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 The conventional induction motor rotor flux observer based on current 

model and voltage model are sensitive to parameter uncertainties. In this 

paper, a non-parametric induction motor rotor flux estimator based on feed-

forward neural network is proposed. This estimator is operating without 

motor parameters and therefore it is independent from parameter 

uncertainties. The model is trained using Levenberg-Marquardt algorithm 

offline. All the data collection, training and testing process are fully 

performed in MATLAB/Simulink environment. A forced iteration of 1,000-

epochs is imposed in the training process. There are overall 603,968 datasets 

are used in this modeling process. This four-input two-output neural network 

model is capable of providing rotor flux estimation for field-oriented control 

systems with 3.41e-9 mse and elapsed 28 minutes 49 seconds training time 

consumption. This proposed model is tested with reference speed step 

response and parameters uncertainties. The result indicates that the proposed 

estimator improves voltage model and current model rotor flux observers for 

parameters uncertainties. 
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1. INTRODUCTION 

One of the critical challenges in the implementation of induction motor (IM) field-oriented control 

(FOC) is the parameter uncertainties [1]–[11]. Generally, IM rotor flux can be calculated based on voltage 

model (VM) and current model (CM) [12]–[16]. In FOC, rotor flux observer (RFO) based on VM performs 

poorly at low-voltage low-frequency operation [14]–[16]. This issue can be solved by CM RFO. However, 

due to the integral operation in the CM, the RFO became vulnerable to IM parameters, stator current and 

rotor speed measurement uncertainties. This has brought to the development of higher order RFO with 

optimization algorithm integration to manage drifts effect. All of these involve more complicated equations 

and process which then brought up to issues particularly in the systems stability and computational  

latency [17], [18].  

With neural network (NN) system, rotor flux estimator (RFE) can be modeled without requiring 

detail knowledge of the IM mathematical model and all its drive systems [19]–[21]. The modeling process 

can be done using optimization algorithm performed by machine [22]–[24]. As for an RFO that generally 

developed based on state space model will requiring definitive mathematical model of the overall  

system [25].  

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1 shows previous IM NN RFE models based on literature review. Simoes and Bose [26] uses 

VM for the NN RFE training. The number of neurons in the 3-layers feed-forward NN (FFNN) is 

manipulated to fit the stator current and stator flux dq-stationary component to the rotor flux magnitude and 

the sine and cosine rotor flux angle as shown in Figure 1(a). The model can track both sine and cosine rotor 

flux angles particularly at the steady-state region and follows the rotor flux with apparent high frequency 

chattering along the trajectory. On the other hand, Venkadesan et al. [27] uses CM for the NN RFE training. 

Here, all the input and output signals are discretized. The number of neurons and number of layers are 

manipulated to fit dq-stationary components of the stator current and stator voltage for both past (k-1) and 

present (k) data to the dq-stationary components of the present (k) rotor flux a shown in Figure 1(b). This 

model is a 14-hidden-layers (h=14) cascade NN, implemented with Elliot activation function (E AF) in its 

cell body. It is capable of fitting rotor flux data based on current model up to 1.8e-6 mse. The network, which 

trained using Levenberg-Marquart algorithm (LMA) with 5,000-epochs; is then implemented in field 

programmable gate array (FPGA). It consumed 2,440 clock cycle when operated at 20 MHz clock. 

 

 

 

 
(a) (b) 

 

Figure 1. Previous IM NN RFE models (a) Simoes and Bose [23] and (b) Venkadesen et al. [24] 

 

 

In this paper, a non-parametric IM FFNN RFE is proposed. The inputs are time continuous stator 

current and stator flux αβ-component while the outputs are the rotor flux αβ-component as shown in  

Figure 2. In order to simplify the reference frame component notation, we used αβ and dq to represent dq-

stationary and dq-rotating components respectively. All the process starting from data collection, training, 

experimentation, and evaluation process are performed using MATLAB/Simulink R2016b environment. The 

RFE is tested in IM FOC systems for step response and parameters uncertainties.  

