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ABSTRACT 

Steel wire ropes are designed with different configurations and arrangements 

to suit various applications. In most manufacturing industries, fatigue test is often 

conducted to assess the reliability of new wire ropes. The fatigue test is time-consuming 

and requires a large collection of stress-life data to suit various wire rope designs and stress 

ratios. Furthermore, during the reliability test, the sample wire rope is subjected to 

tension-tension fatigue loading and this would induce fatigue damage by fluctuating 

stresses in the wire material. The current fatigue life prediction method does not take into 

account the combined bulk fatigue due to tensile stress fluctuations and fretting wear due 

to relative sliding and contact stress between the stranded wires, which is the dominant 

damage mechanism in a wire rope. Therefore, the objective of this study is to develop a 

validated methodology for fatigue life prediction of newly-designed steel wire ropes that 

incorporates both bulk fatigue and fretting wear conditions. The interaction between wires 

is explicitly addressed through the friction and fretting wear damage coefficient. Drawn, 

bare (non-galvanized), as-received high carbon steel wires and steel rods (undrawn) 

are used as the reference materials. A series of metallurgical and mechanical testing 

including microstructure analysis, tensile, interrupted fatigue, hardness and sliding 

wear tests are conducted on the reference materials to obtain the required properties of 

the wire materials as the model parameters. The model is then integrated into the user 

material subroutine (UMAT) of the Abaqus finite element analysis (FEA) software to 

predict the fretting wear and fatigue life of the drawn steel wires. The load cycle block 

method with each block representing 10,000 cycles is employed for computational 

efficiency. The associated coefficient of fretting wear damage, 𝑐𝑓 was determined 

through calibration with reported experimental data and it was found that when 𝑐𝑓 = 

0.10, the simulated wear depth showed a good agreement with the measured data. The 

criteria for material removal due to wear and fatigue fracture were established. The 

material is removed due to wear once the element reaches the terminal value of 𝐷𝑐 = 

0.90. A new fatigue fracture criterion is proposed based on the total dissipated energy, 

𝐸𝑑 when the wear depth is 1/3 of the initial wire diameter. Once the energy reaches 

the critical value of 𝐸𝑑𝑐 = 32-34 J, fatigue fracture is expected to occur. The number 

of cycles associated with 𝐸𝑑𝑐 is taken as the fatigue life of the wire. The calibrated 

fretting wear damage model was then examined for the reliability of 1×7 steel wire 

rope samples and the simulated fatigue life showed a good agreement with the 

measured data by Kiswire. This indicates that the fretting wear damage model is able 

to quantify the fatigue response of the newly-designed steel wire ropes with various 

configurations prior to the production of samples for the reliability test. In addition, 

the design, size, arrangement, and configurations of the wire rope could be improved 

at an earlier stage based on the reliability requirements. This will increase production 

productivity and significantly reduce the cost involved in the production and disposal 

of the steel wire rope that did not achieve the reliability criteria. 
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ABSTRAK 

Tali dawai keluli direka bentuk dengan konfigurasi dan susunan yang berbeza 

untuk disesuaikan dengan pelbagai aplikasi. Dalam kebanyakan industri pembuatan, 

ujian lesu sering dijalankan untuk menilai kebolehharapan tali dawai yang baru 

dihasilkan. Ujian lesu memakan masa dan memerlukan sejumlah besar data tegasan-

hayat untuk disesuaikan dengan pelbagai reka bentuk tali dawai dan nisbah tegasan. 

Tambahan pula, semasa ujian kebolehharapan, sampel tali dawai terdedah kepada 

bebanan lesu tegangan-tegangan dan ini akan menyebabkan kerosakan lesu melalui 

tegasan turun naik di dalam dawai. Kaedah ramalan hayat lesu semasa tidak 

mengambil kira gabungan lesu pukal akibat turun naik tegasan tegangan dan 

penggeselsuaian haus akibat gelangsar relatif dan tegasan sentuhan antara dawai, yang 

merupakan mekanisme kerosakan yang dominan dalam sesebuah tali dawai. Oleh itu, 

objektif kajian ini adalah untuk membangunkan metodologi yang disahkan untuk 

ramalan hayat lesu bagi tali dawai keluli baharu yang menggabungkan kedua-dua lesu 

