakan disebabkan oleh kebisingan yang dijana daripada gabungan isyarat yang 
sihat dan rosak dan menghasilkan amplitud yang lebih tinggi. Oleh itu, kajian ini 
mencadangkan rangkaian neural denoising autoencoder (DAE) untuk menangani 
masalah EOCs. DAE menyahkod data dimensi tinggi kepada data dimensi kecil dan 
membina semula data asal daripada data dimensi kecil yang dinyahkod ini. Dengan 
menyediakan isyarat GUW pada suhu rujukan, struktur ini memaksa DAE untuk 
mempelajari ciri penting yang tersembunyi dalam data yang rumit. Keputusan 
kaedah DAE menunjukkan pengesanan sempurna (1.0 AUC) dan mempunyai 
prestasi yang baik (AUC melebihi 0.9) dalam pengenalpastian kerosakan kecil 
menggunakan model eksperimen. Lebih-lebih lagi, kaedah yang dicadangkan juga 
menunjukkan keunggulan antara metodologi pemantauan GUW terkini yang lain 
menggunakan kedua-dua data model numerikal dan eksperimen.

vii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiv

LIST OF FIGURES xvi

LIST OF ABBREVIATIONS xx

LIST OF SYMBOLS xxii

CHAPTER 1 INTRODUCTION 1

1.1 Research background 1

1.2 Problem statement 7

1.3 Research objectives 9

1.4 Research significance 9

1.5 Research scope 10

1.6 Thesis structure 11

CHAPTER 2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Pipeline condition monitoring 13

