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ABSTRACT 

Biogas is a potential alternative energy source with low environmental impact. 

However, the practical applications of biogas are relatively limited due to the 

existence of carbon dioxide (CO2) which acts as a diluent that decreases the calorific 

value and the burning rate of biogas. Nitrous oxide (N2O) is known to be a powerful 

oxidizing agent for propulsion applications which can enhance the combustion rate 

of biogas, however, there is a lack of studies that investigate the fundamental 

characteristics of biogas-N2O combustion. The aim of this study is to gain insight 

into the fundamental combustion characteristics of biogas-N2O mixtures in terms of 

laminar burning velocity and flame stability. In the present work, spherically 

expanding flames following central ignition at constant volume combustion chamber 

(CVCC) were employed to investigate laminar burning velocity (LBV), 

hydrodynamic instability, and diffusive-thermal instability of biogas-N2O mixtures at 

wide equivalence ratio;, from 0.6 to 1.4, at 303K and atmospheric pressure. Two 

mechanisms were used in CHEMKIN-PRO 17 software in order to estimate the 

predicted combustion characteristics of biogas-N2O mixtures. The results indicate 

that the decline in LBVs was prominent in the fuel-rich mixtures than in the fuel-lean 

mixtures with CO2 dilution. It is found that the influence of curvature on the flame 

front is weakened at the fuel lean-to-stoichiometric mixture due to the decrease in the 

flame thickness. Therefore, flame instability tends to increase at the lean-to-

stoichiometric region. The increase in CO2 in biogas by 10%, increases the Lewis 

number (Le) value by 3.6% to 4.6%. The diffusive-thermal instability was dominant 

for all biogas-N2O mixtures, as Le was less than unity throughout the entire 

equivalence ratio range. The thermal reaction of N2O decomposition is the most 

significant reaction in biogas-N2O combustion at lean mixtures of  = 0.6 and  = 

0.8. The LBVs of biogas-N2O mixture revealed a considerable enhancement at the 

lean equivalence ratio of 0.8 compared to the other biogas-air mixtures with H2 

addition. The effect of nitrous oxide as an oxidizer on biogas detonation 

characteristics is studied numerically using Chemical Equilibrium Applications 

(CEA) and compared with other oxidizers. Mixtures with N2O oxidant revealed 32% 

and 16% higher detonation pressure and detonation Mach number, respectively, at  

= 0.6, compared to that of mixtures with pure oxygen oxidant. Overall, employing 

N2O oxidant has enhanced the fundamental combustion characteristics of biogas 

significantly, which may lead to the use of biogas as a clean fuel in commercial 

applications that demand high combustion rates, such as power generation and 

aerospace.  
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ABSTRAK 

Biogas merupakan sumber tenaga alternatif yang berpotensi dengan kesan alam 

sekitar yang rendah. Walau bagaimanapun, aplikasi praktikal biogas agak terhad 

kerana kewujudan karbon dioksida (CO2) yang bertindak sebagai bahan pencair yang 

mengurangkan nilai kalori dan kadar pembakaran biogas. Nitrous oksida (N2O) 

dikenali sebagai agen pengoksidaan yang kuat untuk aplikasi pendorong yang boleh 

meningkatkan kadar pembakaran biogas. Walau bagaimanapun, terdapat kekurangan 

kajian yang menyelidit ciri asas pembakaran biogas-N2O. Matlamat kajian ini adalah 

untuk mendapatkan gambaran tentang ciri-ciri pembakaran asas campuran biogas-

N2O dari segi halaju pembakaran laminar dan kestabilan nyalaan. Dalam kajian ini, 

nyalaan api yang mengembang secara sfera berikutan penyalaan secara berpusat 

dalam kebuk pembakaran isipadu malar (CVCC) digunakan untuk menyiasat halaju 

pembakaran laminar (LBV), ketidakstabilan hidrodinamik, dan ketidakstabilan terma 

resapan untuk campuran biogas-N2O pada julat nisbah kesetaraan;, dari 0.6 

sehingga 1.4 pada suhu 303K dan tekanan atmosfera. Dua mekanisme telah 

digunakan dalam perisian CHEMKIN-PRO 17 untuk menganggarkan ciri-ciri 

pembakaran yang diramalkan bagi campuran biogas-N2O. Keputusan menunjukkan 

bahawa penurunan dalam LBV adalah lebih ketara dalam campuran tinggi bahan api 

berbanding dalam campuran rendah bahan api dengan kehadiran pencairan CO2. 

