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HIGHLIGHTS GRAPHICAL ABSTRACT

e Current progress in LDH as prom-
inent materials for hydrogen pro-
duction has reviewed.

e Challenges of pristine LDH and
modification for enhancing for H,
yield are discoursed.

e Constructing Type [, IL, I, p-n, Z, S,
and R-scheme LDH heterojunction

are discussed.

e Fabricating novel hybrid LDH with
bandgap engineering are system-
atically considered.

e Approaches for tuning LDH
morphology for high hydrogen ef-
ficiency are deliberated.
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Fabrication of the hybrid LDH nanocomposites through band gap engineering and metal
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" been reported that solar-based photocatalysis could mitigate

Introduction

and abate the long-lived well-mixed greenhouse gases and fight
against global warming contributors [9].

The efficiency of photocatalysis has led to the develop-
ment of various visible-light-active materials. This is

; : ) . because visible light makes up 43% of the total solar radiation
total energy demand. The high consumption of fossil fuels will [10]. Unfortunately, the scarcities, large band gap, high-cost,

negatively affect the ecological system and economic develop- low quantum efficiency of this light-active photocatalyst

ment [1—4]. The employment of hydrogen energy through such as TiO,, CuO, ZnO, IrO,, WO3; and CdS limit their ac-
photocatalytic water splitting is considered the best alternative :

to replace fossil fuels [5,6]. Photocatalytic water splitting by
scavenging energy from the sunlight using semiconductor ma-
terials is a promising hydrogen generation method [7,8]. It has

The scarcity and the depletion of fossil fuels as the prime energy
sources have become a matter of worldwide concern. It was
denoted that the utilization of fossil fuel has reached 85% of the

tivity and photostability for the large-scale hydrogen pro-
duction [11—14]. CdS photocatalyst has been remarked as an
excellent photocatalyst for photocatalytic hydrogen pro-
duction. The good photochemical properties of CdS having a
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high surface crystallinity making CdS highly sought after.
However, CdS heavily suffered from photo corrosion due to
the oxidation of the sulfide element, limiting their capability
as a single photocatalyst in photocatalytic hydrogen gener-
ation [15]. The same was reported for the widely studied
photocatalyst such as TiO,. The unique properties, abund-
ancy, and good chemical stability of TiO, make it highly
favourable in the photocatalysis field [16]. Despite its
astounding chemical properties, it is undeniable that TiO,
suffers from high recombination of photogenerated charges,
and thus, modification have to be done on the photocatalyst
to improve its efficiency under solar irradiations [17-19].
Different semiconductors exhibit different benefits and
properties. For instance, CuO and ZnO are highly preferred in
the photocatalysis process due to their abundancy, non-toxic
and low-cost materials [20]. However, like TiO,, they suffered
from easy recombination of electron-hole, large band gap,
and low light harvesting. Hence, these photocatalysts are
typically coupled with other semiconductors forming a het-
erojunction to improve their photocatalytic efficiency and
the separation of photogenerated charges [21,22].

Recently, layered double hydroxide (LDH), also known as
anionic clays, garnered the researchers attention as an
extensively-studied family of photocatalyst [23]. Besides
having a tunable band gap, unique layered structure with
high surface area, low cost, and abundant in nature, LDH
also possess remarkable photocatalytic and physicochem-
ical properties, which offers a novel route for hydrogen
generation [24—28]. Fig. 1 shows the overview of LDH based
photocatalysts, the challenges, and improvements made to
their efficiency. Many studies have been conducted to

increase the efficiency of the LDH-based photocatalyst for
photocatalytic hydrogen production. This includes forming
the heterojunction by coupling with other visible-light-
active photocatalysts, integrating plasmonic material, and
modifying the morphology of LDH and hybrid
nanocomposites.

Many studies on LDH-based photocatalysts have been
conducted by other research groups focusing on the prepa-
ration, properties, and their role in various technological
fields. Besides, several reviewing articles have been published
in the past three years to give perspectives on different as-
pects of LDH-based photocatalyst. In 2019, Yang et al. pub-
lished a review on the recent development of LDH-based
photocatalyst in photocatalytic CO, reduction, focusing on the
synthesis and modification strategies [29]. Another review
published in the same year by Daud et al. deliberates on the
role of hybrid LDH and their recent advances in the photo-
degradation field [26], while Song et al. focus on the engi-
neering modification of hybrid LDH, narrowing the scope on
LDH/g-C3N, composite in photocatalysis applications [30].
Following these contributions, Dewangan et al. reviewed the
functional application of LDH for CO, conversion, highlighting
the fundamental synthesis method and their challenges [31].
On the other hand, the development of LDH-based photo-
catalyst on the photocatalytic, electrocatalytic, and photo-
electrocatalytic application was published by Zhao et al. in
2020 [32]. In the same year, a review on the catalytic properties
of POM-intercalated LDH was published by Stamate et al. [33].
Recently, a review article by Wang et al. providing basic in-
sights on the construction of Zn containing LDH was pub-
lished by giving a fundamental understanding of the
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Fig. 1 — The overview of the LDH based photocatalyst, challenges and improvements made to improve its efficiency.
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modification strategies in the water treatment field [34].
Additionally, the first review article discussing the engineer-
ing application of LDH in the water treatment field through an
advanced oxidation process has been published by Yang et al.
[35]. Nonetheless, few review articles were published for the
past three years that solely focus on the LDH-based photo-
catalyst and their developments in photocatalytic hydrogen
production. Recently, Kaur et al. have published a review de-
tailing the progress of LDH-based photocatalyst in photo-
catalytic hydrogen production by focusing on the mechanistic
approach.

Review studies on LDH-based photocatalyst focusing on
their synthesis method and general application on water
splitting have been frequently published. Therefore, this re-
view aims to summarise the latest progress, current trends,
and developments of hybrid LDH nanocomposites specifically
towards hydrogen production, by providing clear explication
on the behaviour of LDH in the water reduction reaction
through engineering modification. Firstly, the challenges and
thermodynamics of photocatalytic water splitting are delib-
erated. Secondly, the efficiency enhancement of the LDH
photocatalyst was comprehensively discussed by giving spe-
cial attention to the heterojunction engineering of type I, type
I, p-njunction, Z-scheme, S-scheme, and R-scheme. Next, the
modification and the fabrication of the hybrid LDH nano-
composite through band gap engineering and metal loading
are summarised. Finally, architectural and morphological
tuning of LDH-based composite through the construction of
the novel core-shell structure and layer-by-layer nanosheets
are concisely discussed. Herein, LDH composed of unique
two-dimensional layered sheets as base materials for photo-
catalytic water splitting should be given great consideration.
Distinct properties of LDH, which differentiate them from the
particulate photocatalysts, rendered them a notable place in
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the photocatalysis field. Hence, this review aspires to give
insight into the future development of hybrid LDH photo-
catalyst in different engineering aspects so that assiduous
studies can be performed to ameliorate the role of LDH-based
photocatalyst specifically in photocatalytic hydrogen
production.