pukal dan keadaan penggeselsuaian haus. Interaksi antara dawai diambil kira secara 

eksplisit melalui pekali geseran dan pekali penggeselsuaian haus. Dawai keluli tinggi 

karbon tidak bersadur yang melalui proses penarikan dan rod keluli (tidak melalui 

proses penarikan) digunakan sebagai bahan rujukan. Siri-siri ujian metalurgi dan 

mekanikal yang merangkumi analisis struktur mikro, tegasan, lesu, kekerasan dan 

ujian gelangsar haus dijalankan ke atas bahan rujukan untuk mendapatkan sifat-sifat 

bahan dawai yang diperlukan untuk digunakan sebagai parameter-parameter model. 

Model itu kemudiannya disepadukan ke dalam subrutin bahan pengguna (UMAT) 

melalui analisis unsur terhingga perisian Abaqus untuk meramalkan penggeselsuaian 

haus dan hayat lesu dawai keluli. Kaedah blok kitaran beban dengan setiap blok 

mewakili 10,000 kitaran digunakan untuk kecekapan pengiraan. Pekali kerosakan 

penggeselsuaian haus, 𝑐𝑓 ditentukan melalui penentukuran dengan data yang diperoleh 

melalui eksperimen yang telah diterbitkan dan didapati bahawa apabila 𝑐𝑓 = 0.10, 

kedalaman permukaan yang haus menunjukkan persetujuan yang baik di antara data 

simulasi dan data eksperimen. Kriteria penyingkiran bahan akibat haus dan lesu patah 

telah ditetapkan. Bahan dikira haus sebaik sahaja mana-mana elemen mencapai nilai 

kritikal 𝐷𝑐 = 0.90. Kriteria patah lesu yang baharu dicadangkan berdasarkan jumlah 

tenaga terlesap, 𝐸𝑑 apabila kedalaman haus ialah 1/3 daripada diameter asal dawai. 

Sebaik sahaja tenaga mencapai nilai kritikal 𝐸𝑑𝑐 = 32-34 J, dawai dijangka akan patah 

akibat lesu. Bilangan kitaran pada waktu 𝐸𝑑𝑐 tercapai diambil sebagai hayat lesu 

dawai. Model kerosakan penggeselsuaian haus yang ditentukur kemudiannya 

diperiksa untuk kebolehharapan sampel tali dawai keluli 1×7 dan hayat lesu yang 

disimulasikan menunjukkan persetujuan yang baik dengan data yang diukur oleh 

Kiswire. Ini menunjukkan bahawa model kerosakan penggeselsuaian haus dapat 

mengukur tindak balas lesu tali dawai keluli yang baharu dengan pelbagai konfigurasi 

sebelum pengeluaran sampel untuk ujian kebolehharapan. Disamping itu, reka bentuk, 

saiz, susunan dan konfigurasi tali dawai boleh ditambahbaik pada peringkat awal 

berdasarkan keperluan kebolehharapan. Ini akan meningkatkan produktiviti 

pengeluaran dan mengurangkan kos yang terlibat dalam pengeluaran dan pelupusan 

tali dawai keluli yang tidak mencapai kriteria kebolehharapan. 
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INTRODUCTION 

1.1 Research Background 

Steel wire ropes are often used for hoisting and hauling operations with typical 

applications ranging from the hoisting cables for cranes, elevators and mines, to the 

mooring lines for floating production storage and offloading (FPSO) and offshore 

installations as depicted in Figure 1.1. These applications, as well as the combined 

environmental effects of corrosions, induce complex loading on the wire rope.  

 

 

Figure 1.1 Typical applications of wire rope (a) elevator rope, (b) ship crane and 

(c) mooring system for FPSO [1–3] 

This study focused on the preproduction activities and requirements of the 

newly-designed steel wire ropes which include the selections of steel and multi-step 

(a) (b) 

(c) 



 

2 

drawing processes to produce the required size of drawn steel wires. The winding 

process formed the desired pre-production wire ropes. These wire rope samples are 

then tensile tested to determine the breaking load and fatigue tested to establish their 

reliability. However, there are cases where the desired properties or reliability level 

are not achieved, thus the whole process needs to be repeated.  