 

 

 
 

Figure 2. Propose NN IM RFE model 

 

 

2. RESEARCH METHOD  

2.1.  Architecture and operation 

The FFNN RFE architecture are constructed with a basic structure of a perceptron as illustrated in 

Figure 3. The first block of the perceptron in the input synapse region performs pre-processing process where 

the input signals are normalized into the neuron operational range. The normalized input signals are referred 

to as the perceptron inputs, [p]. Each ‘p’s are then multiplied with its respective weights [w] in the dendrite 

region before being fed into the cell body. The output from the dendrite region is referred to as dendrite 

output, [d]. In the cell body, three processes are performed. Those includes summation () of [dR] elements, 

addition of bias (b) and substitution to the activation function (f). The subscript ‘R’ refers to the R-th element 

of the input array of the respective block. The output of the cell body is referred to as the associative output 

(a). In the axon, each ‘a’s are feed forwarded to the next region. For a multilayer FFNN, the normalization 

and denormalization will only occur at the first hidden layer (HL) and output layer, respectively. The output 

layer is not considered as a HL. The number of neurons in the output layer is similar to the number of output 

variables of the NN. Denormalization occurs at the output layer. The signals process in FFNN ends in the 
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output synaptic region. In the experimentation, Tan-sigmoid (T) and log-sigmoid (L) are utilized as the 

activation functions (AF) in the HL neurons and pure linear in the output layer neurons.  

 

 

 
 

Figure 3. The structure of a perceptron 

 

 

2.2.  Data preparation  

The rotor flux (𝜓𝑑𝑟 , 𝜓𝑞𝑟) data was obtained using CM (1) in a direct-FOC systems as shown in  

Figure 4. There are overall 603,968 datasets that are acquired based on reference speed continuous step 

manipulation (1.5 Hz square wave) for two seconds at no-load operation. It was aimed to capture both 

transient and steady-state responses of the overall systems. The data are then divided in a contiguous way 

into 40% for training, 30% for validation during training and 30% for global testing. For this purpose, a 2-HP 

cage IM are used as the motor under test (see Table 1). 

 
𝑑𝜓𝑑𝑟

𝑑𝑡
=
𝑅𝑟𝐿𝑚
𝐿𝑟

𝑖𝛼𝑠 −
𝑅𝑟
𝐿𝑟

𝜓𝑑𝑟 − 𝜔𝑟𝜓𝑞𝑟 

 
𝑑𝜓𝑞𝑟

𝑑𝑡
=

𝑅𝑟𝐿𝑚

𝐿𝑟
𝑖𝛽𝑠 −

𝑅𝑟

𝐿𝑟
𝜓𝑞𝑟 − 𝜔𝑟𝜓𝑑𝑟 (1) 

 

 

 
 

Figure 4. Direct-FOC systems used in the data collection and testing 

 

 

Table 1. Motor-under-test specifications 
Parameter value 

Rated power  1.5 kW 
Rated voltage 400 V 

Rated frequency 50 Hz 

Stator resistance 3  

Rotor resistance 4.1  

Stator leakage inductance 0.0179 H 

Rotor leakage inductance 0.0273 H 
Mutual inductance 0.324 H 

Moment of inertia 0.02 kgm2 

Friction factor 0.0245 Nms 
Pole pairs  2 

 

 

2.3.  Training algorithm 

LMA is used for the weight [w] and bias [b] tuning based on least square minimization [28]. This 

algorithm has been implemented using readily available MATLAB functions namely the ‘feedforwardnet’ and 
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‘trainlm’. The network is initialized using the Nguyen-Windrow method, which possesses some degree of 

randomness. It enables faster convergence as compared to when the weight and bias are set to zero at initial.  

During the training process, the mse is calculated and the weight and biases are updated based on 

gradient decent method. This process is then repeated to a maximum of 1,000 times. In order to prevent 

overfitting, the validation checks are limited to 1000, the minimization gradient is limited to 1e-9, and the 

momentum update is limited to 1e10. To maintain the reproducibility, training, validation and testing data are 

fixed. Data division is performed using MATLAB function ‘divideblock’ which perform contiguous division.  