General overview of LDH-based photocatalyst in
photocatalytic water splitting

General structure of LDH and its mechanism in water
splitting

The unique architectural and morphological structure of LDH
have attracted researchers to further explore the functionality
and capability of these hydrotalcite-like compounds in pho-
tocatalytic water splitting [36]. LDH is a family of 2D clay
materials having exceptional compositional flexibility and
controllable morphology, making them one of the most
promising semiconductors for the photocatalysis process
[23,37,38]. LDH is composed of two layers stacking onto each
other. Making up a positive layer of LDH is generally referred
to as the brucite layer, while the negative layer is known as
interlamellar spaces, as shown in Fig. 2. The metal cations will
be incorporated into the brucite layer of LDH, while anions will
be intercalated at the interlamellar or known as the interlayer
of LDH [39]. The general formula for the LDH structure is
denoted as in Eq. (1).

[MIIMIIIX(OH)Z]X+. [(A"’ X/n) -mHZO} 1)

From Eq. (1), M'represents the divalent metal cations
having a (+2) charges, while, M"is trivalent metal cations with
(+3) charges. These metal cations usually will be bonded with
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Fig. 2 — Schematic illustration of LDH structure and its mechanism towards photocatalytic hydrogen production [28].
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the hydroxide group (OH), constituting the backbone of the
LDH. The exchangeable cations of M" and M"™ creates a posi-
tive residual charge of layers and usually was stabilised by the
anions intercalated at the interlayer of the LDH (A"") . Hence,
the balance of positively- and negatively-charged layers
composed by this LDH structure neutralising the overall LDH
compounds [40]. Note that LDH naturally consisted of car-
bonate anions presented at the interlayer gallery. However,
this can be exchanged with a different type of active species
such as inorganic anions [41], organic acid/base [42], and
organic complexes [43]. Besides, the metal cations at the
brucite layer of LDH can be tuned with different types of cat-
ions pairs. The chemical identity and type of metal cations
composed by LDH will influence the optical and chemical
properties of LDH. Thus, the type of metals to be incorporated
into the LDH structure is significant as different pairs will give
a different value of band gap, making LDH uniquely known to
have a ‘tunable band gap’ [28]. Typically, the bonding of the
metal cations to the hydroxide group of the LDH primarily are
Van Der Waal's and electrostatic forces, while stabilising the
structure of LDH compounds are anions at the interlayer
bonded with water molecules and connecting the brucite layer
through hydrogen bonding [23].

LDH in photocatalytic hydrogen production attained
considerable attention due to its positive attributes in the
fabrication of the visible light active photocatalyst [44].
Generally, for the LDH based-photocatalyst to be able to un-
dergo a redox reaction in generating hydrogen, several
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elements needed to be considered. Fundamentally, 1) CB po-
tential of LDH must be more negative than the reduction po-
tential (>—0.41 eV), 2), whereas VB should be more positive
than the water oxidation potential (>1.23eV) and, 3) The band
gap energy of LDH must larger than the overall Gibbs free
energy of water splitting [45—47]. As mentioned earlier, the
type of metal cations and anions to be incorporated into LDH
should be given attention and must be well considered before
fabricating the bimetallic or trimetallic LDH nanocomposites.
The basic photocatalytic mechanism of LDH-based photo-
catalyst is as follows: Under light irradiation, the electron-hole
pairs will be formed at the VB of the LDH. The charge sepa-
ration will occur in which the photogenerated electrons will
be transited to the CB of LDH while holes remained at VB. Both
the hole at the VB and electrons at CB will undergo oxidation
and reduction processes, respectively. The holes will oxidise
water into protons and oxygen while electrons at CB will
reduce protons into hydrogen [48].

Thermodynamics of water splitting

Thermodynamically, water splitting is an endothermic reac-
tion in which it requires the standard change in Gibbs free
energy of 237 kJ/mol to convert water into hydrogen and ox-
ygen. The energy source that meets the Gibbs free energy of
the reaction is essential so that the electrons could rearrange,
making the redox reaction possible. Temperature, light, band
gap, CB, and VB of semiconductors are critical elements in
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Fig. 3 — (a) Schematic illustration of the band gap, conduction band and valence band of the metals, semiconductors and
insulators [54] (b) carrier relaxation under light irradiation [55], (c) Direct (above) and indirect band gap (below) of

semiconductor [53].
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photocatalysis thermodynamics [17]. Determining the
possible photocatalyst for hydrogen generation it is crucial to
understand the redox potential for both the reduction and
oxidation processes. The water reduction and oxidation po-
tentials should fall within the photocatalyst band gap. The
band gap energy (Eg) is the energy level between VB and CB by
which in an atom, a different group of electrons occupies the
energy levels. Fig. 3 (a) illustrates the band gap energy levels
and the position of CB and VB.

The potential photocatalyst should possess these elements
in order to be thermodynamically stable; 1) The band gap of
1.23 eV < Eg < 3.26 eV, 2) The band position of bottom CB
should be more negative than redox potential, 3) The top of VB
should be more positive than the redox potential of water
splitting [49]. Under standard conditions, the energy of
2.458 eV is required to generate one hydrogen molecule, while
for a full reaction to happen, an energy input of 4.915 eV is
required. This is because full water splitting needs four elec-
trons to generate two hydrogen molecules [50,51]. Besides, the
energy input of water splitting could be minimized by utilising
solar radiation. This is due to that under solar radiation, the
full reaction energy can be generated by; 1) one photon of
ultraviolet light with a wavelength shorter than 252.3 nm, or 2)
two photons with a wavelength shorter than 504.5 nm in the
visible spectrum, or 3) four infrared photons of 1.23 eV [46].

The electrons and holes that occupy CB and VB will be
disturbed once light with energy > Eg irradiates the semi-
conductor's surface. Here, the internal equilibrium within the
energy level is achieved. The relaxation time within CB is
shorter than across the band gap, as shown in Fig. 3 (b). The
quasi-equilibrium is the electron's states with internal equi-
librium, which means that the electrons and holes population
is at equilibrium within the CB and VB energy levels. Egs. (2)
and (3) show the potential of electrons and holes in quasi-
fermi levels [52].

n
Fn=Ec + kBT lnm 2)
Fp—Ev+ kBT In - 3)
p=rud Nv
— _ J— — np
AG= — [Fn—Fp| Eg — kBT In NuNG 4)

The EC and EV are CB minimum and VB maximum energy
level positions, kB = Boltzmann constant, Nc and Nv are
effective densities of states in CB and VB, n and p are carrier's
concentration.

The band gap of semiconductors can be categorised into
direct and indirect band gap. As shown in Fig. 3 (c) for the
indirect band gap, the valence band maximum (VBM) and
conduction band minimum (CBM) contain the same mo-
mentum (wave vector) and occur at the same k values. The
irradiation of light and the photon absorption and emission
can easily excite the electron from VB to CB of the semi-
conductor. The momentum is conserved without the assis-
tance of the phonons due to the negligibility of the
momentum of the absorbed and emitted photon. Contrarily,
in the indirect band gap, the states at CBM and VBM of the
photocatalyst does not have equal momenta and occur at

different k value. The photon absorption must involve either
absorption or emission of phonon to conserve the momentum
to generate the electron-hole pair. Factors affecting the indi-
rect band gap are due to the interaction of electrons with
initial photon and phonon (quantised lattice vibration) to gain
energy, increasing and decreasing its momentum. Besides, it
was denoted that electron, phonon, and photon involvement
proceeds at a lower probability and slower rate in the indirect
absorption [53].