2.2.1 Local NDTs 14

2.2.1.1 Penetration test 14

2.2.1.2 Radiography test 15

2.2.1.3 Ultrasonic test 15

2.2.1.4 Eddy current test 17

2.2.2 Global NDTs 18

viii



18

20

21

25

28

28

31

37

37

40

41

42

46

47

48

51

52

61

69

69

69

72

72

74

77

82

83

2.2.2.1 Smart pigging system

2.2.2.2 Optical fibre sensing system

2.2.2.3 Vibration-based monitoring systems

2.2.2.4 Guided ultrasonic wave monitoring 

Environmental and operating conditions in GUW

2.3.1 Environmental effects

2.3.2 Operational effects

Environmental and operational conditions
compensation technique

2.4.1 Physics-based compensation techniques

2.4.2 Data-driven compensation techniques

2.4.2.1 Optimal Baseline Selection (OBS)

2.4.2.2 Baseline signal stretch (BSS)

2.4.2.3 Combination of OBS and BSS

2.4.3 Advanced statistical learning compensation 
technique

2.4.3.1 Supervised learning compensation 
techniques

2.4.3.2 Semi-supervised learning
compensation technique

2.4.3.3 Unsupervised learning
compensation technique

Summary of Research Gap

RESEARCH METHODOLOGY

Introduction

Research design and procedure

Phase 2: GUW pipeline condition monitoring

3.3.1 Theoreti cal background of GUW s

3.3.2 Selection of the GUW mode

3.3.3 Damage detection using GUWs

3.3.4 ROC performance evaluation

Phase 3: Development of RRC-based GUW pipeline 
condition monitoring

ix



84

85

86

88

89

91

92

95

97

97

99

100

104

104

106

108

110

112

113

116

117

119

119

119

122

3.4.1 Theory of RRC

3.4.2 Parametric study on RRC-based damage 
detection

3.4.3 Comparison of the proposed RRC damage 
index with different feature extraction 
strategies

Phase 4: Development of DAE-based GUW pipeline 
condition monitoring

3.5.1 Theory of AE

3.5.2 Deep autoencoder

3.5.3 The proposed DAE

3.5.4 Architecture selection of the DAE

3.5.5 Parametric study of DAE-based damage 
detection

3.5.6 Comparison of the proposed DAE with other 
feature extraction strategies

3.5.6.1 Principal component analysis (PCA)

3.5.6.2 Independent component analysis 
(ICA)

Numerical model

3.6.1 Finite element modelling considerations of 
GUW

3.6.2 Numerical model of pipeline

3.6.3 Excitation signal simulation

3.6.4 Considerations of temperature and random 
noise in the numerical model

Experimental model

3.7.1 Experimental setup and measurement

3.7.2 Signal processing of experimental GUW data

3.7.3 Parametric study

RRC-BASED GUW PIPELINE CONDITION 
MONITORING

Introduction

GUW-based numerical model 

Parametric study

x



122

125

126

127

129

132

132

133

134

135

136

138

139

143

145

145

145

149

149

151

152

155

155

158

159

4.3.1 Different damage location

4.3.2 Different damage severities

4.3.3 Different temperatures

4.3.3.1 Effects of temperature on RRC 
features

4.3.3.2 Effect of temperature variations on 
RRC performance

4.3.4 Different random noise levels

4.3.4.1 Effects of random noise on RRC 
features

4.3.4.2 Effects of random noise on RRC 
performance

Comparison of different feature extraction strategies

4.4.1 Different temperature variations

4.4.2 Different random noise levels

4.4.3 Different damage severities under EOCs

Experimental verification

Chapter summary

DAE-BASED GUW PIPELINE CONDITION 
MONITORING USING NUMERICAL MODEL

Introduction

DAE architecture selection

5.2.1 Selection of optimisation parameters

5.2.1.1 Selection of the final layer 
activation function

5.2.1.2 Selection of the hidden layer’s 
activation function

5.2.1.3 Selection of an epoch number

5.2.2 Selection of architecture layer parameters

5.2.2.1 Selection of the number of hidden 
layers

5.2.2.2 Selection of the dimension 
difference between layers

5.2.3 Selection of training data parameters

xi



159

162

164

166

166

167

169

173

173

177

178

179

180

181

182

183

184

186

189

189

189

191

192

5.2.3.1 Selection of the number of training
data for each damage severities
database

5.2.3.2 Selection of damage severities
databases within the training
database

5.2.3.3 Selection of different EOC settings 
in the training database

5.2.4 Summary of DAE architecture selection

Parametric study

5.3.1 Different damage locations

5.3.2 Different damage severities

5.3.3 Different temperature

5.3.3.1 Effects of temperature on DAE
features

5.3.3.2 Effects of temperature variation on 
DAE performance

5.3.4 Different random noise levels

5.3.4.1 Effects of random noise on DAE 
features

5.3.4.2 Effects of random noise on DAE 
performance

Comparison of different advanced feature extraction
strategies

5.4.1 Different temperature variations

5.4.2 Different random noise levels

5.4.3 Different damage severities under EOCs

Chapter summary

EXPERIMENTAL VERIFICATION

Introduction

Threshold identification based on experimental
database

Parametric study using experimental databases

6.3.1 Damage detection under different damage
severities using experimental databases

xii



6.3.2 Damage detection under different temperature
conditions using experimental databases 195

6.4 Damage detection using DAE 200

6.5 Comparison of different methods using an
experimental database 209

6.6 Chapter summary 212

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 215

7.1 Summary 215

7.2 Conclusions 218

7.3 Recommendations for Future Work 219

REFERENCES 221

LIST OF PUBLICATIONS 243

xiii



62

63

64

65

86

105

107

110

118

118

119

124

147

148

150

151

153

156

158

159

163

165

LIST OF TABLES

TITLE

Drawbacks of each pipeline condition monitoring method

EOCs effects on GUW-based pipeline condition 
monitoring

Drawbacks of EOCs compensation technique

Drawbacks of unsupervised learning method

The range of independent variables for parametric study.

Selection of parameters for FEM models based on the 
parameter formula description (Ghavamian et al., 2018).

Details of damage severity.

Temperature-dependent non-linear material properties of 
AISI 304 (Venkatkumar & Ravindran, 2016).

Details of experimental damage severity.

Test parameters for experimental damage case

Schedule 20 8-inch pipeline model detailed dimensions.

Results of damage localisation using proposed RRC for 
small damage.

DAE architecture parameters first trial.

Training and testing database for DAE.

Final layer activation function selection.

Hidden layer activation function selection.

Selection of epoch number.

Selection of the number of hidden layers.

Selection of dimension difference between layers.

Selection of the number of training data for each damage 
severity.

Selection of damage severity databases for training.

Selection of random noise level for noisy database in 
training stage.

xiv



Table 5.11 

Table 5.12 

Table 5.13

Table 6.1 

Table 6.2

Results of damage localisation using proposed DAE for 
small damage.

Parametric study of DAE method under different damage 
severities.

Parametric study of DAE method under different 
temperature conditions based on training database without 
and with consideration of temperature effect.

Database parameters for DAE using experimental 
database.

Architecture parameters of DAE using experimental 
database.

172

177

202

204

168

xv



LIST OF FIGURES

FIGURE NO. TITLE

Figure 2.1 Comparison of GUW signals at different surface
conditions (M-A Torres-Arredondo et al., 2016).

Figure 2.2 Comparison of GUW signals at different temperatures (G.
Wang et al., 2019).

Figure 2.3 Micro-grass shape waveform on GUW signals due to
acoustic noise (J. Chen et al., 1999).

Figure 2.4 Rotated GUW signals due to presence of vibration: static
condition (solid blue) and 10Hz vibrating conditions (red 
dash-dotted) (X. Lu et al., 2015).

Figure 2.5 Effect of GUW signals under different axial loads (S. J.
Lee et al., 2011).

Figure 2.6 Relationship of damage signal strength and defect size
with different filling conditions (Song et al., 2018).

Figure 2.7 Example results of the temperature correction, (top)
original GUW signals, (middle) signals after phase 
correction in the time domain, and (bottom) signals after 
phase and amplitude correction (Weihnacht et al., 2013).

Figure 2.8 Example results of (a) uncompensated and (b)
compensated GUW signals obtained at 72 °C compared to 
the baseline signals at 25 C  using a wide frequency band 
(Baptista et al., 2014).

