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ABSTRACT 

The applications of the membrane in various types and shapes are crucial and 

vital especially in gas separation applications. The membrane fabrication process is 

complex and very delicate, but most of the existing fabrications are not fully automated 

which focusing only on one parameter at a time without considering the correlation 

between parameters involved. Therefore, a fully automated system needs to be 

developed with a fast and reliable fabrication procedure for determining the 

performance of hollow fiber membrane (HFM). The main objective of this work was 

to develop an automated fabrication that can be used to produce a highly producible 

membrane and to identify the optimum properties of HFMs for specific applications. 

This research was started with development of automatic fabrication machine using 

programmable logic controller and related sensors and actuators. Next, a mathematical 

model was developed and used in optimization procedure to predict the properties of 

HFM for gas separation application. A full factorial model was developed using a 

systematic experimental strategy based on the design of experiments that emphasized 

on tuning and simultaneous optimization of fabrication parameters of polysulfone 

membrane under various controllable and uncontrollable conditions. The tuning 

parameters for HFM fabrication were dope solution flowrate, bore fluid flowrate, air 

gap distance and collection speed, while CO2 flux with CO2/CH4 selectivity and 

diameter of membrane are the optimized membrane properties. The cause and effect 

relationship between all parameters were observed to obtain an optimum gas 

separation performance based on scanning electron microscope and gas permeation 

test. Scanning electron microscope and gas permeation test were also utilized in 

determining the performance. Finally, experimental verification was conducted to seal 

the reliability of the model by comparing values predicted by the model and real 

experimental data for new random spinning condition. Moreover, an acceptable 

physical morphology and structure revealed by observing and discussing the scanning 

electron microscope. The mathematical model was able to predict the performance of 

manufactured membranes based on fabrication parameters during the fabrication of 

hollow fiber membranes accurately with less than 5 percent error and it shows that this 

model is well defined and described the phenomena within range reliability for 

production. As a result, optimum fabrication properties of 1.27 ml/min dope flowrate, 

0.33 ml/min bore flowrate, 9.1 m/min collection speed and 4 cm air gap were 

introduced to obtain 33 and 38.28 gallon per unit as selectivity and CO2 permeance by 

this study, respectively. A quality prediction model for HFM has successfully 

developed with 95% reliability for prediction of responses and 82.7% desirability of 

the performance for the indicated optimum point mentioned. This model allows 

membrane quality to be predicted before the fabrication stage thus prevents waste 

during fabrication. Additionally, variation of HFM (size and shape) can be designed 

and studied using this model. 
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ABSTRAK 

Aplikasi membran dalam pelbagai jenis dan bentuk adalah penting terutamanya 

dalam aplikasi pemisahan gas. Proses fabrikasi membran adalah kompleks dan sangat 

rumit, namun kebanyakan fabrikasi semasa tidak automatik sepenuhnya yang mana 

hanya menumpukan kepada satu parameter pada satu masa tanpa mengambil kira 

perkaitan antara parameter yang terlibat. Oleh itu, sebuah sistem automatik perlu 

dibangunkan dengan satu prosedur yang pantas dan boleh dipercayai untuk 

menentukan prestasi membran gentian berongga (HFM). Objektif utama kajian ini 

adalah untuk membangunkan satu sistem fabrikasi automatik yang boleh digunakan 

untuk menghasilkan membran yang sangat mudah dihasilkan dan mengenal pasti sifat 

optimum HFM untuk aplikasi tertentu. Penyelidikan ini bermula dengan pembangunan 

mesin fabrikasi automatik menggunakan pengawal logik pengaturcaraan dan penderia 

dan penggerak yang berkaitan. Seterusnya, model matematik telah dibangunkan dan 

digunakan dalam prosedur pengoptimuman untuk meramalkan sifat HFM untuk 

aplikasi pengasingan gas. Model faktorial penuh dibangunkan menggunakan strategi 

eksperimen sistematik berdasarkan reka bentuk eksperimen yang menekankan pada 

penalaan dan pengoptimuman serentak parameter fabrikasi membran polisulfon di 

bawah pelbagai keadaan yang boleh dikawal dan tidak terkawal. Parameter penalaan 

untuk fabrikasi HFM adalah kadar alir larutan dop, kadar alir bendalir gerek, jarak 

jurang udara dan kelajuan pengumpulan, manakala fluks CO2 dengan pemilihan 

CO2/CH4 dan diameter membran adalah sifat membran yang dioptimumkan.  