Challenges in photocatalytic water splitting

UV-active photocatalysts have shown remarkable progress in
photocatalytic water splitting since 1972. However, the solar
light that reaches the Earth's surface consists of mainly visible
light at wavelengths from 400 to 700 nm, accommodating 43%
of the total radiation. The utilization of UV light at 400 nm
with 100% quantum efficiency will only make up to 2% of the
hydrogen conversion. This explains that even a UV-active
photocatalyst with exceptional surface properties could not
provide a higher yield of hydrogen. Therefore, visible-active
photocatalysts have sought the researchers' attention and
have been extensively studied [56]. Some of the critical chal-
lenges highlighted in hydrogen photocatalytic water splitting;
include 1) low efficiency of the photocatalysts, 2) higher
recombination rate of the electrons-holes, 3) weak light-
harvesting, 4) low photocatalyst's surface area, 5) high cost,
and 6) low abundancy of the materials [57,58].

Additionally, determining the materials that could respond
and improve visible light absorption has also been one of the
main obstacles in water splitting. Hence, to overcome these
limitations, various strategies have been developed to
enhance the efficacy of these light-active photocatalysts. Im-
provements include structural and electronic modification,
improving the photocatalyst's morphology, heterojunction
formation, noble metal deposition, and doping [58—60]. The
photocatalyst low efficiency in hydrogen water splitting is
primarily due to the inappropriate band gap energy to fully
utilize the solar energy spectrum, the position band of CB and
VB to drive the redox reaction, and the redox stability [61].
These limitations lead to the low yield of hydrogen produc-
tion. In addition, the fast recombination rate of charge carriers
is associated with low exciton energy shortening their life-
time. This causes the electron and holes to recombine when
they cannot locate the substrates easily [36].

One of the favourable features of LDH photocatalyst, aside
from its unique layered structure and tailored design, is its
tunable band gap [62,63]. However, the band gap's value must
depend on the nature and composition of the metal cations
and anions fabricated into the LDH structure. For instance,
LDH is comprised of (Zn and Ti; Mg and Al; Zn and Al) having a
wide band gap and low light-harvesting efficiency. According
to the DRS results done by Zhu et al., the band gap of pure ZnTi
LDH approximately 3.35eV is unable to absorb light under 535
and 850 nm. Hence, only a small number of electrons could
participate in the photocatalytic reaction under light irradia-
tion, and the rest will quickly be recombined. Some major
limitations of LDH photocatalyst are low photoelectronic
transition efficiency, inability to absorb visible light, the quick
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recombination rate of electron-hole, layer aggregation and
poor crystalline structure. Therefore, further studies are
needed to enhance their photostability and improve the sep-
aration efficiency [64].

A broad absorption spectrum and adequate redox ability
are among the significant factors required to design a stan-
dard photocatalyst. A narrow band gap for a single photo-
catalyst helps the absorption and utilization of light with a
wide absorption spectrum. However, the photocatalyst should
possess a higher CB and lower VB position associated with a
large band gap when considering the redox ability. Hence, the
formation of the heterojunction is an effective way to
conserve the efficiency of the photocatalyst [65]. Constructing
a type Il heterojunction is considered the best way to improve
the separation efficiency and overcome the fast recombina-
tion rate between electron-hole pairs. However, this type of
heterojunction usually was associated with the weak driving
force of charge at the interface, which caused a great chal-
lenge for the photocatalysis process. This is because a weaker
driving force is not enough to stimulate the charge separation.
Therefore, a bridging medium could be used to bridge both
semiconductors and overcoming the limitation. Following
this, Meng et al. have integrated the polydopamine (pDA), a
type of polymer, to act as an interface medium to bridge g-
C3N, and NiCo-LDH. They discovered that the integration of
pDA into g-CsN, and NiCO-LDH leads to improved charge
carrier's separation, stability, and light absorption capacity.
The adhesive action of pDA could narrow the interface of g-
CsN, and NiCo-LDH, besides expediting the electron motions
[66].

Another challenge in the heterojunction photocatalyst
observed in the Z-scheme system is the use of electron me-
diators. The use of a redox mediator in the traditional Z-

Single photocatalyst &

Hybrid photocatalyst &

Low surface area

Less abundance materials

photocatalysis [

-~ Layer-by-layer -—

scheme heterojunction system is highly attributed to the
backward reaction. Besides, the redox mediator's instability in
the system is one of the main drawbacks of this hetero-
junction system [67,68]. Meanwhile, in the all-solid-state Z-
scheme system, the use of noble metal as a solid conductor is
non-economical and not commercially applicable. On the
other hand, challenges in the S-scheme heterojunction sys-
tem are mainly on selecting the semiconductors to be coupled.
This is because an appropriate selection of the coupled
semiconductor will determine the construction of an induced
electric field in the S-scheme system, which highly contrib-
utes to higher photocatalytic performances. Fig. 4 summarises
the challenges of photocatalytic water splitting in a single and
hybrid photocatalyst.

Efficiency enhanced through heterojunction
formation

Interfacial charge transfer in LDH-based hybrid semi-
conductors manifest excellent benefits in enhancing the
separation efficiency of electrons-holes, reducing the charge's
carrier's recombination while increasing their lifetime and
improving the overall photocatalytic performances [69—72].
The heterojunction is defined as the interface between two
different semiconductors with different band structure posi-
tions, which will result in band alignments [73,74]. The
coupling of semiconductors with appropriate band potentials
could lead to heterojunction formation, an ideal approach to
improve photocatalytic performance [75]. Semiconductor
interface contact is categorised into type I, type II, type III, Z-
scheme, S-scheme, p-n junction, and R-scheme [76—78]. Fig. 5
(a) shows the differences between the main types of
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photocatalyst
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Fig. 4 — Summary of the challenges of the photocatalytic water splitting in a single and hybrid photocatalyst.
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heterojunction formation in terms of electron transfer
mechanism and their band structure. The band alignments of
type [, II, and III heterojunctions differ from each other with
clear distinction of i) type I: straddling gap, ii) type II: staggered
gap, and iii) type III: broken gap. The differences in the band
alignment depending on the band gap and the band potential
of the paired semiconductors. It was believed that hybridising
a large band gap semiconductor with a narrow band gap
semiconductor could improve the hybrid semiconductor light
absorption and increase the separation of the photogenerated
charges. The differences of the heterojunction formed based
on band alignment will give different charge transfer effi-
ciency depending on the band potential of the paired

semiconductors. Different electron transfer mechanisms with
different gap types could be observed in each heterojunction
type I, type II and type III. Fig. 5(b—c) shows the schematic
representation of the ‘gap type’ of the heterojunction.
Generally, each type of heterojunction system can be
identified through different elements such as: (1) the band
configuration, (2) the type of assembled semiconductors and,
(3) the electron transfer mechanism. In the context of the
band configuration, type II heterojunction photocatalyst con-
sisted of a staggered band structure where the CB of reduction
photocatalyst and VB of oxidation photocatalyst is located at a
lower band potential [79]. Therefore, the transferring of elec-
trons will be from a higher to the lower CB potential, while
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holes move from higher to the lower of VB potential to carry
out redox reactions. Accordingly, the p-n junction exhibits the
same band structure and placement as those of type II [73,80].
On the other hand, the placement of the band potentials in S-
scheme and Z-scheme systems are unlike of those in type II
and the p-n junction. Contrarily, the CB of reduction photo-
catalyst in this systems is located at a higher band potential
than in oxidation photocatalyst, while VB of reduction pho-
tocatalyst is located at a lower band potential than VB of
oxidation photocatalyst [81]. Therefore, the electrons will
move from a lower CB potential to a higher one to undergo a
reduction reaction. The type of coupled semiconductors
making up the p-n junction consists of p-type, which
commonly denoted as oxidation photocatalyst and n-type
referred as a reduction photocatalyst, whereas in the S-
scheme system, both oxidation and reduction photocatalyst
should be the n-type semiconductors. Additionally, the for-
mation of the positively and negatively charged interfaces in
these systems induced an internal electric field that signifi-
cantly assists in the separation of photogenerated charges
[65]. Conversely, in type Il and Z-scheme system, with regards
to the band potentials, any type of semiconductors can be
utilised as an oxidation and reduction photocatalyst. Table 1
summarises the difference between each type of hetero-
junction systems, while Table 2 summarises the different
types of LDH-based photocatalyst heterojunction, including
their benefits and drawbacks in photocatalysis.