Pengaruh lengkungan nyalaan pada bahagian hadapan nyalaan api didapati menjadi 

lemah pada campuran rendah bahan api ke campuran stoikiometri disebabkan oleh 

penurunan ketebalan nyalaan. Oleh itu, ketidakstabilan nyalaan api cenderung 

meningkat di kawasan campuran rendah bahan api dan stoikiometri. Peningkatan 

kandungan CO2 dalam biogas sebanyak 10%, meningkatkan nilai nombor Lewis (Le) 

sebanyak 3.6% hingga 4.6%. Ketidakstabilan terma resapan adalah dominan untuk 

semua campuran biogas-N2O, kerana Le adalah kurang daripada satu sepanjang julat 

nisbah kesetaraan keseluruhan. Tindak balas terma penguraian N2O adalah tindak 

balas yang paling ketara dalam pembakaran biogas-N2O pada campuran rendah 

bahan api = 0.6 dan  = 0.8. LBV bagi campuran biogas-N2O menunjukkan 

peningkatan yang ketara pada nisbah kesetaraan rendah bahan api 0.8 berbanding 

campuran biogas-udara lain dengan penambahan H2. Kesan nitrus oksida sebagai 

pengoksida ke atas ciri letupan biogas dikaji secara berangka menggunakan Aplikasi 

Keseimbangan Kimia (CEA) dan dibandingkan dengan pengoksida jenis lain. 

Campuran dengan pengoksida N2O menunjukkan tekanan letupan dan nombor Mach 

letupan masing-masing 32% dan 16% lebih tinggi, pada  = 0.6, berbanding dengan 

campuran dengan pengoksidaan oksigen tulen. Secara keseluruhan, menggunakan 

pengoksida N2O telah meningkatkan ciri-ciri pembakaran asas biogas dengan ketara, 

yang boleh membawa kepada penggunaan biogas sebagai bahan api bersih dalam 

aplikasi komersial yang memerlukan kadar pembakaran yang tinggi, seperti 

penjanaan kuasa dan aeroangkasa. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Increasing global energy demand and emissions regulation has stimulated the 

research for clean and sustainable alternative fuels. While fossil fuels’ combustion 

significantly increases greenhouse emission effects by emitting carbon dioxide, fossil 

fuel is still the dominant energy source for most industrial and agricultural activities. 

The increased power demand, depleting fossil fuel resources, and growing 

environmental pollution have led the world to explore seriously other alternative 

sources of energy. The basic concept of alternative energy relates to issues of 

sustainability, renewability, and pollution reduction (El Hawary et al., 2016; Basha, 

Gopal and Jebaraj, 2009; Hosseini and Wahid, 2013). 

Biogas is a clean source of energy that has great potential as a conventional 

fuel alternative. The fuel has a minimal environmental effect and has been used in 

many combustion applications. In contrast to the other natural resources including 

coal and fossil fuels, biogas is renewable and highly efficacious for reducing 

greenhouse gas emissions (Migiro, 2010). Biogas can be obtained by a process 

identified as the (anaerobic digestion) process. The anaerobic digestion method 

basically is a breakdown of organic matter with the absence of oxygen. Therefore, 

biogas originally comes from converting organic waste to a useful resource of 

energy.  (Mihic, 2004; Xin et al., 2013). 

Biogas is a mixture of different gases consisting mainly of methane (CH4) 

with some carbon dioxide (CO2), carbon monoxide (CO) and traces of other gases. 

The contaminants and composition of biogas are varying depending on the 

composition of the feed stock as shown in Table.1.1. The proportion of CH4 and CO2 

are the major features which affect the biogas’ calorific value. 
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Table 1.1 Biogas composition and qualities (Chen et al., 2015) 

 

 

Nitrous oxide (N2O) is often referred as the laughing gas owing to the 

euphoric influences during the breathing. It has been utilized in a range of 

combustion applications such as rocket engines, and internal combustion engines. 