Hubungan sebab dan akibat antara semua parameter diperhatikan untuk mendapatkan 

prestasi pemisahan gas yang optimum berdasarkan pengimbasan mikroskop elektron 

dan ujian resapan gas. Pengimbasan mikroskop elektron dan ujian resapan gas juga 

digunakan dalam menentukan prestasi. Akhirnya, pengesahan eksperimen telah 

dijalankan untuk menentukan kebolehpercayaan model dengan membandingkan nilai 

yang diramalkan oleh model dan data eksperimen sebenar untuk keadaan putaran 

rawak baharu. Selain itu, morfologi dan struktur fizikal yang boleh diterima dijelaskan 

dengan memerhati dan membincangkan mikroskop elektron pengimbasan. Model 

matematik dapat meramal prestasi membran yang dihasilkan berdasarkan parameter 

fabrikasi semasa fabrikasi membran gentian berongga dengan tepat dengan ralat 

kurang daripada 5 peratus dan ia menujukkan bahawa model ini ditakrifkan dengan 

baik dan menerangkan fenomena dalam julat kebolehpercayaan untuk pengeluaran. 

Hasilnya, sifat fabrikasi optimum kadar alir dop 1.27ml/min, kadar alir gerek 0.33 

ml/min, kelajuan pengumpulan 9.1 m/min, dan jurang udara 4 cm telah diperkenalkan 

untuk mendapatkan 33 dan 38.28 gelen seunit, masing-masing sebagai pemilihan dan 

ketelapan CO2. Model ramalan kualiti untuk HFM telah berjaya dibangunkan dengan 

kebolehpercayaan 95% untuk ramalan tindak balas dan 82.7% kebolehinginan prestasi 

untuk titik optimum yang dinyatakan. Model ini membolehkan kualiti membran 

diramal sebelum peringkat fabrikasi sekali gus mengelakkan pembaziran semasa 

fabrikasi. Selain itu, variasi HFM (saiz dan bahan) boleh direka bentuk dan dikaji 

menggunakan model ini. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The word membrane was derived from the Latin word "membrana," which 

means "skin" or "thin film." Membrane is a term used in science to describe a 

semipermeable solid or fluid layer that acts as a selective barrier or a boundary between 

two phases or mixtures. In other terms, a membrane is a selective barrier to the passage 

of molecules and ionic species in the liquid and vapor phases. When one component 

of a combination goes quicker across the membrane than the other, separation occurs. 

Nowadays, the application of the membrane in various types and shapes is 

crucial and viral. In fact, new modern life is no longer possible without consideration 

of role membrane in domestic applications, industries, and even medical usages. All 

these have not been achieved if a pioneer discovery has not achieved during the 18th 

century. A French priest who was a physicist named Jean-Antoine Nollet (1700-1770) 

has noticed a recent named phenomenon as osmosis. His passion in 1747 was followed 

by a description for permeation of water through a semipermeable membrane (Sanders 

et al., 2013). 

Membranes are used in a wide range of fields in science and industry, including 

gas separation applications for acid gas removal from natural gas, oxygen, and nitrogen 

production from air, and ethylene separation from emissions in polyethylene 

production units), environmental optimization, seawater desalination, hemodialysis, 

filtration process for ground and underground waters, filtration of industrial wastes 

water, and even health care industry. A membrane is a semi-permeable barrier that 

separates fluid mixtures by modulating the rate of movement of specific components 

from the mixture through the membrane, as stated previously. Membrane technology 

has been around since the 1960s. The importance and application of membrane in gas 
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separation have been noticed earlier. Furthermore, gas permeation using membrane 

was conducted by J.K. Mitchell back in 1831 (Qian et al., 2022; Wisniak, 2013).  

Membrane-based separation techniques have several advantages over 

traditional separation methods, including energy savings due to the lack of phase shifts 

known as low energy consumption (Waqas et al., 2020). Membrane separation does 

not need any high energy-consuming processes such as heating or changing phase 

processes; therefore, less energy is consumed in this process. (Tsai et al., 2019). More 

membrane separations do not require any chemical reaction, thus it leads to simplicity. 