Type I heterojunction

In type I heterojunction, the CB and VB position of semi-
conductor A is higher than in semiconductor B [106]. The
electron-hole pairs cannot be separated effectively as they
assembled on the same semiconductors. The mechanism of
charge migration in the heterojunction type I is primarily
dependable on the redox potential and band gap. Typically, in
type I, the other semiconductor has a smaller band gap than
their pair, in which the semiconductor B (SCB) has a small
band gap than semiconductor A (SCA). The migration of the
charges are as follows: i) SCA having more negative CB and
more positive VB than SCB, ii) More negative CB incited the
migration of electrons from CB of SCA to CB of SCB, iii) More
positive VB lead to the migration of holes in VB of SCA to VB of
SCB. The flow of both electron-hole pairs are in the same di-
rection towards SCB [47,107].

In the study of type I heterojunction, Muhmood et al. has
fabricated a hybrid of graphitic carbon nitride with red phos-
phorus (RPCN) under vacuum conditions and observed a
reduction in the structural defects and an improvement in the
charges separation [108]. The increased of the stability and
enhancement in the photocatalytic performances in the
composites photocatalyst is attributed to the novel formation
of type I heterojunction, which was analysed through (Mott-
Schottky and VB-XPS). It was highlighted that this type I het-
erojunction hybrid RPCN could degrade the target contami-
nant in a short duration of time. The mechanism of the
electrons migration is represented in Fig. 6 (a), which can be
observed that the photo-generated electrons migrate from the
CB of graphitic carbon nitride to the CB of red phosphorus
while keeping the holes unmoved in the VB. The movement of
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Table 2 — Advantages and disadvantages in different types of LDH-based photocatalyst.

LDH based photocatalyst Heterojunction = Hydrogen Production Advantages Disadvantages Ref.
Type (wmol g~'h™?)
CoO/NiCo-LDH Type I 1500 o Electrons and holes spatially separated by the o Weaker driving forces at the interfaces mini- [82]
g-C3N./NiCo-LDH Type II 1170.1 charge transfer through staggered gap config- mising the carriers transfer rate between [66]
Ce0O,/CoAl LDH Type II 6157 uration, promoting a higher separation effi- semiconductors, requiring binding agents to [83]
MnCds@ NiAl-LDH Type II 7500 ciency than type I and type III strengthen the contact interfaces. [84]
g-C3N4/CoAl-LDH 2D/2D Type II 680.13 e Lower recombination rate of photogenerated e The charges transfer mechanism through this [85]
Zn4Cd;-xS/CoAl-LDH Type I 1516 charges compared to Z-scheme. configuration resulting in poor redox capability  [86]
MgAl-LDH/NiS Type II 35.8 as the photoinduced charges carriers accumu-  [87]
NiTiOs/CoAl-LDH Type I 594 lated at the band structures. [88]
ZnS—Zn0O/ZnAl-LDH Type II 1599 e Redox activities occur at semiconductors with [89]
gC3N4/NiAl-LDH 2D/2D Type II 3170 lower band potentials, which suppress their [90]
NiCo-LDH/P—CdS Type II 8665 redox ability and lead to the inability to drive [91]
g-C3N,/ZnTi LDH Type II ~161.87 some catalytic reactions. [92]
CdS/Ni—Fe-LDH Type II 469 o In some system, the shifting of the light- [93]
g-C3N,/NiFe LDH Type II 744 induced electrons to the CB of less active pho-  [94]
CdS-pillared ZnCr-LDH Type I 374 tocatalyst will result in poor photocatalytic [95]
CdZnS/ZnCr LDH Type II 916.20 performances. [96]
CdSe/ZnCr LDH Type I 2196 [97]
NiAl LDH/g-C3N4/AgsPOy4 Z-scheme 268 o Able to retain higher redox capabilities and o Utilization of ion mediator in traditional Z- [98]
WO3—x/Ag/ZnCr- LDH Z-Scheme 29 375 quantum yield than type II, covering a wide scheme generate backward reaction suppress-  [99]
MoS,/NiFe LDH Z-Scheme 550.9 range of solar application. ing the catalytic efficiency of the photocatalyst.  [100]
¢ Strong reduction and oxidation reaction are o Absorption of visible light by redox mediators
preserved in direct Z-scheme by recombining reducing the photoabsorption ability of the
some of the charge carriers at the interfaces. photocatalyst.

e Active oxidation and reduction catalytic cen- o The use of noble metal as a solid electron
tres, minimising the backward reactions. mediator is non-economical.

o The utilization of a metallic conductorinanall- e The recombination of photoinduced charge
solid-state Z-scheme system enhances the carriers at the interfaces fails to drive catalytic
electron transfer through a synergistic activity at a specific system due to a small
combination of the Schottky barrier and SPR number of photogenerated charges are avail-
effect. able to undergo a redox reaction.

MoS,/CoAl LDH S-Scheme 17.1 e Unused photogenerated electrons and holes e Lack of experimental evidence to support the [7]
CoAl-LDH@NiMOF-74 S-Scheme 211 will be eradicated at the interfaces, reserving effective construction of this heterojunction [101]

electrons and holes with strong redox abilities.
Generation of the internal electric field through
surfaces contact between two n-type semi-
conductors effectively speeds up the electrons
migration.

system in various photocatalysis field.