 

 

3. RESULTS AND DISCUSSION  

3.1.  The proposed FFNN-RFE architecture and performance  

This RFE input set selection is justified by considering that stator flux is the most linearly related to 

the rotor flux while stator current is the most linearly related to the rotor speed. However, this RFE depends 

on the stator flux, which means it will require a separate module to estimate stator flux to be used in the FOC 

systems. Regardless the number of hidden layers is, the mse of the trained NN is exponentially decaying with 

the increase of n as shown in Figure 5. On the other hand, the mse is exponentially grow with the increase of 

h. The NN becomes more dependent to the information resolution as h increases. More neurons would be 

required to carry input signal information to be effectively processed by the succeeding h-th neurons.  

The ttc presents pulled up at h=2 before decreasing with further increase of h as shown in Figure 6. 

Nevertheless, the further increase of h will also increase the mse. For example, a single-HL with 63-neurons 

consumes 3 hours 4 minutes as compared to 2-HL with 62-neurons that consume 24 hours 27 minutes and 3-

HL with 60-neurons consume 16 hours 29 minutes ttc (See Table 2). Although the training process is done 

offline, ttc is still an important indicator for evaluating the performance of the implemented algorithm, 

particularly for online learning process where the NN are actively learned and improved in real-time. For 

these reasons, a single-HL is proposed to this application.  

 

 

  
(a) (b) 

 

Figure 5. IM FFNN RFE performance with number of neuron utilization manipulation (a) 1-HL and 2-HL 

and (b) 3-HL and 4-HL 

 

 

  
(a) (b) 

 

Figure 6. IM FFNN RFE number of hidden layers manipulation for 20 or 21-neurons (a) performance based 

on mse and (b) training time consumption 
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Is has also noticed that the systems cannot converge effectively when only one neuron is placed at 

any HL. This is due to the saturation characteristics of the sigmoidal AF in the cell body that limits its 

capacity to carry information. For this application, the minimum neuron to be placed in any h must not be 

less than three as shown in Figure 7. Due to the bi-polar asymptotes of tan-sigmoid function, neurons with T 

AF are basically more sensitive to the input resolution than L. This means that neurons with T AF, passes 

higher resolution information as compared to L AF.  

 

 

Table 2. Rotor flux estimator performance for balanced hidden layer distribution of 60 s-neurons and 20 s 

neurons architecture 
Attributes  n_63_1 n_62_2 n_60_3 n_64_4 n_20_1  n_20_2 n_21_3 n_20_4 

h_[AF] 1_[T] 2_[T T] 3_[T T T] 4_[T T T T] 1_[T] 2_[T T] 3_[T T T] 4_[T T T T] 

n_[distribut

ions] 

63_ [63] 62_ [31 

31] 

60_ [20 20 

20] 

64_ [16 16 16 

16] 

20_[20] 20_[10 10] 21_[7 7 7] 20_[5 5 5 5] 

Epoch 1000 1000 1000 1000 1000 1000 1000 1000 

mse 3.14e-9 2.13e-09 2.55e-09 2.61e-9 3.41e-9 3.31e-9 3.85e-9 1.45e-8 

ttc 3:04:47 24:27:13 16:29:06 12:48:45 0:28:49 0:40:58 0:38:38 0:38:46 

 

 

   
(a) (b) (c) 

 

Figure 7. IM FFNN RFE performance with minimum neuron/s in the hidden layer (a) moving single neuron 

in 4-HL with 10-neurons in each of its other HLs, (b) moving two-neurons in 4-HL with 9-neurons in each of 

its other HLs, and (c) moving three-neurons in 4-HL with 9-neurons in each of its other HLs 

 

 

3.2.  The NN-RFE performance in IM direct-FOC 

The following results are captured at the speed transition from -100 rpm to 100 rpm of the IM FOC 

systems with its respective RFE models. The model n_20_1 is implemented to represent RFE performance in 

this proceeding section. The images in Figures 8 to 13 are arranged from left side, referring to the VM, CM, 

and NN model respectively. The dashed line refers to the model expected trajectory. The proposed RFE with 

DC-offset and parameter uncertainties. Input current offsets of 0.5 A and -0.5 A are introduced in isa and isc, 

respectively, while isb is left unchanged. The parameters uncertainties are imposed on Rs, Rr, Ls, Lm and Lr by 

considering reported literature Sawma et al. [29]. The initial values of the MUT’s parameters are listed in 

Table 1. 