(Kurniawan et al., 2021; Yuliwati et al., 2011) The ability to separate temperature-

sensitive solutions is another key feature of membrane separations because the 

separation is being performed at room temperature (Huang et al., 2021). The physical 

and physicochemical features of membranes are very changeable and can be tailored 

to meet specific requirements (Goh et al., 2015; Turken et al., 2019). Removal of a 

wide spectrum of pollutants from particles, from viruses to ionic species (Ashrafizadeh 

& Khorasani, 2010; Tsai et al., 2008; Wei et al., 2013). Cost-effectiveness, high 

selectivity, simplicity of scaling up, and capacity to combine with other processes are 

all known advantages at the moment (Feng et al., 2013; Hewawasam et al., 2018). Low 

time consumption, ease of operation, a simple and efficient device, and a small 

footprint (Haase et al., 2017; Zhu et al., 2017) are some of the other advantages of 

membrane separation that have been studied extensively by academics and continue 

to pique their interest.  

One of the most important advancements in the membrane separation process 

is the analysis and investigation of the physicochemical parameters and performances 

of a membrane. To achieve the best separation results, the membrane must have 

physical qualities that allow for optimal interactions with the solution in the process 

stream. Microscopic observation is the most effective method of investigating physical 

qualities. Surface morphology, the minimum attachment of solutes, and scattered 

components to the membrane surface are all factors that influence membrane fouling. 
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All mentioned properties are highly dependent on the conditions and stability 

features of the fabrication of membrane. In other words, to obtain high quality and 

stable membrane, a reliable machine is needed to produce the membrane, which was 

emphasized by all researchers since the discovery of membrane. 

In modern categories for membrane science, there are two types: flat sheet and 

hollow fibers. Both types have their application based on the properties in various 

fields, science, and industries along with their advantages and their disadvantages. 

Until the first synthetic nitrocellulose membranes were successfully fabricated in 

laboratories in the middle of the 1900s, researchers usually interacted with biological 

membranes made of animal parts such as bladders of pigs, cattle, or fish, and sausage 

casings derived from animal gut, and plant origin such as onion. (Baker, 2012; Dai et 

al., 2016) 

Membrane-based gas separation technology, in general, has numerous 

advantages over traditional unit operation systems. Because capital expenditure may 

be dependent on flowrate or throughput, membrane-based gas separation systems have 

proven to be affordable and significantly less expensive to operate. Because the system 

is modular and compact, it requires little room and can occupy a larger area. The 

equipment is lightweight and easy to transport and install due to its modularity, making 

it ideal for isolated places such as offshore installations. The operational system is way 

less complicated. Because there is no phase change and no movable or rotary in the 

system, it requires minimum oversight and maintenance. Furthermore, it consumes 

very little energy, as it does not require the use of electricity or combustion fuels. 

Except for membrane contactor systems, the system does not need any solvents or 

solid sorbents. Last but not least, the system has been demonstrated to be safe, with 

minimum environmental impact due to the absence of hazardous or toxic wastes. Air 

separation and carbon dioxide removal are two important challenges in membrane-

based gas separation. 

Cryogenically liquefying ambient air is a common method of obtaining widely 

used commodity gases like nitrogen, oxygen, and argon. A typical nitrogen separation 

from air by membrane process uses an 8-10 atm feed that passes through a series of 
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hollow-fiber modules. The feed is routed via a membrane that preferably allows 

oxygen to flow through. Purified nitrogen in the residual can have a purity of up to 

99.5 percent (Wallace et al., 2006). The biggest disadvantage of nitrogen enrichment 

from air, on the other hand, is the high expense of compressor operations to achieve 

improved nitrogen purity, pressurize the air stream. If the membrane employed has a 

better selectivity, the compressor's size can be lowered. The implementation of a 

membrane system will significantly reduce the operational costs of compression. In 

other words, increasing the selectivity of the membrane and improving its quality and 

performance by controlling the production parameters can achieve a higher rate of 

acceptance and application in low-cost demands.   