Therefore, this study provides a means to predict whether the wire rope 

samples would pass the reliability test, before actually sending them for the test. To do 

this, a computationally driven approach to optimize the properties of the drawn wire 

material prior to winding or testing the preproduction wire rope samples is proposed. 

The drawn steel wires are tensile tested for properties to complete the constitutive 

models of the material. Mechanism-based damage model that incorporated the fretting 

wear phenomenon is developed. Once validated, this model could be implemented in 

finite element (FE) analysis to predict the reliability of the wire ropes. The schematic 

diagram of the proposed preproduction activities of steel wire ropes is shown in Figure 

1.2. 

 

Figure 1.2 Preproduction activities of steel wire ropes 
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The task is to describe the fretting wear damage model for life prediction of 

pre-production steel wire ropes during the reliability (fatigue) test. Different tests are 

conducted to establish the required properties, model parameters and the criterion for 

fracture using the drawn steel wires. The model is calibrated through a coefficient to 

match the measured data. The validated model is then examined using a case study on 

1×7 steel wire ropes. 

During the reliability test, the sample wire rope is subjected to tension-tension 

fatigue loading and this would induce fatigue damage by fluctuating stresses in the 

wire material. In addition, the winding of the wires induces contact stress and relative 

sliding between the wires. In the proposed fretting wear damage model, the bulk 

fatigue damage by stress fluctuation is addressed through the degradation of the 

residual Young’s modulus, 𝐸(𝑁) while the contact stress and relative sliding that will 

cause fretting wear is adopted through the range of shear stress, ∆𝜏 experience by the 

wire. In high cycle fatigue, the fretting wear is more dominant in causing damage to 

the interwire, thus it is of outmost importance to take into account the contact between 

the wires in the reliability prediction.  

1.2 Statement of the Research Problem 

In most manufacturing industries, fatigue test is often conducted to assess the 

reliability of the produced wire ropes which utilized the S-N curve to estimate the fatigue 

life of the material. The effect of mean stress on fatigue life is taken into consideration by 

incorporating the Goodman, Gerber, Morrow and/or Soderberg diagrams. These 

conventional methods used a phenomenological approach that is based on the mean load 

over the net section area of the wire ropes, without taking into consideration the failure of 

individual wires in the strand under fatigue stress. Furthermore, establishing and 

interpolating constant life diagram data using these methods is a tedious task, since they 

are time-consuming and require a large collection of stress-life data to suit various wire 

rope designs and stress ratios. To date, the computational approach to predicting the 

fatigue life of materials had been vastly studied. Most of the approaches predicted the 

fatigue life by calculating the cycles to cause crack initiation and propagation until the 
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final fracture. However, this is not the case for the fretting wear phenomenon because 

instead of producing cracks, the surface material is scraped until a sudden fatigue fracture 

occur. In addition, to the best of the author’s knowledge, the current fatigue life prediction 

methods do not take into account the combined bulk fatigue due to tensile stress 

fluctuations and fretting wear due to relative sliding and contact stress between the 

stranded wires, which is the dominant damage mechanism in a wire rope. Therefore, in 

this study, a damage-based model that incorporates both bulk fatigue and fretting wear is 

proposed. The interaction between wires is explicitly addressed through the friction and 

fretting wear damage coefficient. New criteria for material removal and fatigue fracture 

are also implied. The validated model is able to predict the fatigue life of the newly-

designed wire ropes with various configurations and assess their reliability requirements 

for design improvement before mass production. 

1.3 Objectives  

The aim of the research is to develop a validated methodology for fatigue life 

prediction of the newly-designed steel wire ropes under fretting wear condition. 

Specific objectives are: 

(a) To establish residual modulus and fatigue life model of drawn steel wires 

(b) To develop a validated damage-based fretting wear model for stranded wires 

in a wire rope 

(c) To quantify the mechanics of the fretting wear damage phenomenon and 

reliability in the steel wire rope 

 

1.4 Scope of Study 

The present study covers the following scope: 
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1. Drawn, bare (non-galvanized), as-received high carbon steel wires and high 

carbon steel rods (undrawn) are used as the reference materials. 