(continued on next page)
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electrons was influenced by the reduction potential by the CB
of both the semiconductors, as discussed previously [109]. In
this context, the CB band potential of graphitic carbon nitride
is more negative than the reduction potential of water, thus
leading to the movement of the electrons towards the lower
CB band potential of red phosphorus. However, the holes are
confined in the VB of red phosphorus and unable to migrate
due to red phosphorus having more negative VB than in
graphitic carbon nitride. The synthesis representation of
RPCN is illustrated in Fig. 6 (b). Recently, Gao et al. have
developed a composite of ZnS/ZnIn LDH with the synergy of
heterojunction and defects engineering through in situ
etching growth process [110]. The hierarchical type I hetero-
junction hybrid successfully inducing 49.3 umol gth™*
hydrogen production. The positive contribution to the con-
struction of ZnS/Znln LDH without incorporating ZnS, was
hypothetically concluded through the exchange of the anions
on the surfaces and in the interlayer of LDH. Fig. 6 (c) illus-
trates the schematic synthesis process of the construction
ZnS on the surface of ZnIn LDH. The introduction of S$*~
leading to anion exchange with OH™ and CO3~ of LDH, leading
to the formation of seed crystal of Zn—S in the subsurface of
Znln LDH. It was noted that, good photocatalytic perfor-
mances was highly attributed to the presence of S vacancies
[78,111]. The confinement effect of heteroatoms (In) around
Zn within the subsurface and insufficient content of S*~ sub-
sequently generates a vertically grown ZnS with rich S defects
content, promoting the generation of hydrogen. Besides, the
control amount of S~ needed to be given full consideration.
This is because excessive amount will lead to the aggregation
of ZnS nanosheets, lowering the photocatalytic efficiency. On
the other hand optimal amount of $>~ contributes to excellent
photostability and structural stability. From Fig. 6 (d), it can be
observed that the hydrogen production was maintained for
three consecutive cycles without any obvious reduction.
Furthermore, after three consecutive runs, ZnS/Znln LDH
does not show any changes in the crystalline structure and
still maintaining its flower-like shape implying good struc-
tural stability exhibit by the composite. Therefore, it was
summarised that the unique hierarchical architecture and the
presence of the S vacancies through defects engineering Znln
LDH bring positive contribution towards the generation of
hydrogen. However, insignificant increment of hydrogen
generation can be hypothetically scrutinised due to the for-
mation of type I heterojunction. As presented in Fig. 6 (e), the
type I band structure does not give significant contribution
towards a higher photocatalytic activity owing to their strad-
dling gap structure failed to promote spatial separation of the
photogenerated charges [73].

In another study, Zhu et al. reported that type I hetero-
junction is formed between tricobalt tetroxide with graphitic
carbon nitride nanotubes (C0304/C3N, NTs) under air condi-
tion [107]. Photocatalytic hydrogen performance was observed
to be higher than its intrinsic counterpart. However, it was
disclosed that type II heterojunction exhibits a better photo-
catalytic performance than in type I. This is because the type I
heterojunction system exhibits an optimum band position for
the electron-hole separation than in type I. Besides, the band
structure of type II provides more efficient electron
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transferring which prolong the excitation times and ulti-
mately improved the photocatalytic performance.

Type II heterojunction

The spatially localised charges in type Il heterojunction makes
it more promising to promote the electrons-holes separation
and prolong the lifetime of the charge carriers. The energy
gradient present at the interfaces will result in the spatial
separation of electrons-holes where the electrons and holes
migrate to the different sides of the heterojunction relative to
their band potential [106,112]. In type II heterojunction, the
transfer of photoexcited electrons flows from SCA to SCB,
while holes flow in the opposite direction (SCB to SCA). The
more negative CB potential of SCA incites the photoexcited
electrons mobility towards the less negative CB potential of
SCB. Meanwhile, the more positive VB of SCB leads to the
migration of holes towards the less positive VB of SCA. The
movement of charges following this pattern leads to spatial
separation, directly improving photocatalytic activity [113].

LDH, as a single photocatalyst, has numerous limitations
even though it shows a positive photocatalytic accomplish-
ment over the decades. Rapid recombination of the charge
carriers and low photochemical energy of LDH-based photo-
catalyst limit their industrial applicability for photocatalytic
hydrogen generation. However, heterojunction formation is
considered the best way to overcome this limitation as it could
increase the optical absorption range and elevate the photo-
genic carriers separation and mobility [48]. The synergistic
effect of coupling a single-component LDH with other semi-
conductors with appropriate band potential could boost the
photocatalytic activity of LDH. Meanwhile, improving photo-
catalytic hydrogen generation of LDH-based photocatalyst
through type II heterojunction has gained scientific interest.
For instance, a very recent study on type II heterojunction
constructed by Meng et al. between g-C3N4/NiCo-LDH has
shown a remarkable improvement in the photocatalytic ac-
tivity with a hydrogen evolution rate of 1170.1 pmol g-th™*
[66]. The synergistic effects of pDA as an electron mediator
with the type II band arrangement spatially improve the
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samples (f) stability test results for 30% g-C3;N4/NiAl-LDH [90].

electron migration and increase the interfacial contacts be-
tween NiCo-LDH/g-C3Ny. It can be observed from Fig. 7 (a) that
the composite of g-C3N4@pDA/NiCo-LDH (LPC) exhibits a more
robust photocurrent response than their intrinsic counterpart,
which indicates an improved separation efficiency. Besides,
the composite was observed to maintain its photocatalytic
stability under 20 h continuous cycle, which highly attributed
to the closer interface contact between the NiCo LDH and g-
C3Ny, inducing a good photo absorption ability. Additionally,
enhanced optical properties and the stability of the composite
was due to the dispersion of the catalytically active metal of Ni
and Co in the LDH [114]. The addition of Co metal acting as a
dopant improving the optical properties of the LDH and leads

to an improvement in the photochemical properties of the
composites [115]. The study of type II heterojunction of NiCo
LDH-based composite was extended by Wang et al. [82]. They
disclosed that the introduction of NiCo LDH enhanced the
charges migration between CoO/NiCo LDH composite. It was
highly noted that the bridge linkage of Co atom induced an
intimate contact between the semiconductors, accelerating
the migration of the photogenerated charges. The transfer of
electrons from Co®" of CoO to Co>" of the NiCo LDH promote
an optimal separation of the photogenerated charges. Besides,
the improvement in the solar activation energy was linked
with the types of transition metal instituted into the LDH. The
high electron transfer ability in the binary cations of Ni and Co
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synergistically contribute to the reduction in the charge
transport resistance and promote facile separation. Even
though, type II configuration was linked with a weaker driving
force to drive the redox reaction, however, the formation of
Co—0—Co bond between CoO and NiCo LDH strengthen the
interfacial contact and improve the stability of the composite.

Similarly, the study on the type II heterojunction with 2D/
2D materials hybrid by Zhang et al. found that strong inter-
facial interaction between g-C3N4/CoAl LDH expedite the
spatial separation of the photoinduced charges as well as
shorten the charge transmission distance [85]. The TEM
morphology and synthesis process of 2D/2D g-C3N,/CoAl LDH
are illustrated in Fig. 7 (b) and (c). The hydrogen production
rate is found to be 680.13 pmol g~th~ ! which was 21 times
higher than that of pure CoAl LDH. Besides, it was found that
the composite exhibit good photoabsorption stability with no
apparent decrease in the efficiency up to three cycles. On the
other hand, a recent study by Guo et al. reporting an amelio-
ration in the hydrogen production rate of CeO,/CoAl LDH up to
6157 umol g~th ™" which is 9 times higher than those reported
by Zhang et al. [83]. It was reported that the institution of Co®*
leading to a positive impact on the hydrogen evolution rate
[116]. However, CoAl LDH was observed to have a poor crys-
tallinity structure, which is one of the factors that cause the
lower in photoactivity of most CoAl LDH-based photocatalyst
[117]. It was denoted that high crystallinity structure could
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enhance the photocatalytic activity by expediting the charge
transfer to the surface of the photocatalyst and lowering the
density of defects which serves as a recombination centre
[118]. One way to improve the crystallinity structure of LDH is
through the integration with other semiconductors, tuning
the morphological structure of the composite. However, in the
Ce0,/CoAl LDH type II heterojunction, introducing CeO, does
not change the crystal structure of CoAl LDH. This infact re-
duces the specific surface area of the CoAl LDH as observed
from the BET analysis. This characteristic nonetheless serving
CoAl LDH as a supporting site and prevent particle aggregation
by CeO,. The higher catalytic activity possessed by CeO,/CoAl
LDH was associated with lower interfacial transfer resistance
with the strong electrostatic attraction between the two
semiconductors. The electron transfer mechanism following
type II configuration notably increase the charge carriers
transfer efficiency.