Figure 2.9 Ultrasonic signals at SNR 5 (left) and denoised signals
using AE (right) (Munir et al., 2020a).

Figure 3.1 Research design flowchart.

Figure 3.2 Application of GUW transducer loaded on a hollow
cylinder structure (Niu et al., 2019).

Figure 3.3 Representation of (a) longitudinal, L (b) torsional, T (c)
flexural, F GUW modes in pipes (Anurag Dhutti & Gan, 
2019).

Figure 3.4 Flow diagram of damage detection using GUWs.

Figure 3.5 Schematic diagram of damage localisation using GUW.

Figure 3.6 GUW signals recorded at the R1 receiver point.

PAGE

29

30

32

33

34 

36

39

44

60

71

74

75

77

78

79

xvi



Figure 3.7 Schematic flow diagram of the proposed RRC index 
GUW-based pipeline condition monitoring system. 83

Figure 3.8 Flow chart for comparison of different damage detection 
strategies (MPM, BSM, MHL and RRC). 87

Figure 3.9 Schematic flow diagram of the proposed DAE-based 
GUW pipeline condition monitoring system. 89

Figure 3.10 Deep autoencoder architecture. 92

Figure 3.11 Denoising autoencoder architecture. 94

Figure 3.12 Flow chart for comparison of different damage detection 
strategies. 98

Figure 3.13 Numerical model of pipeline structure using Abaqus FEM 
software. 106

Figure 3.14 Meshing of numerical pipeline model. 108

Figure 3.15 Simulated 3 transducer rings and their cross-sections (24 
loading points for excitation signals). 109

Figure 3.16 10 cycle Hanning windowed sinusoidal wave excitation 
signals. 110

Figure 3.17 Flow of experimental GUW database formation. 112

Figure 3.18 Experimental setup. 114

Figure 3.19 Inflatable GUW ring (left), EC trio transducer (middle) 
and G4 mini wavemaker (right). 114

Figure 3.20 Schematic experimental set-up in the experimental study. 114

Figure 3.21 Through cut damage (25% CSAL) using drill mechanism. 115

Figure 4.1 Numerical modelling of T(0,1) excitation mode. 121

Figure 4.2 Numerical pipeline model for damage localisation. 121

Figure 4.3 RRC features of (a) 1%, (b) 2%, (c) 3%, (d) 4% and (e) 
5% CSAL. 126

Figure 4.4 RRC features of 5% CSAL measured at (a) 24 C , (b) 30 
C , (c) 40 C , (d) 50 C , (e) 60 C  and (f) 70 C . 128

Figure 4.5 ROC curves of (a) 10 C , (b) 20 C , (c) 30 C , (d) 40 C 
and (e) 50 C  temperature variations. 130

Figure 4.6 AUC values of different temperature variation databases 
using RRC. 131

Figure 4.7 RRC features of 5% CSAL contaminated with (a) 2.5%, 
(b) 5.0%, (c) 7.5% and (d) 10.0% random noise levels.

xvii

133



134

135

137

138

140

141

141

142

154

157

161

171

175

176

178

180

181

AUC values of different random noise level databases 
using RRC.

AUC for different strategies under different temperature 
variations databases.

AUC for different strategies under different random noise 
level databases.

AUC for different strategies under different damage 
severities databases.

Peak RRC features detected for experimental GUW 
samples (sample number 1 to 240).

RRC features using experimental GUW signals (5% 
CSAL at 30 C ) with true damage detection.

RRC features using experimental GUW signals (5% 
CSAL at 50 C ) with false damage detections.

ROC curve of experimental 5% CSAL RRC features.

Plots of epoch number vs (a) MSE loss, (b) AUC and (c) 
training time.

Plots of hidden layer numbers vs (a) MSE loss, (b) AUC 
and (c) training time.

Plots of the number of training data for each damage 
severity vs (a) MSE loss, (b) AUC and (c) training time.

Reconstructed DAE features of (a) 1% CSAL, (b) 2% 
CSAL, (c) 3% CSAL, (d) 4% CSAL and (e) 5% CSAL.

Reconstructed DAE features with input GUW signals 
measured at (a) 24 C , (b) 30 C , (c) 40 C , (d) 50 C , (e) 
60 C  and (f) 70 C  from training database without 
temperature variations.

Reconstructed DAE features with input GUW signals 
measured at (a) 24 C , (b) 30 C , (c) 40 C , (d) 50 C , (e) 
60 C  and (f) 70 C  from training database with 
temperature variations (as per Table 5.2).

AUC values of different temperature variation databases 
using DAE.

Reconstructed DAE features with input GUW signals 
corrupted with (a) 2.5%, (b) 5.0%, (c) 7.5%, (d) 10.0% 
and (e) 20.0% random noise level.

AUC values of different random noise level databases 
using DAE.

xviii



Figure 5.10 

Figure 5.11 

Figure 5.12 

Figure 6.1 

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7 

Figure 6.8

Figure 6.9

Figure 6.10 

Figure 6.11

AUC for different strategies under different temperature 
variations databases.