The model is tested with the increased of Rs and Rr by 0.5  to imitate the heat conduction 

resistance during motor operation. For the Ls and Lr, an increase of 6%, respectively while for Lm, an increase 

of 2% has been applied. However, the FFNN RFE’s inputs ie. the 𝜓𝛼𝑠 are 𝜓𝛽𝑠 are calculated based on back-

emf integral which is similar to the method used in VM. This makes its dependency to isa and isc accuracy 

becoming more prominent during the transitional and low speed operation as shown in Figure 8. Therefore, 

the proposed RFE model is unable to estimate the rotor flux for isa, isc and Rs uncertainties as compared to the 

CM as shown in Figure 9. Even so, these vulnerabilities are not due to the proposed FFNN RFE model itself 

but rather due to the stator flux input signals integrity, which is estimated by a separate stator flux estimator 

module.  

Through this simulation implementation, the proposed RFE performance is proven to be not affected 

by Rr, Ls, Lm and Lr due to its non-parametric features as compared to VM and CM as shown in Figures 8  

to 13. Table 3 comparatively summarize the characteristics of the proposed FFNN RFE. The sysmbol ‘/’ and 

‘’ refers to ‘sensitive’ and ‘not sensitive’, respectively. The proposed model is mark as ‘sensitive’ with DC-

offset and stator resistance uncertainties since the stator flux is estimated based on the generic method i.e., 

the back-emf integral. This does not apply if the stator flux is acquired using non-parametric approach. 
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Figure 8. VM, CM, and NN rotor flux for Isa and Isc offset of 0.5 A 

 

 

 
 

Figure 9. VM, CM, and NN rotor flux for Rs change from 3  to 3.5  
 

 

 

 

Figure 10. VM, CM, and NN rotor flux for Rr change from 4.1  to 4.6  

 

 

 

 

Figure 11. VM, CM, and NN rotor flux for Ls changes from 0.3419 H to 0.36 H 
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Figure 12. VM, CM, and NN rotor flux for Lm changes from 0.324 H to 0.33 H 

 

 

 

 

Figure 13. VM, CM, and NN rotor flux for Lr changes from 0.3513 H to 0.37 H 

 

 

Although the FFNN RFE is a non-parametric model, it would still require motor parameters for the 

training process. The parameter uncertainties may occur during the parameter extraction process and motor 

operations. It is critically important to ensure that the extracted parameters integrity is sufficiently high as the 

RFE is developed based on the simulated CM model data of the extracted motor parameters.  

 

 

Table 3. Rotor flux model sensitivity 
Parameter uncertainties VM CM NN 

DC-offset (current sensor) / / / 

Stator resistance / / / 

Rotor resistance   /  

Stator inductance  /   

Mutual inductance  / /  

Rotor inductance / /  

 

 

4. CONCLUSION  

The proposed IM RFE is a single-HL 20-neurons FFNN, trained using LMA and CM simulation 

data in FOC systems offline. The model is a non-parametric model, which makes it robust from parameters 

uncertainties during motor operation. However, it still requires a separated module to estimate stator flux as 

one of its input signals. In order to optimize the performance and training time consumption, the FFNN 

architecture is suggested to be developed with these three main suggestions; i) any of its HLs must be 

constructed with not less than 3-neurons, ii) cell body implementation with tan-sigmoid is more 

recommended than log-sigmoid activation function, and iii) single-HL is more recommended than multi-HL. 

 

 

REFERENCES  
[1] M. Dybkowski, “Universal Speed and Flux Estimator for Induction Motor,” Power Electron. Drives, vol. 3, no. 1, pp. 157–169, 

Aug. 2018, doi: 10.2478/pead-2018-0007. 

[2] A. Oumar, R. Chakib, and M. Cherkaoui, “Modeling and control of double star induction machine by active disturbance rejection 

control,” Telkomnika (Telecommunication, Computing, Electronics and Control), vol. 18, no. 4, pp. 2718–2728, Oct. 2020, doi: 

10.12928/TELKOMNIKA.v18i5.14377. 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 13, No. 2, June 2022: 1229-1237 

1236 

[3] V. T. Ha, N. T. Lam, V. T. Ha, and V. Q. Vinh, “Advanced control structures for induction motors with ideal current loop 

response using field oriented control,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 10, no. 4, pp. 
1758–1771, Dec. 2019, doi: 10.11591/ijpeds.v10.i4.1758-1771. 