In different studies, both Megala et al. and Gil et al. re-
ported that the formation of heterojunction type II could
elevate the photocatalytic hydrogen production with the
hydrogen yield of 3170 ymol g-*h™* and 1599 pmol gth™* ,
respectively [89,90]. Megala et al. highlighted that an appro-
priate ratio of g-C3N, in the composite of g-C3N,/NiAl LDH
could generate the highest value hydrogen production re-
ported in the NiAl LDH family. Besides, the construction of
type II heterojunction with graphene-based materials was
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reported to prevent the aggregation of monolayer LDH which
could minimise its photocatalytic efficiency [119,120].
Furthermore, it can be observed that the specific surface area
of the NiAl LDH was improved from 24.376 to 30.419 m®g™
after the integration of g-C3Ny. It is obvious that the surface
area of the composite is one of the contributing factors in
escalating the photocatalytic hydrogen performance as it
provides more reaction sites for water splitting. The TEM
image of g-C3N4/NiAl LDH is shown in Fig. 7 (d), while the
time-dependent hydrogen generation (umol g-*h™?)is rep-
resented in Fig. 7 (e). Under 18 h continuous irradiation, the
composite of g-C3N,/NiAl-LDH was observed to maintain its
photoabsorption stability and a slight reduction in the ac-
tivity was observed after 18 h irradiation, as shown in Fig. 7
(f). Excellent photoabsorption stability was attributed to a
strong 2D/2D (surface-to-surface) contact interface. Besides,
the incorporation of divalent metal Ni increases the active
catalytic sites and enhances the surface area, contributing to
higher photochemical stability [121].

On the other hand, Chen et al. constructed type II MgAl
LDH/NiS heterojunction as illustrated in Fig. 8 (a) to study the
effect of NiS co-catalyst on the photocatalytic activity of
MgAl LDH [87]. Even though the composite displayed a
moderate increment in the hydrogen evolution rate
compared to other reported LDH-based composite, it was
noted to show a positive progression than its intrinsic
counterpart. The lower photocatalytic activity of pristine
MgAl LDH (2.7 pmol g-*h™") was improved by forming a
heterojunction with NiS escalating the hydrogen generation
to 35.8 umol g~'h™'. The shifting in the solar absorption
spectrum considerably indicate an improvement in the
photochemical properties of the composites. Note that the
development of metal-free heterojunction could be an
effective alternative to replace a highly cost noble metal.
Additionally, morphological tuning is one of the contributing
factors to improve the crystallinity structure of the LDH-
based composites. Therefore, the synergistic combination
of the morphological tuning with the formation of hetero-
junction substantially grant the LDH-based composite a
notable place in the photocatalysis field. In this context, Yao
et al. has developed hierarchical flower-like CdZnS@LDH
microstructures through a facile one-pot hydrothermal pro-
cess [96]. Fig. 8 (b) shows the improvement in the hydrogen
evolution rate by the composite of CdZnS@LDH. It was
revealed that the introduction of ZnCr LDH nanosheet as a
co-catalyst aid in the enhancement of the photocatalytic
activity. Besides, it is possible to fabricate a hierarchical
photocatalyst of type II heterojunction with reasonable
control of the elemental components and the surface charge
density of LDH nanosheets. The integration of the ZnCr LDH
nanosheet could prevent the agglomeration of the pristine
CdZnS. As observed from the SEM image in Fig. 8(c—d), the
hierarchical flower-like structure was formed after the
institution of ZnCr LDH compared to the agglomerated-
stacked structure of pure CdZnS in Fig. 8(e—f). Therefore,
the uniform dispersion of ZnCr LDH improves the crystal-
linity and structural stability of the composite, which
directly preserved long-term stability under light irradiation.

Therefore, it can be concluded that the construction of
type II heterojunction significantly improves the
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Ref.

Sacrificial Agent Hydrogen Production

Reactor

Synthesis Method

Heterojunction  Light source/incident light

LDH based

(wmol g*h™")

Type

photocatalyst

(82]

1500

0.1 M Na,S
0.1 M Na,SOs
Lactic acid

Quartz reactor

100 mW cm 2 Xe lamp

Type II

CoO/NiCo-LDH

[01]

8665

300W Xe lamp, band pass filter
(

Type I

NiCo-LDH/P—CdS

420 nm)

(83]

6157

TEOA

Quartz reactor

5 W Xe arc lamp, cut off filter
(x

Type I

CeO,/CoAl LDH

420 nm)

(85]

680.13

TEOA

Closed Pyrex reactor

300 W Xe lamp outfitted with
the optical filter AM 1.5

5 W LED white light

5 W LED light

Type II

g-C3N4/CoAl-LDH 2D/2D

(86]
(88]
(84]

1516
594

Lactic acid

TEOA

Ultrasonication

Type I

Zn,Cd1-,S/CoAl-LDH
NiTiOs/CoAl-LDH

Quartz reactor

Phosphating treatment
Ultrasonication

Type I

7500

0.1 M Na,S and
0.1 M Na,SO;

TEOA

Quartz reactor

Type I 5 W Xe lamp (A > 420 nm)

MnCdS@ NiAl-LDH

[90]
[92]

3170

Quartz reactor

In situ hydrothermal
One-step in-situ
hydrothermal

Type I Quartz Tungsten Halogen lamp

gC3N/NiAl-LDH 2D/2D
g-CsN/ZnTi LDH

~161.87

Methanol

300 W Xe arc lamp, cutoff filter
(

Type I

420 nm)

(87]

35.8

Methanol

Circulation reactor

Hydrothermal and
precipitation

300 W Xe-lamp, optical filter

(O

Type I

MgAI-LDH/NiS

420 nm)

Methanol 1599 [89]

Quartz reactor

Mercury lamp (UV Pen-Ray)

(A = 254 nm)

Type I

ZnS—Zn0O/ZnAl-LDH
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photocatalytic activity of all types of LDH-based photo-
catalyst regardless of the percentage increment. It can be
summarised that in type II heterojunction system: 1) the
built-in field drives the photogenerated charges to move in
the opposite direction, 2) fast electron transfer hasten the
redox reaction and the generation of hydrogen, 3) movement
of charges following the band configuration assisted its
separation and minimising charges recombination [122,123].
Table 3 summarises the hydrogen evolution rate of recently
developed type Il LDH-based photocatalyst for the past three
years. Different types of LDH based-composite has been
constructed by integrating different type of binary LDH such
as NiCo, MgAl, CoAl, ZnCr, NiAl, and ZnTi. The combination
between the divalent and trivalent metal ions in LDH and the
configuration of their chemical composition synergistically
improve its photoabsorption ability and optimize their elec-
tronic structure [124]. Out of the reported LDH-based com-
posite, higher photocatalytic activity can be observed in the
Ni-based LDH.