AUC for different strategies under different random noise 
level databases.

AUC for different strategies under different damage 
severities databases.

Damage threshold using upper boundary limit from 
undamaged data (sample number 1 -  120).

Thresholds for severity estimation with peak reflection 
coefficients detected for all experimental GUW 
measurements.

Pre-processed GUW signals measured using experiment 
model with (a) 5%, (b) 10%, (c) 20% and (d) 25% CSAL 
damage severity.

GUW signals measured at different temperature conditions 
using experiment model with (a) 0%, (b) 5%, (c) 10%, (d) 
20% and (e) 25% CSAL damage severities.

Comparison of GUW signals’ means at different 
temperatures for different damage severities.

Reconstructed output of 5% CSAL under different number 
of epochs.

Plots of MSE loss versus epochs.

GUW signals in training and testing stage using DAE for:
(a) undamaged, (b) 5%, (c) 10%, (d) 20% and (e) 25% 
CSAL damage severities.

Peaks of reconstructed features detected using 
experimental GUW samples (sample number 1 to 240) 
from (a) ICA, (b) PCA, (c) deep AE and (d) DAE.

ROC plots of damage detection using experimental GUW 
samples from (a) ICA, (b) PCA, (c) deep AE and (d) DAE.

AUC value computed for small damage case (5% CSAL) 
from ICA, PCA, deep AE and DAE using experimental 
database.