[4] O. Mahmoudi and A. Boucheta, “Adaptive integral backstepping controller for linear induction motors,” International Journal of 

Power Electronics and Drive System (IJPEDS), vol. 10, no. 2, pp. 709–719, Jun. 2019, doi: 10.11591/ijpeds.v10.i2.709-719. 
[5] L. Lakhdari and B. Bouchiba, “Fuzzy sliding mode controller for induction machine feed by three level inverter,” International 

Journal of Power Electronics and Drive System (IJPEDS), vol. 9, no. 1, pp. 55–63, Mar. 2018, doi: 10.11591/ijpeds.v9n1.pp55-63. 

[6] C. D. Tran, T. X. Nguyen, and P. D. Nguyen, “A field-oriented control method using the virtual currents for the induction motor 
drive,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 4, pp. 2095–2102, Dec. 2021, doi: 

10.11591/ijpeds.v12.i4.pp2095-2102. 

[7] M. Bouazdia, M. Bouhamida, R. Taleb, and M. Denai, “Performance comparison of field oriented control based permanent 
magnet synchronous motor fed by matrix converter using PI and IP speed controllers,” Indonesian Journal of Electrical 

Engineering and Computer Science, vol. 19, no. 3, pp. 1156–1168, Sep. 2020, doi: 10.11591/ijeecs.v19.i3.pp1156-1168. 

[8] C. Laoufi, Z. Sadoune, A. Abbou, and M. Akherraz, “New model of electric traction drive based sliding mode controller in field-
oriented control of induction motor fed by multilevel inverter,” International Journal of Power Electronics and Drive System 

(IJPEDS), vol. 11, no. 1, pp. 242–250, Mar. 2020, doi: 10.11591/ijpeds.v11.i1.pp242-250. 

[9] M. Hasoun, A. E. Afia, M. Khafallah, and K. Benkirane, “Field oriented control based on a 24-sector vector space decomposition 
for dual three-phase pmsm applied on electric ship propulsion,” International Journal of Power Electronics and Drive System 

(IJPEDS), vol. 11, no. 3, pp. 1175–1187, Sep. 2020, doi: 10.11591/ijpeds.v11.i3.pp1175-1187. 

[10] M. Errouha and A. Derouich, “Study and comparison results of the field oriented control for photovoltaic water pumping system 
applied on two cities in Morocco,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 4, pp. 1206–1212, Dec. 2019, 

doi: 10.11591/eei.v8i4.1301. 

[11] D. L. M. Nzongo, E. Leugoue, J. H. Zhang, and G. Ekemb, “Improved field-oriented control for PWM multi-level inverter-fed 
induction motor drives,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 9, no. 2, pp. 481–492, Feb. 

2018, doi: 10.11591/ijeecs.v9.i2.pp481-492. 
[12] P. Brandstetter and M. Kuchar, "Rotor flux estimation using voltage model of induction motor," 2015 16th International Scientific 

Conference on Electric Power Engineering (EPE), 2015, pp. 246–250, doi: 10.1109/EPE.2015.7161090. 

[13] H. -U. Rehman, M. K. Gilven, A. Derdiyok, and L. Xu, "A new current model flux observer insensitive to rotor time constant and 
rotor speed for DFO control of induction machine," 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. 

No.01CH37230), vol. 2, pp. 1179–1184, 2001, doi: 10.1109/PESC.2001.954279. 

[14] C. D. Tran, P. Brandstetter, M. C. H. Nguyen, S. D. Ho, B. H. Dinh, and P. N. Pham, “A robust diagnosis method for speed sensor 
fault based on stator currents in the RFOC induction motor drive,” International Journal of Electrical and Computer Engineering 

(IJECE), vol. 10, no. 3, pp. 3035–3046, Jun. 2020, doi: 10.11591/ijece.v10i3.pp3035-3046. 

[15] G. Joshi and A. J. P. Pius, “ANFIS controller for vector control of three phase induction motor,” Indonesian Journal of Electrical 
Engineering and Computer Science, vol. 19, no. 3, pp. 1177–1185, Sep. 2020, doi: 10.11591/ijeecs.v19.i3.pp1177-1185. 