Carbon dioxide removal is required in a variety of industries, including pipeline 

grade natural gas production, enhanced oil recovery (EOR), methane retrieval from 

landfills and biogas, carbon dioxide recovery from the steam reforming process and 

flue gases. Most membrane scientists across the world are particularly interested in 

removing carbon dioxide in natural gas streams. Hydrogen sulfide and water are also 

impurities in natural gas resources, the elimination of carbon dioxide and hydrogen 

sulfide is the most important goal in natural gas processing. Carbon dioxide is very 

undesirable in most gas streams since it might severely damage pipelines in the contact 

with water, whereas hydrogen sulfide is also mortally deadly. Simultaneously, high-

value gas fuel can be reclaimed while gas impurities are reduced to the desired level. 

Raw natural gas is mostly made up of methane and is extracted from underground 

sources. Natural gas also contains higher hydrocarbons, or natural gas liquids (NGLs), 

which are referred to as "the heavies" in the natural gas processing industry. Ethane 

(C2H6), propane (C3H8), butane (C4H10), and natural gasoline are the most common 

heavier hydrocarbons. These gases have been shown to have a negative impact on 

membrane separation efficiency and membrane life span. Absorption processes, such 

as the BenfieldTM process (hot potassium carbonate solutions) and amine scrubbing; 

cryogenic processes; and adsorption processes, such as pressure swing adsorption 

(PSA), thermal swing adsorption, have all been used in the past to remove carbon 

dioxide from raw natural gas (TSA). These traditional unit processes used a lot of 

energy for gas processing, solvent regeneration, and absorbent material replacement, 

as well as transportation costs. The world's largest membrane unit, able to process 680 

MMscfd of gas, was deployed offshore Malaysia in March 2007. In comparison to 
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traditional separation systems, this installation provides for a significant cost, weight, 

and footprint savings (Zulhairun et al., 2015). 

Membrane separation methods have become one of the new technologies that 

have seen remarkable expansion over the last few decades. It has suffocated global 

attention, particularly in the field of filtration technologies. Determination of 

fabrication conditions such as polymer flowrate bore flowrate and other factors are the 

most significant approach to obtain higher quality and reliable hollow fiber membranes 

(HFMs). Various investigations have been conducted. Performance tests mostly study 

the permeance and selectivity of the membrane for different gases. For characterizing 

the structure and morphology of HFMs, the scanning electron microscope (SEM) is 

the most extensively used method. Many techniques are available for the fabrication 

of the hollow fiber membrane, and also many types of analysis attempted with the 

previous researcher through the history form trial and error approaches, random test to 

analytical and simulation. 

Recently, automation and increasing the accuracy of the production is the key 

plan and only solution in most industries. Conducting this can be followed by less 

human error and consistency in the performance and quality of the product. It is not 

hidden from anyone that automated fabrication and production line have increased the 

productivity and decreasing cost of the production significantly in the last decades and 

still improving.  

In general, creating a high-performance membrane entail using trial-and-error 

approaches to evaluate models, which include determining the best material 

composition, selecting essential operating factors, and ensuring optimum fiber 

spinning conditions. Besides these facts, a reliable fabrication system, which is able to 

control and monitor the parameters during the production of hollow fiber membranes, 

is necessary, which can be so effective and a great help to approaching higher 

performances in membranes. Biogas, which contains 60 to 70 percent CH4 and 30 to 

40 percent CO2, is considered an essential renewable power supply due to the finite 

nature of fossil fuels. Nonetheless, in order to improve the energy grade, minimize 

pipeline corrosion, and decrease climate change, the unavoidable impurities of biogas, 
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particularly known as CO2, should be eliminated (Gong et al., 2020).  Despite the fact 

that a lot of work has been done in the past, evaluating membrane performance for a 

specific application is still very challenging, and there are so many factors that should 

be considered during membrane fabrication and a great deal of assumptions can be 

assumed for this evaluation. 

The membrane performance evaluation in this study was focused on the 

fabrication conditions of the membrane during the process of manufacturing in order 

to gain higher performances and optimized product in industry-grade and 

reproducibility of the same properties in membrane fabrication. Several factors involve 

in this property as mentioned influence the performance and properties of the 

membrane. In this study, an experiment was conducted to find effective factors and 

develop an instrumentation and control system to obtain highly reproducible 

membrane fiber with consistent properties for gas separation usage. 