183

184

185

190

191 

194

199

200

203

203

208

210

211

211

xix



LIST OF ABBREVIATIONS

3D - Three Dimension

AE - Autoencoder

ANN - Artificial Neural Network

APCA - Adaptive Principal Component Analysis

AR - Autoregressive

AUC - Area Under Curve

BSM - Baseline Subtraction Method

BSS - Baseline Signal Stretch

CFRP - Carbon Fibre Reinforced Polymer

CNN - Convolution Neural Network

CSAL - Cross Sectional Area Loss

DAE - Denoising Autoencoder

DCDAE - Deep Convolution Denoising Autoencoder

EICA - Enhanced Independent Component Analysis

ELU - Exponential Linear Unit

EMAT - Electromagnetic Acoustic Transducer

EOC - Environmental and Operational Condition

F - Flexural

FEM - Finite Element Model

FRF - Frequency Response Function

GeLU - Gaussian error Linear Unit

GMM - Gaussian Mixture Model

GUW - Guided Ultrasonic Wave

h-NLPCA - hierarchy Non-Linear Principal Component Analysis 

ICA - Independent Component Analysis

KLDEPM - Kullback-Leibler Divergence with Empirical Probability

Measure 

L - Longitudinal

LDI - Leak Detection Index

LSTC - Location Specific Temperature Compensation

xx



MFL - Magnetic Flux Leakage

MHL - Mahalanobis distance method

MPM - Maximum Point Method

MSE - Mean Square Error

NDT - Non-Destructive Test

NLPCA - Non-Linear Principal Component Analysis

OBS - Optimal Baseline Selection

OD - Orthogonal Distance

OFDR - Optical Frequency Domain Reflectometry

OFS - Optical Fibre Sensor

PAC - Parametric Assurance Criterion

PC - Principal Components

PCA - Principal Component Analysis

PFA - Probability of False Alarm

PIG - Pipeline Inspection Gauge

POD - Probability of Detection

ReLU - Rectified Linear Unit

RFBN - Radial Basis Function Network

RMSProp - Root Mean Squared Propagation

ROC - Receiver Operating Characteristic

ROPCA - Robust Principal Component Analysis

RRC - Residual Reliability Criterion

SeLU - Scaled exponential Linear Unit

SHM - Structural Health Monitoring

SNR - Signal to Noise Ratio

SOM - Self Organizing Map

SVD - Singular Value Decomposition

T - Torsional

Tanh - Hyperbolic Tangent Function

USA - United States of America

USD - United States Dollar

VBDD - Vibration Based Damage Detection

xxi



LIST OF SYMBOLS

0 - dilational scalar potential

A - bulk wave velocities

V 2 - Laplace operator

t - threshold

a  - standard deviation

a - circumferential length

- mixing matrix 

Amp - Amplitude

b, b - bias

P - exponential decay rate

c - sample number

D - damaged features

e - smoothing out constant

f (  ) - activation function of hidden layer

/ c - centre frequency of incident signal

g (  ) - activation function at final layer

( ) - non-quadratic function

h - hidden representation

H  - healthy features

H - equivoluminal vector potential

k  - wave number

L, I - length, location

i. - eigenvalues of covariance matrix

m  - circumferential mode order

mt - moving averages of gradient

m - estimates of moving averages of gradient

n  - axial mode order

n c - number of cycles

n - learning rate

xxii



p - density

P - Orthogonality

Pref  i ec ted. - peak amplitude of reflected excitation signal

r  - reflection ratio

r  - radius

r  - reconstructed reflection ratio

t - time

|i - mean

i  - Lame constants

- eigenvectors 

v  - standardized Gaussian variable

vt - moving averages of squared gradient

v - estimates moving averages of squared gradient

v - displacement vector

V - principal components matrix

W, W  - weight matrices

W  - inverse matrix of mixing matrix A

x, X  - input vector or matrix

x, X ', X  - reconstructed output

X  - corresponding columns mean

xc i ean - clean database input vector

xno ise - noisy database input vector

y  - Gaussian variable of zero mean and unit variance

Z - orthogonal projection

xxiii



CHAPTER 1

INTRODUCTION

1.1 Research background

In recent years, much attention has been paid to pipeline condition 

monitoring assessments in petrochemical plants. Petrochemical pipeline accidents in 

the USA have damaged nearly USD 7 billion in property, killed over 500 people, and 

injured over four thousand since 1986 (Groeger V., 2012). According to Jarvis and 

Goddard (2017), 70 per cent of mechanical integrity failures in petrochemical 

industries are due to pipeline damage. Each failure suffered losses for a sum of at 

least USD 50 million. In August 2012, the Chevron U.S.A. Inc. Refinery in 

Richmond, California (“the Chevron Richmond Refinery”) experienced a 

catastrophic pipe rupture due to which high-temperature light gas oil spilt and 

vaporised into a large, opaque vapour cloud that engulfed 19 employees (U.S. 

Chemical Safety Board, 2015). Approximately 15,000 people from surrounding 

communities sought medical treatment at nearby medical facilities for ailments 

including breathing problems, chest pain, shortness of breath, sore throats and 

headaches. On December 3, 2014, the Co-op Refinery Complex in northeast Regina, 

Canada, experienced an explosion and fire caused by a pipe rupture at freezing 

temperature. No one was injured in the blast but an estimated USD 77 million in 

damage to buildings and equipment was recorded (Ellis, 2014).

Safety assurance of pipelines requires the monitoring of damage occurrences 

and condition changes. Since a structure experiences continuous loading and 

vibrations, a pipeline's material properties inevitably experience various modes of 

deterioration, such as corrosion, cracks, and creep, thereby affecting the structure's 

integrity. Moreover, exposure to extreme operating conditions and ageing can reduce 

the reliability and efficiency of a structure, thus threatening the safety of workers and
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reducing output quality. Therefore, it is vital to develop an efficient monitoring 

system that can detect the occurrence and intensity of damage in pipelines.

The pipeline condition monitoring non-destructive test (NDT) is classified 

into local and global methods. Examples of local NDTs suggested by the American 

Petroleum Institute 570 (API 570, 2009) include penetration, radiography, eddy 

current and conventional ultrasonic tests. The efficiency of these methods has been 

hindered due to the size, complexity, accessibility and required prior knowledge of 

the damage information of pipeline systems in petrochemical industries. Meanwhile, 

global NDTs can be used to monitor the condition of longer coverage pipelines 

without prior knowledge of the damage. Examples of global NDT applications in 

pipeline condition monitoring include smart pigging systems, optical fibre sensing 

and guided waves. However, a smart pigging system and optical fibre sensing 

method require pre-consideration during the pipeline design, where specially 

designed pipeline for pig entry and reconstruction of fibre optic network system is 

required, which limits the application of these methods in existing and ageing 

petrochemical plants.

The guided ultrasonic wave (GUW) method is a popular way to monitor 

pipeline integrity. A GUW is an elastic wave that travels through solid materials. The 

wave propagation characteristics depend on the structure's material properties and 

boundary conditions (Yeung & Ng, 2019). A GUW setup can consist of a spatial 

array of sensors transmitting and receiving elastic waves through the medium during 

pipeline damage detection. The elastic waves that travel through the pipeline are 

reflected when the thickness of the material changes, thus indicating damage to the 

pipeline system. The advantages of GUWs include their ability to travel long 

distances at high speeds without substantial attenuation (El Mountassir et al., 2020; 

Yu et al., 2021); examine entire cross-sections, even for coated and insulated 

structure inspections (Matineh Eybpoosh et al., 2017); and detect minor defects using 

nonlinear ultrasonic waves (Marcantonio et al., 2019).
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However, GUW monitoring systems often produce false damage detections 

due to environmental and operational conditions (EOCs). These include uncertainties 

due to variations in external factors such as temperature, humidity, air pressure, and 

random noise (El Mountassir et al., 2020). Among these factors, temperature 

differences and random noise have the most significant effect on a GUW system’s 

performance in detecting damage in pipelines (Sohn, 2007). Temperature changes 

can cause GUW signals to stretch or compress, thus distorting the wave's shape (Y. 