[16] V. R. Ramana, F. S. George, and K. Vijayakumar, “Enhanced space vector modulated scalar control of induction motor,” 

Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 2, pp. 707–713, Feb. 2020, doi: 
10.11591/ijeecs.v21.i2.pp707-713. 

[17] Y. Guo, Z. Li, B. Dai, and X. Zhang, "A full-order sliding mode flux observer with stator and rotor resistance adaptation for 

induction motor," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 855–860, doi: 
10.1109/APEC.2018.8341113. 

[18] E. Etien, C. Chaigne, and N. Bensiali, "On the Stability of Full Adaptive Observer for Induction Motor in Regenerating Mode," in 

IEEE Transactions on Industrial Electronics, vol. 57, no. 5, pp. 1599–1608, May 2010, doi: 10.1109/TIE.2009.2032200. 
[19] E. Sabouni, B. Merah, and I. K. Bousserhane, “Adaptive backstepping controller design based on neural network for pmsm speed 

control,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 3, pp. 1940–1952, Sep. 2021, doi: 

10.11591/ijpeds.v12.i3.pp1940-1952. 
[20] B. Aissa, T. Hamza, G. Yacine, and N. Mohamed, “Impact of sensorless neural direct torque control in a fuel cell traction 

system,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, pp. 2725–2732, Aug. 2021, doi: 

10.11591/ijece.v11i4.pp2725-2732. 
[21] S. S. Yi, et al., “Loss minimization DTC electric motor drive system based on adaptive ANN strategy,” International Journal of 

Power Electronics and Drive System (IJPEDS), vol. 11, no. 2, pp. 618–624, Jun. 2020, doi: 10.11591/ijpeds.v11.i2.pp618-624. 

[22] M. R. G. Meireles, P. E. M. Almeida, and M. G. Simoes, "A comprehensive review for industrial applicability of artificial neural 
networks," in IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 585–601, Jun. 2003, doi: 

10.1109/TIE.2003.812470. 

[23] S. Zhao, F. Blaabjerg, and H. Wang, "An Overview of Artificial Intelligence Applications for Power Electronics," in IEEE 
Transactions on Power Electronics, vol. 36, no. 4, pp. 4633–4658, Apr. 2021, doi: 10.1109/TPEL.2020.3024914. 

[24] T. -. Low, T. -. Lee, and H. -. Lim, "A methodology for neural network training for control of drives with nonlinearities," in IEEE 

Transactions on Industrial Electronics, vol. 40, no. 2, pp. 243–249, Apr. 1993, doi: 10.1109/41.222646. 
[25] B. K. Bose, "Neural Network Applications in Power Electronics and Motor Drives—An Introduction and Perspective," in IEEE 

Transactions on Industrial Electronics, vol. 54, no. 1, pp. 14–33, Feb. 2007, doi: 10.1109/TIE.2006.888683. 

[26] M. G. Simoes and B. K. Bose, "Neural network based estimation of feedback signals for a vector controlled induction motor 
drive," in IEEE Transactions on Industry Applications, vol. 31, no. 3, pp. 620–629, May-Jun. 1995, doi: 10.1109/28.382124. 

[27] A. Venkadesan, S. Himavathi, K. Sedhuraman, and A. Muthuramalingam, “Design and field programmable gate array 

implementation of cascade neural network based flux estimator for speed estimation in induction motor drives,” IET Electric 
Power Applications, vol. 11, no. 1, pp. 121–131, 2017, doi: 10.1049/iet-epa.2016.0550. 

[28] M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," in IEEE Transactions on Neural 

Networks, vol. 5, no. 6, pp. 989–993, Nov. 1994, doi: 10.1109/72.329697. 
[29] J. Sawma, F. Khatounian, E. Monmasson, and R. Ghosn, "Induction Motor Parameters Identification in Noisy Environment," 

IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1–6, doi: 

10.1109/IECON48115.2021.9589161. 
 