2. A series of metallurgical studies which involved microstructure analysis, 

chemical composition analysis, surface roughness test and fractographic 

analysis are conducted to establish the required properties. 

3. Tensile test, interrupted fatigue test, hardness test and sliding wear test are 

conducted as part of the mechanical testing to obtain the mechanical properties 

of the drawn steel wires and the model parameters. 

4. The proposed fretting wear damage model is adapted and adopted from the 

stress-based damage mechanics model to simulate fretting wear of Hertzian 

line contact. 

5. FE simulations are performed using the commercial SIMULIA Abaqus (ver. 

2017) software, linked with Microsoft Visual Studio (ver. 2012) and Intel 

Parallel Studio XE (ver. 2016). The simulation covers: 

(a) Determination of the model surface constant, 𝑐 

(b) Determination of material removal due to wear and fatigue fracture 

criteria 

(c) Validation of fretting wear damage model for cross-wire contact 

(d) Fatigue life prediction of cross-wire contact 

(e) Quantification of the mechanics of fretting wear damage in 1×7 steel 

wire rope 

(f) Fatigue life prediction of 1×7 steel wire rope under fretting wear 

condition. 
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1.5 Significance of Study  

A new methodology that is employing a validated FE simulation for fatigue 

life prediction of steel wire ropes will be obtained upon finishing this study. An 

accurate material model for fretting wear mechanisms can be utilized to take into 

account the inter-wires interaction in the wire ropes. Ultimately, the model should be 

able to quantify the fatigue response of the newly-designed steel wire ropes with 

various configurations prior to the production of samples for the reliability test. Other 

than that, when failure is dominated by fretting wear, the design, size, arrangement and 

configurations of the wire rope could be improved at an earlier stage based on the 

reliability requirements. This will increase the production productivity and 

significantly reduce the cost involve in the production and disposal of the steel wire 

rope that did not achieve the reliability criteria.  

1.6 Thesis Layout 

This thesis consists of a total of six chapters. Chapter 1 presents the background 

and the requirement of the research. The issues with the current reliability test of wire 

ropes are briefly described. Additionally, the objectives, scope limitations and 

significance of the research are also defined.  

A detailed definition of wire rope that involves materials, geometry, 

manufacturing process and applications is given in Chapter 2. Other than that, the three 

main fatigue failure mechanisms in wire rope which are corrosion fatigue, fretting 

fatigue and fretting wear are clarified. The criteria to discard wire rope in service are 

also discussed. This chapter also outlines the theoretical reviews of various wear 

models to provide a base to develop the wear damage model. Finally, the chapter 

provides comprehensive reviews of previous work done on the prediction of fatigue 

life of wire rope and fretting wear. 

In Chapter 3, the research methodology is described. It includes the details of 

the research material model, experimental setup and FE simulation models. The input 
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required for FE simulation is clarified in this chapter. The aspects of the FE simulation 

models are described in depth with a complete flowchart of the User Material (UMAT) 

subroutine to predict the fatigue life of steel wires in contact. 

Chapter 4 and 5 present the results and discussion corresponding to Objective 

1, 2 and 3, respectively. The tribological and fretting wear damage models are 

comprehensively discussed in Chapter 4. The theoretical review and the derivation of 

the models are shown in this chapter. Other than that, the materials characterization of 

the wire including chemical composition, microstructure and surface roughness were 

presented. Besides, the material and mechanical properties that are used as inputs in 

the wear damage model are thoroughly reported in this chapter. This is followed by 

the calibration of the tribological and fretting wear damage model and the 

determination of the wear-induced material removal criterion. Along the way, the 

result of the FE simulation for two wires in contact is discussed in depth. The 

validation of the calibrated tribological and fretting wear damage model is also 

presented. At the end of this chapter, the determination of critical dissipated energy 

which is the fatigue fracture criterion is reported.  

The calibrated and validated fretting wear damage model is then utilized for 

the reliability prediction of the 1×7 steel wire rope system, which is presented in 

Chapter 5. Finally, this thesis is ended with the general conclusion of the study and 

some recommendations for future works, which are outlined in chapter 6. 
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