Lu & Michaels, 2005). Meanwhile, random noise commonly caused by instrumental, 

environmental and procedural effects can generate undesirable noise in a GUW 

system. The existence of these EOCs jeopardises the accuracy of pipeline condition 

monitoring results, especially when the damage severity is minor. Hence, a small 

reflected wave could be submerged in the errors produced by EOCs. In conventional 

GUW monitoring, a single sensor of the portable rings can inspect more than 50m of 

a pipe from a single location. However, this coverage comes at a cost of lower 

sensitivity, where the detection performance for a damage size of 5% CSAL or less is 

often affected by various EOCs, indicating a need for more extensive research (Chua 

& Cawley, 2020; Dobson & Cawley, 2016).

Researchers have suggested several methods to counter the effect of EOCs, 

ranging from traditional statistical methods (Mazzeranghi & Vangi, 1999) to more 

intelligent approaches such as physics-based (Deng & Murakawa, 2006; Roy et al., 

2014) and data-driven-based methods (Clarke et al., 2010; Anurag Dhutti, Tumin, et 

al., 2019; Matineh Eybpoosh et al., 2016; H. Liu et al., 2019; Y. Lu & Michaels, 

2005). These methods, which can be defined as manual identification techniques, 

suffer from several limitations. For example, traditional statistical methods require an 

assumption of the error with a specific distribution, which is rarely possible in 

practice.

Physics-based approaches face difficulties in modelling complex dynamic 

systems based on the actual working environment, and they face limitations when 

being updated via data measured online (Zhao et al., 2019). Data-driven-based 

methods require a set of baseline data with pre-defined conditions for further 

baseline matching or baseline stretching to compensate for the effects of EOCs.
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These manually designed features require a significant amount of human expertise, 

especially in complex domain cases.

Moreover, conventional data-driven-based methods require expert 

supervision during several stages because they need to be trained step by step. The 

joining process for different optimised modules can reduce the final efficiency of the 

whole system (Zhao et al., 2019). Due to these limitations, advanced methods that 

counter the effects of EOCs, such as the statistical learning-based method have been 

adopted recently (Ahn et al., 2019; Hoang & Tran, 2019).

Models based on advanced statistical learning methods can be divided into 

supervised, semi-supervised, and unsupervised learning models, which perform 

pattern recognition, clustering and information extraction procedures (Ahn et al., 

2019; Hoang & Tran, 2019; H. Liu et al., 2019). For example, Eybpoosh et al. (2016) 

applied a supervised method based on sparsity discriminant to discriminate damaged 

operating pipelines from healthy ones under various EOCs. This method forces the 

optimisation algorithm to assign zero coefficients to the undamaged case with a 

limited range of EOCs in the training stage. This method exhibited satisfactory 

damage identification performance when tested using an algorithm with a wide range 

of EOCs and damage sizes.

In other work, Modarres et al. (2018) employed a supervised convolution 

neural network (CNN) to identify damage patterns regardless of image scale, 

location and noise. This neural network is a robust classification technique, even in 

noisy environments. Bouzenad et al. (2019) proposed a semi-supervised K-means 

algorithm as a damage detection threshold to trigger the system when a defect 

becomes critical. Labelled data are fed into this algorithm to identify the threshold 

distance at the beginning of the monitoring stage. In contrast, unlabelled data are fed 

into the algorithm during the monitoring stage. The system is triggered when a new 

cluster forms as the damage threshold is exceeded.
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However, supervised and semi-supervised learning methods suffer the 

drawback of requiring a preliminary analysis of the damaged pipe state as input 

labels, which are generally not available in practice (Entezami & Shariatmadar, 

2018). These labels, which define the various operating, environmental and damage 

conditions, are impractical, as this information requires expensive and time­

consuming manual inspection and labelling processes for each observation (Bull et 

al., 2020).

Therefore, several researchers have employed unsupervised learning methods 

that work with unlabelled data to describe the complex underlying distributions of 

structural health monitoring (SHM) data. Unsupervised learning decomposition 

methods, such as singular value decomposition (SVD) (C. Liu et al., 2015b), 

independent component analysis (ICA) (Dobson & Cawley, 2016) and principal 

component analysis (PCA) (M-A Torres-Arredondo et al., 2016), have been adopted 

as additional optimisation methods for damage detection. These optimisation 

methods eliminate EOC effects while retaining the signals’ critical damage features. 

PCA and ICA decompose signals into multiple components, maximising the 

statistical independence only between the components; SVD enforces the 

orthonormal properties of components and the weight matrices (C. Liu et al., 2017). 

In the comparison study done by Liu et al. (2017), both SVD and ICA can achieve 

great performance (with AUC value greater than 0.9) with only 32 number of 

measurements recorded within 60 °C variations, for a severity as low as 0.5% CSAL 

using permanent GUW sensors. On the other hand, using the similar GUW database, 

the widely used baseline subtraction method (BSM) remained low performance (with 

AUC value lower than 0.9) throughout the variations in EOCs and increasing number 

of measurements. Overall, both ICA and SVD outperforms BSM, with ICA generally 

the better of the two in damage detection under variations of EOCs.