1.2 Problem Statement 

As reported in most previous researches on membrane manufacturing systems, 

these usually involve the use of one process factor at a time in the experimental 

method, for example, the effects of factors are investigated individually, which is not 

only time-consuming, but also expensive, and does not guarantee the characteristics of 

the manufactured product. Furthermore, a fully automated system is highly beneficial 

in order to control the hollow fiber spinning manufacturing process conditions and to 

be sure the parameters are always as same as before in order to have a reliable test 

condition and easier to compare the results. Therefore, having an instrumented and 

automated system is so crucial. 

The development of a fast and reliable procedure for determining the 

performance and attributes of a hollow fiber membrane has become critical in recent 

years. The production of HFM material is extremely delicate because the end result 

must be of satisfactory value and suitable for usage in the potential uses. As a result, a 

thorough investigation should be carried out to discover the elements that are 
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particularly connected to the properties of HFM during membrane manufacturing, 

such as dope flowrate, bore flowrate, air gap distance, coagulant bath temperature, and 

take-up speed. In addition, inequity of hollow fiber physical properties is a factor that 

should be considered as well. Changes in membrane physical structure (e.g., outer 

diameter) during spinning are other factors that make complexity, and they should be 

monitored and finely controlled. Many dependent parameters co-exist during the 

fabrication of the hollow fiber membrane, and the effects of each parameter are not 

totally understood until now. Controlling these parameters may result in membranes 

with the appropriate performance and physical features, hence knowing the key 

mechanisms in the development of hollow fiber membranes is of tremendous 

importance. In the absence of automation and quality control, the challenges of HFM 

manufacturing are restrictedly centered on the membrane performance and reliability 

of the system (Park & Kim, 2008). The modeling of the membrane is another era, 

which is attempted by various methods in order to predict the performance before the 

production of membrane. Achieving a simple model able to show effects of all 

parameters simultaneously on performances of membrane to make an easier 

illustration for depended parameters. These parameters are monitored and checked 

throughout the manufacturing process, allowing us to develop a variety of hollow fiber 

membranes with varying features for various applications with the appropriate 

attributes and performance. 

Moreover, in any kind of manufacturing and fabrication system, there is a basic 

need to have very high reproducibility. It is the other factor that should be considered 

deeply and accurately to fulfill the aim of the system to achieve a high-performance 

membrane at any time and in any conditions. 

To develop and build a membrane for a particular application, a method of 

learning by making tries and learning from the outcomes, trial-and-error, and error 

process, has traditionally been used. Membrane manufacture and membrane testing or 

characterization are the two processes in the iteration. The first step is to prepare a 

membrane sample. The second step examines and interprets membrane performance 

using theoretical, mathematical, equation, and experimental data. After the 

performance parameters have been determined, the actual and target membrane 
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performances are compared. Typically, the results differ greatly from one another. As 

a result, a fresh membrane sample with unique properties must be created and 

examined. These two stages are repeated until the membrane characteristics and 

performance goals are met. Because large quantities of experimental data are 

necessary, such a technique is time demanding. Furthermore, due to material waste, it 

is very expensive. 

One of the goals of this research is to reduce the number of iterations involved 

in membrane production for a specific application. Theoretically, the newly developed 

system is able to control the manufacturing parameters to reach the desired properties 

such as outer diameter, permeance, selectivity, jet ratio. Therefore, the number of 

iterations will be reduced considerably. The proposed fabrication system will be 

developed with the ability to produce the membrane with the same specifications with 

desired quality.  