According to Barliarsingh et al. incorporating Ni metal
could preserve the crystallinity structure of the LDH and as
well improve its surface area [125]. This was in parallel with
the stability test done on NiCo-LDH/P—CdS in which excellent

Before Contact

After Contact

structural and photoabsorption stability can be observed
with a retained photoactivity after 16 h. It was also proven by
Zhao et al. that Ni-containing LDH exhibit the highest crys-
tallinity structure with a substantial reduction of band gap
compared to Zn and Mg [126]. As mentioned, CdS highly
suffered from photo corrosion due to sulfide oxidation in
which S*>~ readily oxidised by photogenerated holes [127].
Thus, low stability in oxygen-rich solvent limits the role of
CdS in photocatalysis despite having good band gap energy
[57]. However, constructing a hybrid composite with Ni-based
LDH lead to improved properties, enhance its photostability
and oxidation stability. The uniform dispersion of active
metal Ni subsequently prevents the agglomeration of CdS
particles. Furthermore, the incorporation of trivalent metal
ions Co and Al was denoted to shift the solar absorption to-
wards the visible spectrum of NiCo LDH and NiAl LDH with a
band gap of 2.2 and 2.6 eV, respectively [128]. The interca-
lated Co% in the interlamellar of LDH serves as holes
confinement assisted in the formation of the hydrogen [129].
Therefore, distinct properties manifest by Ni-based LDH is
one of the contributing factors leading to an excellent pho-
tocatalytic activity and stability observed in NiCo-LDH/P—CdS
and MnCdS@NiAl-LDH.
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Fig. 9 — Schematic illustration of (a) typical photocatalytic processes on a semiconductor (b) electron—hole separation under
the influence of the internal electric field of a p—n heterojunction photocatalyst [73] (c) photocatalytic pathway of charge
transfer in Au/CaFe,0,/CoAl LDH for H, and O, evolution and Cr(VI) reduction [104].
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P-n heterojunction

Tremendous efforts have been devoted to increase the spatial
separation of electrons to improve photocatalyst efficiency.
One of the most effective methods to improve photocatalytic
water splitting overall efficiency is through the formation of
the heterojunction [130,131]. The construction of p-n hetero-
junction can be achieved by integrating p-type and n-type
semiconductors. More importantly, the existence of the elec-
tric fields at the interface of p-n heterojunction could enhance
the photocatalytic activity of the photocatalyst [132]. It was
revealed by Guo et al. that the integration of p-type g-C3N4 and
the n-type Bi4Ti301, heterojunction could suppress the
recombination of photogenerated electron-hole pairs,
increasing the photodegradation efficiency [133]. The electric
field at the interface will assist in separating the electron-hole
pairs, resulting in the spatial separation and expediting the
photocatalytic performances. The formation of p-n hetero-
junction was presumed to be distinctly effective than type-II
heterojunction due to the synergistic effects between the in-
ternal electric field at the interfaces and the methodical band
alignment [134].

The schematic illustration of the p-n heterojunction
mechanism is shown in Fig. 9. In the p-n heterojunction sys-
tem, the semiconductors are composed of the p-type (oxidis-
ing) and n-type (reducing), which individually consist at
different Fermi levels. The photoexcited electron at the n-type
semiconductor migrates to the p-type, leaving a positively
charged species, while the holes at the p-type semiconductor
migrate to the n-type semiconductor leaving a negatively
charged species. The region at the p-n interfaces has now
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become positively and negatively charged. The migration of
electrons-holes is continuous until the Fermi level achieved
equilibrium [135]. The charged spaced at the interfaces of both
the semiconductors is known as the internal electric field.
Under light irradiation, the electrons in both p-type and n-
type will be excited, generating electron-hole pairs. With the
aid of the internal electric field, the photogenerated electrons
in the p-type semiconductor will migrate to the CB of the n-
type semiconductor, while the holes in the VB of the n-type
semiconductor will migrate to the VB of the p-type semi-
conductor [131]. The migration of the electron-hole in this
system leads to the spatial separation of electron-hole pairs
and prolonging the exciton lifetime. This system is thermo-
dynamically stable as the CB, and the VB of the p-type semi-
conductor usually are located higher than those of the n-type
semiconductor [73,134,136].

The construction of the p-n heterojunction system in the
LDH based photocatalyst has been extensively studied. Even
though the selection of LDH in photocatalysis was highly
favoured, it was denoted that some of the LDH-based photo-
catalysts displayed a poor crystalline structure, leading to a
low reaction rate in the photocatalytic reaction. Recently,
Yang et al. have assembled NiV LDH nanosheet onto hexag-
onal CdS, constructing p-n heterojunction system [102]. It was
believed that the emergence of the internal electric field fa-
cilitates the separation of electron-hole pairs in the n-type
CdS and p-type NiV LDH escalating the hydrogen generation
up to 6.59 times higher than pristine CdS. The integration of
NiV LDH does not affect the chemical composition of CdS but
improved the stability of the composite. The photo corrosion
of CdS was greatly hindered, and the poor crystallinity in
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Fig. 10 — (a) XRD pattern of the composite of CdS/NiV LDH before and after the reaction (b) PL spectra of CdS and CdS/NiV-
LDH [102] (c) schematic illustration of the synthesis process of NiAl-LDH, NiAl—-P, CusP, and CuzP/NiAl-P (d) SEM images of

Cu;P/NiAl-P [48].
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individual NiV LDH could be overcome by constructing CdS/
NiV LDH heterojunction. The large interfacial electric field
between the p-n semiconductors facilitates the transfer of
electrons and holes to the surface of CdS and NiV LDH [137].
This thereby, inhibits the accumulation of holes at CdS,
inherently increase the photostability of CdS/NiV LDH. A
sharp diffraction peak of the XRD pattern in Fig. 10 (a) proved
that the composite of CdS/NiV LDH retains its crystallographic
structure before and after the reaction indicating excellent
structural stability. The increased in the crystallinity of the
composite leads to more efficient charge migration and
minimise the centre for the recombination of photogenerated
charges [138]. It was noted that NiV LDH outstandingly serves
as a site for the splitting of water to hydrogen, manifesting a
more negative zeta potential (—14.0 mV) than CdS (—13.6 mV).
PL spectra analysis in Fig. 10 (b) demonstrates a depression in
the peak of the composite CdS/NiV LDH, disclosing an
exceptional separation efficiency of the photogenerated
charges. Additionally, CdS/NiV LDH possesses good optical
and photochemical properties with band gap energy of
2.24 eV, favouring its activation under visible light irradiation
and higher photoactivity.

On the other hand, p-n heterojunction system has been
constructed by integrating binary NiV LDH with a Co-based
zeolitic imidazolate framework (ZIF-67) [11]. It was disclosed
that hydrogen generation was 9.5 and 5.9 folds higher than
pristine NiV LDH and ZIF-67, respectively. However, this LDH-
based composite displayed 1.76 folds lower hydrogen pro-
duction than CdS/NiV LDH. The construction of a large inter-
face between the dodecahedron ZIF-67 and monolayer NiV
LDH conspicuously provides a space separation, further
enhancing the transfer of charge carriers. Furthermore, the
layers aggregation exhibit by NiV LDH could be hindered with
the construction of NiV LDH/ZIF-67 due to the higher disper-
sion and construction of multiphase interphases. Besides,
higher photoabsorption ability was highly associated with the
activation of ligand adjacent to Co(ll) ions in ZIF-67 through
coupling with NiV LDH, accelerating the ligand-to-metal
charge transfer. It was also noted that the decay lifetime of
NiV LDH/ZIF-67 was smaller (0.29 ns) compared to their indi-
vidual counterpart, indicating an efficient carriers transfer by
the composite. The integration of NiV LDH as a co-catalyst
forming p-n heterojunction system significantly enhances
the stability of the composite and widen the light response
range. It was consistent with the XPS analysis before and after
the reaction, confirming the excellent chemical stability
exhibited by the composite. The presence of transitional
element V in NiV LDH also plays significant role in providing
more trapping centres and improving the optical properties of
the composite [139]. Therefore, the amelioration in the pho-
tocatalytic activity observed in NiV LDH/ZIF-67 positively
linked with the efficient charges transfer owing to ideal con-
struction of p-n heterojunction system and prominent role
plays by NiV LDH.