Several unsupervised decomposition learning applications have detected 

damage in pipes under different EOCs (Dobson & Cawley, 2016; El Mountassir et 

al., 2020; Matineh Eybpoosh et al., 2017; C. Liu et al., 2015b; M-A Torres- 

Arredondo et al., 2016). However, these methods retained only low-dimensional 

features and overlooked the crucial small damage features. Liu et al. (2017)

5



demonstrated that when the ICA and SVD decomposition methods were applied, the 

damage-related components could not be identified by the directionality. 

Furthermore, some amplitudes of other components are more significant than the 

damage-related components. Unfortunately, the damage-related components can be 

identified only by their monotonicity, which requires more damage-related 

components with similar damage cases.

This study was conducted to search for an efficient unsupervised learning 

technique that can effectively retain sufficient damage-related features under 

different EOC effects. This was done by proposing two new unsupervised learning 

methods that improve damage detectability using GUW-based pipeline condition 

monitoring. The first method involved an RRC method based on reliability theory 

that is sensitive to small damage. The RRC damage index calculates the deviations 

between baseline (undamaged) and monitored (damaged) signals following an 

unsupervised learning method. An unsupervised learning method is defined as a 

relationship learning algorithm that requires features of only one known condition, 

which is the undamaged condition (Entezami & Shariatmadar, 2018). As the baseline 

signals are obtained under near-similar EOCs, the deviations measured from the 

RRC index can be used as an essential damage feature representation to perform 

damage localisation and severity estimations.

The second method involved a new approach of an unsupervised learning- 

based method using a denoising autoencoder (DAE). This method can overcome the 

limitations of supervised and semi-supervised neural network models by considering 

EOCs without labelling the data. Moreover, a DAE can mitigate the limitations faced 

by previous unsupervised learning methods by providing clean signals that reduce 

the relatively large amplitudes of non-damage-related components. The clean input is 

the pre-selected data with the least false damage detection due to EOCs at the 

reference temperature. False damage detection due to EOCs occurs when 

unnecessary peaks that exceed the damage threshold are detected.
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Traditionally, autoencoders (AEs) compress the original high-dimensional 

input vector to produce a robust low-dimensional feature vector at the bottleneck 

layer (Pathirage et al., 2018). The nonlinear dimension reduction process preserves 

important damage features under ambient EOCs. Thus, in this case, EOCs are 

perhaps better described as another form of latent variables compared to when 

traditional decomposition methods such as PCA, ICA, and SVD are used (Y. Wang 

et al., 2016). DAEs, a variant of AEs, learn to reconstruct targeted values by giving 

noise-corrupted and noise-free input, which leads to the discovery of robust damage 

features (Shang et al., 2021). The DAE investigated in this study reduces false 

damage detections caused by EOCs by reconstructing the signals based on clean 

signals. It exploits fully connected layers as hidden layers whose parameters grow 

exponentially with the number of layers and are gradually obsolete due to 

considerable computational costs (Shang et al., 2021).

In this study, the performance and effectiveness of the proposed methods are 

demonstrated through numerical and experimental models of a straight pipeline. 

Detailed parametric studies on the effect of different levels of EOCs and different 

levels of damage are conducted. In addition, comparisons of the proposed methods 

with other feature extraction methods are also presented to show the efficiency of the 

proposed methods.

1.2 Problem statement

GUW damage detection has been widely used for pipeline condition 

monitoring. However, the quality of signals generated on-site is often corrupted by 

EOC effects, such as temperature variations and random noise. Such EOC effects in 

GUW-based pipeline condition monitoring have been extensively researched. 

Temperature variation changes a material’s stiffness, thereby shifting the time phase 

and amplitude of GUW signals (Gorgin et al., 2020; Y. Lu & Michaels, 2005). 

Meanwhile, random noise forms micro-grass-like noise, which generates unwanted 

peaks and submerges small damage signals (J. Chen et al., 1999; M. S. Salmanpour 

et al., 2018). As a result, conventional GUW systems are insensitive to damage sizes
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of smaller than 5% cross-sectional area loss (CSAL) under EOC effects (Dobson & 

Cawley, 2016).

For small damage detection, the damage sensitivity of a GUW system can be 

improved by minimising the effects of EOCs. Physics-based, data-driven and 

advanced statistical learning-based EOC compensation techniques have been 

developed to tackle these EOC effects. According to the literature, advanced 

statistical learning-based techniques have emerged as promising techniques that 

apply sophisticated algorithms to find meaningful trends within a database of given 

GUW signals. Unsupervised learning stands out among various advanced statistical 

learning-based techniques as a valuable EOC compensation strategy owing to its 

advantage of requiring no labelling effort and its capability to deal with a huge 

amount of high-dimensional data. However, the unsupervised learning method has 

not sufficiently addressed the problem of EOCs in GUW applications. Current 

unsupervised learning methods such as SVD, PCA, and ICA do not store sufficient 

damage features, limiting their application in higher levels of damage detection such 

as damage localisation and severity estimation (Ozdagli & Koutsoukos, 2019).