In this studied approach of membrane design and fabrication, an automated 

system is designed for controlling the parameters during fabrication to gain a 

satisfactory level in performance and significant characteristics of the hollow fiber 

membrane. The manufacturing of the membrane is refined such that parameters of the 

membrane fabrication keep stable and remain constant reliably. A mathematical model 

and the predicted membrane parameters are used to predict membrane performance, 

in this study: gas flux and selectivity. Design of experiment (DOE) have been 

successfully used for solving a wide variety of problems; Hence, an iterative procedure 

is not required in the design of the membranes for specific application. A full factorial 

DOE also shows all relations between the parameters. For each input parameter, a 

model is obtained for its effect of performance and an optimized condition for the 

specific membrane is achieved.  The advantages of this approach over the traditional 

approach are as the following: Ideally, only one iteration is required; less cost and 

waste on material; and, the design of an optimum membrane for a specific application 

can be achieved in considerably less time. To summarize, the aim is to develop a high-

precision spinning machine for producing highly reproducible membranes with 

constant desirable properties.  
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1.3 Research Objectives 

The overall purpose of this study is to model the fabrication of hollow fiber 

membrane and to design and develop an automated fabrication system for producing 

highly reproducible membrane, which will be covered by the following objectives: 

(1) To design and develop a precision automated hollow fiber spinning machine 

equipped with a controller and an instrumentation system integrated with 

sensors and actuators for producing polymeric membrane.  

(2) To optimize spinning parameters for non-porous membrane for gas separating 

applications by tuning its parameters based on the design of experiments 

(DOE) methodology to determine the suitable model and index for best 

performance based on the fabrication conditions. 

(3) To compare the performance of the optimized spinning parameters using the 

automated procedure as compared to literatures in terms of performance 

improvement and reduction of extensive iteration needed to achieve the result 

more efficiently. 

1.4 Research Scopes and Limitations  

Any study must be constrained by certain sufficiently defined scopes in order 

to fulfill its aims. This study is also not an exception to the rule. The scopes 1 to 3, 4 

to 9 and scopes 10 and 11 are here to fulfil objectives 1 to 3 respectively. The following 

are this study's scopes and limitations: 

(1) Programmable logic controller and sensors which are temperature, humidity, 

pressures and flow rate only are integrated within the testing. 

(2) Designing and developing power and signal conditioning boxes for HFM 

manufacturing according to Advanced Membrane Technology Research 
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Center (AMTEC) needs base on the available and existed manual machine to 

be improved.  

(3) Designing and developing a fabrication system integrated with sensors and 

actuators for the manufacturing process. 

(4) This research conducted only using polymer dope solution comprised of 

polysulfone (PSF) Udel P3500, N,N-dimethylacetamide (DMAc), 

tetrahydrofuran (THF), and ethanol with weight percentages of 30%, 35%, 

30%, and 5%, respectively. Fabrication process was only using dry-wet 

spinning methods.  

(5) During the fabrication process, the effective parameters on mechanical 

properties such as (x1) flow rate of dope and (x2) bore fluid composition, (x3) 

spinning drum speed and (x4) air gap distance are changed manually using the 

automated system between 1< x1 <2 ml/min, 0.33< x2 <0.67 ml/min, 9.1< x3 

<11.7 m/min and 1< x4 <4 cm respectively. Other parameters are assumed to 

be constant.  

(6) Applying the pure gas flux test, to evaluate the performance of the membranes 

for CO2/CH4 separation. 

(7) This work is focused on available membrane performance factors which are 

selectivity, permeance and diameters.  

(8) The model of system is developed using the full factorial method of design of 

experiment (DOE) to estimate the properties of HFM  

(9) Optimization of the dry-jet wet spinning process parameters by varying the air 

gap distance, force convection flow rate, dope extrusion rate, and the take-up 

speed for the fabrication of hollow fiber membranes using DOE 

(10) Model verified only using the experimental tests and validated by comparing 

with benchmark of previous literatures.  

(11) Analysis, verifying properties of the produced membrane using scanning 

electronic microscope (SEM) to determine the defects to verify the outcome. 
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1.5 Significance and Novelty of the Research 

The high performance for permeance and selectivity of the membrane are the 

most crucial factors of the membrane properties. Without an accurate shape, 

processing other properties of the membrane is useless; therefore, this study is focused 

on measuring and controlling this factor, which can be the first step of the production 

of a high-performance membrane. Studying the characteristics and performance of 

HFM will provide useful clues and insights for designing and developing a 

revolutionary automated manufacturing system with the goal of increasing the 

system's productivity, efficiency, and quality of HFM production. The suggested 

system's mechatronic design and development will unavoidably necessitate the 

comprehensive integration of numerous mechanisms, sensors, actuators, 

electrical/electronic circuitries, and controller inclusive programable logic controller 