N2O generates higher O2 content than air, allowing the engine to consume more fuel, 

providing higher intense combustion, which is desired particularly in automobile 

racing. Since N2O provides several advantages over the other oxidizers, including 

being less toxic, stable at room temperature, convenient to stock, and generally safe 

to carry on aircraft, it may be utilized as a suitable oxidant in the rockets. Several 

recent investigations have been interested in studying N2O since it is appropriate as 

monopropellant and bipropellant rocket system. Due to its unique properties, nitrous 

oxide can be used for a wide variety of space applications(Shen et al., 2019). 

When N2O decomposition occurs, it unleashes both oxygen and nitrogen 

molecules. This breakdown results in an O2 content of 36.36 %. On the other hand, 

just 21% of O2 is obtained from air, with the remainder containing N2 and some other 

inert gases, providing a12% lower O2 content compared to N2O. The additional 
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content of oxygen aids combustion by reacting with hydrocarbon fuels to release 

CO2 and H2O, in addition to heat, which yields the combustion products to expand 

and generate higher pressure. Due to the exothermic decomposition of N2O 

combustion into oxygen and nitrogen gas, it generates a greater temperature in the 

combustion engine which further enhances engine performance and efficiency, this is 

directly linked to the temperature variation in the unburned and the burned gases 

generated in the combustion chamber. 

Combustion is the process of extracting energy from the chemical bonds of 

fuel molecules. Fuel molecules are oxidized by chemical interaction with oxygen 

during combustion, generating heat and creating specific combustion products. 

However, understanding the combustion properties of biogas is required to optimize 

biogas utilization while minimizing undesired combustion products (Moran and 

Shapiro, 2006) 

The focus of this study is to investigate the laminar premixed biogas-nitrous 

oxide combustion. Such kind of combustion allows the fuel to be burned at 

stoichiometric and non-stoichiometric equivalence ratios. Under the lean condition, 

lower temperature combustion can be reached. Laminar burning velocity (LBV), 

Markstein length, flame stability, and flammability limit are among the properties 

frequently used to describe the combustion behavior of fuels. These fundamental 

characteristics are unique to each fuel since they are affected to some extent by fuel 

properties. 

The rate at which the combustible mixture propagates into the reaction zone 

is known as laminar burning velocity. LBV has a significant effect on the 

development of pressure, particularly in a closed system. Further details and full 

description of laminar burning velocity and combustion characteristics will be 

discussed in chapter 2. 

Markstein length is a characteristic that describes the impact of changes in 

flame structure owing to stretching to the speed of the flame. Markstein length is 

affected by the chemical and transport properties of the reacting mixtures. It can be 
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used as an indicator of the impact of the stretch of the flame on the laminar burning 

velocity (Li et al., 2014). 

1.2  Problem Statement 

Although there are considerable studies on utilizing biogas as an alternative 

source of fuel, the low calorific value of biogas owing to the existence of CO2 has 

restricted the usage of biogas in some commercial industries that demand high 

combustion rates, such as aerospace and propulsion industries. 

Carbon dioxide concentration may have an adverse influence on biogas 

combustion by reducing the calorific value, flame velocity, and flame stability. CO2 

could absorb a portion of the heat from combustion, that reducing the temperature of 

the combustion and the flame propagation (Hinton and Stone, 2014).  

Laminar burning velocity determination is essential to evaluate the impact of 

CO2 proportion on biogas combustion. (Fischer and Jiang, 2015) revealed that CO2 

could have a negative influence on biogas reactivity particularly at percentages more 

than 50% due to the significant drop in CO mass fraction, which would have an 

impact on certain important reactions in the combustion process. Therefore, a 

subsequent reduction in biogas LBV is expected with higher CO2 percentage.  