 

BIOGRAPHIES OF AUTHORS 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Non-parametric induction motor rotor flux estimator based on … (Siti Nursyuhada Mahsahirun) 

1237 

 

 

Siti Nursyuhada Mahsahirun     received the B.Eng. degree in electrical 

engineering in 2010 and M.Eng. degree in mechatronics engineering in 2017 from Universiti 

Malaysia Pahang (UMP), Malaysia. She is a Ph.D. student in mechatronics engineering 

under Faculty of Manufacturing and Mechatronic Engineering Technology, UMP and UTM-

Proton Future Drives Laboratory, Johor, Malaysia. Her main research interests are induction 

motor drive systems, artificial neural networks, and FPGA. She can be contacted at email: 

sitinursyuhada@ump.edu.my. 

 

 

  

 

Nik Rumzi Nik Idris     received the B.Eng. degree in electrical engineering from 

the University of Wollongong, N.S.W., Australia, in 1989, the M.Sc. degree in power 

electronics from Bradford University, West Yorkshire, U.K., in 1993, and the Ph.D. degree 

from Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia, in 2000. He is currently 

an associate professor at the UTM, the Head of the Power Electronics and Drives Research 

Group, and Head of UTM-Proton Future Drive Laboratory. His current research interests 

include control of ac drive systems and DSP applications in power electronic systems. Dr. 

Idris is also the Past Chair of the IEEE Power Electronics Society, Malaysia Chapter, and is 

also a senior member of the IEEE. He can be contacted at email: nikrumzi@fke.utm.my. 

  

 

Zulkifli Md Yusof     received the B.Eng. electrical engineering from University 

of Arizona in 1989 where he exposed to microelectronics field and involve in the 

university’s Network Transmission Line Software Development. He obtained his M.Sc. in 

electrical engineering from Washington State University (WSU), U.S.A. focusing in 

semiconductor device modeling and transport characteristic of wide bandgap material. He is 

currently a senior lecturer of the Faculty of Manufacturing and Mechatronic Engineering 

Technology at Universiti Malaysia Pahang (UMP), Malaysia. His current research expertise 

is in microelectronics and computer engineering field, VLSI routing, compressed memory 

architecture and algorithms optimization. He was an engineer in Hitachi Semiconductor in 

Penang before appointed as assistant lecturer in UTM, Kuala Lumpur in 1989 and later a 

senior lecturer at the Department of Microelectronics and Computer Engineering, Faculty of 

Electrical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia. He is 

the former Head of Mechatronics Program in the Faculty Manufacturing Engineering, UMP. 

He can be contacted at email: zmdyusof@ump.edu.my. 
  

 

Tole Sutikno     is a Lecturer in Electrical Engineering Department at the 

Universitas Ahmad Dahlan (UAD), Yogyakarta, Indonesia. He received his B.Eng., M.Eng. 

and Ph.D. degree in Electrical Engineering from Universitas Diponegoro (Semarang, 

Indonesia), Universitas Gadjah Mada (Yogyakarta, Indonesia) and Universiti Teknologi 

Malaysia (Johor, Malaysia), in 1999, 2004 and 2016, respectively. He has been an Associate 

Professor in UAD, Yogyakarta, Indonesia since 2008. He is currently an Editor-in-Chief of 

the TELKOMNIKA, Director of LPPI UAD, and the Head of the Embedded Systems and 

Power Electronics Research Group. His research interests include the field of digital design, 

industrial electronics, industrial informatics, power electronics, motor drives, industrial 

applications, FPGA applications, artificial intelligence, intelligent control, embedded system, 

and digital library. He can be contacted at email: tole@ee.uad.ac.id. 

 

 

https://orcid.org/0000-0002-3056-4654
https://scholar.google.com/citations?hl=en&user=7Z0kyPsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57218898243
https://publons.com/researcher/4861726/siti-nursyuhada-mahsahirun/
https://orcid.org/0000-0002-5048-3851
https://scholar.google.com/citations?hl=en&user=67XLcJ8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=6603916221
https://publons.com/researcher/2764477/nik-rumzi-nik-idris/
https://orcid.org/0000-0003-1365-2609
https://scholar.google.com/citations?hl=en&user=Ma67jZoAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=35776556000
https://publons.com/researcher/5124616/zulkifli-md-yusof/
https://orcid.org/0000-0002-1595-2915
https://scholar.google.com/citations?user=haR50igAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=35794013800
https://publons.com/researcher/1876482/tole-sutikno/