(PLC)-based system with a user-friendly interface. The systematic method for study 

and optimization of the performance and process also is beneficial due to making the 

process simpler to understand for researchers and giving them ability to manipulate 

the condition, as they desired to reach what they are looking for. A correlation between 

the two techniques has never been established or ascertained in literature to the best of 

the author’s knowledge. In addition, the performance of membrane will be rigorously 

studied via DOE. In summary, the study aims to achieve the high-precision spinning 

machine in producing highly reproducible membranes that can satisfy desirable 

properties and a method to making index and simple model for any type of membrane. 

In simple words, it has been tried to find an easier way and a methodology to 

index and find the performances and characteristics of HFM with fewer iterations and 

more systematically. Meanwhile, an instrumented hollow fiber fabrications system 

able to spin all possible variances of other types of membranes will be designed and 

manufactured for further researchers. 

Although many studies have been conducted in the manufacturing and 

production of membrane, but there is a lack of comprehensive study by using a 

systematic method in order to optimize its operating process, and there is still a gap 

that can be filled more and deeply. Meanwhile, the unavailability of an automated 
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control system for producing hollow fiber membranes with more accuracy to gain 

higher performances on membranes and the ability to set the parameters accurately 

and reliable is caused to study more in this field. 

The following questions remain about membrane manufacturing innovation: 

(1) Can manufacturing limitations lead to development and change in membrane 

performance? 

(2) What are the potential performance improvements possible with 

manufacturing innovation? 

(3) Is it able to implement other manufacturing technique from one field and apply 

it into manufacturer membranes systems to achieve better performances? 

(4) Is it reevaluating how to make membrane structures by developing fabricating 

controls that are as of now inaccessible with regular conventional methods is 

possible? 

In other words, by consideration of widespread usages and applications of 

HFM in industries and progressively increase of the demand for them because of new 

modern technologies and global energy and resources concerns, having a study in such 

a way that helps to produce more reliable HFM using recent and automated techniques 

and modeled and predict the behavior of new combinations using a standard statistical 

method to achieve sustainability and reproducibility was the motivation for this study 

base on the literature. This type of approach was not commonly considered by other 

researchers to study the effect of chemical properties control, instrumentation, and 

statistical analysis simultaneously. 

This research has contributed greatly to the field of membrane in terms of 

building an automated manufacturing machine to be able to conduct the production 

easier and more accurate, and testing new statistical approach to obtain a mathematical 

model for prediction of the performance of membrane without conducting extra actual 

experiments tests. Last but not least, it evaluates the new optimization method for 

production of hollow fiber membranes. 
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1.6 Thesis Organization 

Original research and fresh perspectives on gas separation polysulfone 

membranes with an automated design fabrication technology are described in this 

thesis. This thesis is organized into five chapters. The first chapter covers the 

fundamentals of membrane separation processes. The background of membrane 

technology is discussed, as well as the issues that led to the current inquiry. The 

research objectives are determined, followed by a scope of work that has been written 

out in a systematic manner in order to fulfill the study's goal. 

In Chapter 2, which addresses the concept of gas separation membranes, basic 

concepts of gas transport across membranes, materials, structures, and manufacturing 

procedures, a related evaluation of the scientific literature review is offered. 

Chapter 3 presents the materials and experimental methods applied throughout 

the study. The designed automated fabrication system has been described. The 

methods for membrane fabrication in hollow fiber configurations are described, 

followed by relevant characterizations procedures and analysis assumptions.  

Chapter 4 focuses on optimizing hollow fiber manufacturing characteristics 

including effects of dry gap height, force convection flow rate, dope extrusion rate, 

and take-up speed on selectivity, permeance of gases, and diameter. This followed by 

finding the mathematical model and experimental confirmation test and comparison 

of the achieved results with previous findings. The goal of this research is to find the 

best spinning conditions for hollow fiber membranes that are defect-free and have 

appealing permeance and selectivity combinations. DOE is used to investigate the 

effects of varied spinning conditions on membrane performance and gas permeation 

behavior. 

Finally, Chapter 5 concludes the key findings from the present work as well as 

provides a list of recommendations for future research. 
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