Due to these limitations of the existing method, an RRC-based method is 

proposed in this study to establish the relationship between healthy and damaged 

features using an unsupervised learning method. The RRC features store most 

damage information by calculating the differences between the healthy and damaged 

GUW databases under similar EOCs. However, the application of RRC causes 

additional errors due to the differences in EOC effects between healthy and damaged 

features when the experimental model is used. This leads to unwanted peaks that 

create false damage detection and submerge small damage features.

A DAE-based method is proposed to deal with significant EOC effects using 

an experimental database. DAE, another variant of the AE neural network, performs 

EOC compensation by forcing the model to reconstruct noisy GUW signals by 

giving noise-free GUW signals. The DAE investigated in this study reduces false 

damage detections caused by EOCs by reconstructing the signals based on clean 

signals. It exploits fully connected layers as hidden layers whose parameters grow
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exponentially with the number of layers and are gradually obsolete due to 

considerable computational costs (Shang et al., 2021).

1.3 Research objectives

The objectives of the present research are as follows:

(a) To develop a residual reliability criterion (RRC)-based guided ultrasonic

wave (GUW) pipeline condition monitoring method considering the effects of 

environmental and operational conditions (EOCs).

(b) To develop an unsupervised learning denoising autoencoder (DAE)-based

GUW pipeline condition monitoring method.

(c) To investigate the performance of the proposed method to consider EOCs, the

presence of damage, damage locations, and damage severities for pipeline 

condition monitoring.

(d) To validate the proposed GUW pipeline condition monitoring method using

experimental data.

1.4 Research significance

EOC effects, such as temperature variation and random noise, remain 

significant drawbacks of GUW application in pipeline condition monitoring. These 

effects corrupt the quality of the signal received at the receiver by generating 

unwanted peaks. Thus, this study proposes two methods to deal with the EOC 

problem in GUW damage detection. Using a numerical model, the first method 

(based on RRC theory) magnified the deviations between the healthy and damaged 

model and showed good sensitivity to small damage features. However, when the 

level of EOCs varies substantially between the healthy and damaged case, additional 

errors are generated when using the experimental model, thus degrading the damage 

detection performance. Therefore, a second method based on DAE neural network 

was also proposed. With the proper selection of DAE architecture and training
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database parameters, the DAE can provide precise information regarding damage 

location and severity despite an increase in EOCs. The improvement in small damage 

detection under EOCs is the most significant feature of the proposed DAE method.

1.5 Research scope

This research focused on using GUW data with RRC and DAE strategies to 

improve damage detection performance under EOCs, particularly temperature 

variation and random noise. The scope of this research includes the following areas:

i. The literature is reviewed to investigate the damage detection methods that

have been used in pipeline condition monitoring and the EOC compensation

techniques that have been used in SHM applications.

ii. GUW damage detection is performed using a straight pipeline structure with

damage features characterised by cross-sectional area loss only, excluding the 

considerations of other pipeline features such as the presence of pipe joints, 

pipe bends, valves and different supports and pipeline materials.

iii. Torsional T(0,1) mode is adopted as the mode of GUW excitation. The

signals near the excitation source and end boundary are ignored in numerical 

and experimental models for simplicity.

iv. The applicability and practicality of the proposed method are demonstrated 

by a numerical and experimental model of straight pipeline structures. Due to 

the large scope of the research, fieldwork was not conducted.
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1.6 Thesis structure

The structure of this thesis is as follows:

Chapter 1 presents the research background, problem statements, research 

objectives, research significance, research scope and thesis structure.

Chapter 2 presents a comprehensive review of various pipeline condition 

monitoring methods. The pros and cons of each method are discussed. The selected 

GUW is then described, and the issues with the GUW method (particularly due to 

EOCs effects) are emphasised. Several approaches to compensate for EOC effects in 

GUW-based pipeline condition monitoring are discussed.

Chapter 3 consists of the detailed research methodology for GUW, RRC and 

DAE, along with detailed descriptions of the numerical analyses and experimental 

verifications adopted in this study.

Chapter 4 demonstrates the application of the RRC-based method in damage 

detection. The parametric study was conducted to study the sensitivity of the 

proposed RRC under the influence of damage location, damage severities, 

temperature variations and random noise. Additionally, the RRC method is compared 

with other feature extraction methods. At the end of this chapter, an experimental 

verification of RRC is conducted, and the results are presented.

Chapter 5 demonstrates the application of the DAE-based method in damage 

detection. The selection of the architecture parameters of the DAE and the training 

database parameters are performed, and the selected parameters are presented. The 

trained DAE is then adopted to perform sensitivity studies under the influence of 

damage location, damage severities, temperature variations, and random noise. 

Furthermore, this method’s damage detection performance is compared with that of 

other feature extraction methods using a numerical model.
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Chapter 6 verifies the applicability of the proposed DAE method using an 

experimental model. Additionally, this method’s small damage detection 

performance is compared with that of other feature extraction methods.

Chapter 7 provides the conclusions and findings of this study. 

Recommendations for future work are also presented.
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