Nitrous oxide is a potent oxidant that is widely used in rocket propulsion 

systems. It can produce a substantial amount of energy due to the positive enthalpy 

of formation of N2O decomposition reaction which can release 82 kJ/mol (Lin et al., 

2018). Thus, as revealed in equations 1.2 and 1.3, N2O can be a further potent 

oxidizer than pure oxygen, where the combustion of one mol CH4 with N2O 

produces about 30% more energy than of 1 mol CH4 with O2 at stoichiometric 

conditions (Lin et al., 2018). 

N2O→1/2O2+N2, ΔH^∘C = −82kJ/mol                                                                  (1.1) 

CH4+4N2O→ CO2+2H2O+4N2, ΔH^∘C = −1219kJ/mol                                       (1.2) 
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CH4+2O2→CO2+2H2O, ΔH^∘C = −890kJ/mol                                                     (1.3) 

 

Therefore, N2O is usually utilized to boost the engine performance of race 

vehicles as well as used as an oxidant for rocket propulsion (Lin et al., 2018). Thus, 

N2O can be used as a potential oxidizer to improve the biogas’ combustion rate.  

Yet, studies on the combustion characteristics of Biogas-N2O are still scarce, 

which represents a research gap. Therefore, this study aimed at gaining insight into 

the fundamental combustion characteristics of biogas-N2O mixtures in terms of 

laminar burning velocity and flame stability at various ranges of equivalence ratios, 

in addition to conducting a comparison between Biogas-N2O and Biogas with 

hydrogen addition in terms of laminar burning velocity. 

 

1.3 Objectives of the Study 

The objectives of this study could be summarized as follows: 

1. To characterize experimentally and numerically the flame propagation 

characteristics of biogas-nitrous oxide mixture (with varying CH4/CO2 

content) at initial conditions of 1 atm. and 303K in terms of laminar burning 

velocity.  

2. To estimate the impact of hydrodynamic, diffusive-thermal instability and 

CO2 variation on biogas-N2O combustion. 

3. To establish a comparison of combustion characteristics of biogas-N2O, 

biogas-air, as well as biogas-air with hydrogen addition in terms of laminar 

burning velocity. 
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4. To determine the ideal-detonation characteristics of biogas-N2O, biogas-air, 

and biogas-oxygen in terms of detonation pressure, detonation velocity, 

detonation temperature, and Mach number. 

 

1.4 Scope of the Study 

The scope of the current study covers: 

(a) Experimental study of the spherical premixed laminar burning velocity of 

biogas and nitrous oxide mixture with varying CO2 percentage for two 

different mixtures of biogas (75%CH4/25%CO2)-N2O and 

(65%CH4/35%CO2)-N2O using outwardly propagating spherical flame 

approach at different equivalence ratios ( =0.6 – 1.4) using constant volume 

combustion chamber (CVCC). 

(b) Numerical study by using ANSYS CHEMKIN-PRO ver.17 to determine the 

predicted laminar burning velocity of biogas-N2O mixtures and to compare 

with the experimental findings. 

(c) Investigation of the effect of hydrodynamic and diffusive-thermal instability 

of biogas-N2O combustion at different equivalence ratios ( =0.6 – 1.4) using 

constant volume combustion chamber (CVCC).  

(d) Comparison between the experimental results of the premixed laminar 

burning velocity of biogas-N2O and H2 addition biogas with different 

percentages of H2 addition. 

 

1.5 Significance of the Study 

The main purpose of this thesis is to investigate the flame propagation 

characteristics and the flame stability of biogas-N2O as a potential mixture to 

enhance the combustion characteristics of biogas. This study can aid to increase the 

biogas’ performance in some industries which demand high rate of combustion such 
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as propulsion and detonation industries. According to the World Biogas Association, 

biogas can reduce global climate change emissions by 20%, and it can become a 

global sustainable industry worth $1.3 trillion. This study aimed to open up new 

prospects for widening the biogas utilization in aerospace and propulsion 

applications due to the various advantages of nitrous oxide as an oxidizer which can 

be stored as a liquid phase (~745kg/m 3) with a vapor pressure of ~52 bar at 20 °C 

and it can decompose at adiabatic decomposition temperature of about 1640°C 

(Zakirov, Richardson, et al., 2001; Zakirov, Sweeting, et al., 2001; World Biogas 

Association, 2021). 
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