In a different study, a unique tunable structure of LDH has
aspired Yan et al. to derive the NiP, QD from NiAl-LDH and
integrate it with CusP forming a p-n heterojunction [48]. The
preparation of CusP/NiAl—P and its SEM image is illustrated in
Fig. 10(c—d). The higher photocatalytic hydrogen production
(6783.8 ymol g~*h™') which is 4.5 times that of NiAl-LDH

attributed to the well-dispersed point-to-point p-n hetero-
junction hybrid supported on stereoscopic nanoflower struc-
ture. The formation of the 3D structure increased the exposed
active sites and enhanced the adsorption of protons. However,
it was highlighted that the main contributor to the highly
efficient photocatalytic activity is the formation of the p-n
junction generating the built-in electric field facilitates the
charge migration. Besides, it was reported by Das et al. that
the formation of the p-n heterojunction photocatalyst fabri-
cated with noble metal Au showed a high hydrogen genera-
tion rate of 379.1 pmol g-*h! [104]. They developed Au NP
loaded on the CaFe,0,/CoAl LDH and observed the enhance-
ment in terms of the solar conversions and thermodynami-
cally favoured charge migration. The synergistic effects of the
built-in internal electric fields with the surface plasmon effect
by Au metal improve the rate of hydrogen and oxygen
generation.

It was concluded that this heterojunction system exhibits
higher efficiency in promoting the transfer of electrons than
those of type II, thereby providing higher photocatalytic per-
formances. The additional induced electric field is one of the
contributive factor for an excellent acceleration of electron-
hole migration across the heterojunction. The construction
of LDH-based composite through this system by Sahoo et al.
shown to exhibit the most outstanding photocatalytic
hydrogen generation. Based on the reported studies, the order
of the LDH based p-n junction composite according to their
photocatalytic efficiency can be denoted as follows: Co(OH),/
ZnCr LDH > g-C3N4/phosphorylated-NiFe LDH > CdS—NiV
LDH > Au/CaFe,0,/CoAl LDH > NiV LDH@ZIF-67. However, the
efficiency of the hybrid LDH composite is not solely dependent
on the type of heterojunction constructed and the type of
paired photocatalyst. Other factors such as the intensity of
light, design of the reactor, and the type of sacrificial agents
used could also affect the performances of the photocatalysts.
Therefore, the efficiency trend observed in the reported LDH
based p-n junction composite may be due to the synergy of
heterojunction type and the mentioned factors.

Z-scheme heterojunction

The Z-scheme heterojunction system was first introduced by
Bard et al. in 1979 in which was inspired by the natural
photosynthesis process. The Z-scheme system was then
improvised over the years and designed to improve the im-
pediments in the conventional type II heterojunction photo-
catalyst. Even though the type II heterojunction system has
been considered an ideal solution for improving the photoin-
duced charge separation, weakened driving force has failed to
drive a specific reaction in this system. Therefore, the Z-
scheme heterojunction system has been perceived as a novel
way to ameliorate the separation of photoinduced charges
and simultaneously preserve a strong redox ability and
driving force [67,81]. Basic principles of Z-scheme photo-
catalyst typically consisting of a paired semiconductor with
one is oxidation photocatalyst while another is reduction
photocatalyst. Both of the semiconductors are connected
through an appropriate shuttle electron mediator. Oxidation
photocatalyst conceptually has a lower VB position with a
strong oxidation ability, while reduction photocatalyst is the
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Table 4 — LDH-based Z-scheme heterojunction system with their advantages and limitations.

Z-scheme type LDH-based Hydrogen Advantages Limitations References
composite production
Traditional Z- = = e The accumulation of electrons at CB with higher o The existence of a backward reaction decreasing
scheme reduction potential and holes at VB with higher the number of effective electrons and holes.
oxidation potential induced strong redox ability. o Not widely applicable as it needs to be constructed
¢ Redox ion mediator assists the electrons transfer in the liquid phase.
between the semiconductors. e The amount of ion redox mediator needed to be
optimally controlled to avoid the shielding of
electrons.

o Absorption of visible light by redox mediators
reducing the photoabsorption ability of the
photocatalyst.

o The utilization of redox ion mediator depends on
the pH concentration:

o Fe**/Fe?* promote catalytic reactions under
weakly acidic to an alkaline condition.
o I03/I" promote catalytic reactions under stron-
ger acidic condition.
All-solid-state Z- WO;3—x/Ag/ZnCr- 29 375 e Exhibit higher redox capabilities, same as tradi- o Difficult in controlling the position of metal [99]
scheme LDH tional and direct Z-scheme. conductor to be assembled between the
e Hasten the charge transfer between the semi- semiconductors.
conductors due to the shorter transfer pathway. o The incorrect positioning of the metal conductor
e Utilization of metallic conductor induced Schottky leading to them functioning as co-catalyst instead
junction and SPR effects. of electron mediator.
o Inhibit the backward reaction that commonly oc- e Uncontrollable amount of the metal conductor
curs in traditional Z-scheme system. resulting in the electron shielding, lowering the
e Applicable either in liquid or in gas system. photocatalytic efficiency.

o Some of the metal conductors exhibit good photon
absorption resulting in competition with the
semiconductor for light utilization.

Direct Z-scheme MoS,/NiFe LDH 550.9 e Promote a spatial separation of photoinduced e The recombination of photoinduced charge car- [100]
NiAl LDH/g-C3N4/ 268 charges and reduce bulk electron-hole riers at the interfaces fails to drive catalytic activity [95]

AgzPO,

recombination.

Non-effective electrons and holes recombined at
VB of reduction photocatalyst, preserving charges
with strong redox capabilities.

Does not utilize any mediator to promote charges
transfer.

at a specific system due to a small number of
photogenerated charges are available to undergo a
redox reaction.
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electron acceptor and donor, respectively; (b) Schematic illustration of charge carrier transfer in all-solid-state Z-scheme
photocatalysts (c) Schematic illustration of charge carrier transfer in direct Z-scheme photocatalysts. E means the electric
field [73] (d) Schematic illustration of pDA/g-C3N4/ZnAl LDH (yP-LDH_TCN) composites and the structural diagrams of the
polydopamine synthesis processes [148] (e) rate of H, evolution of pristine ZnCr LDH, WO3; and WO5/ZnCr-LDH with
different WO; ratio [99] (f) mechanism of electron transfer in ternary NiAl LDH/g-C3N4/Ag;PO, Z-scheme system [98] (g) rate
hydrogen evolution of pristine NiFe LDH, MoS,, and MoS,/NiFe LDH with different MoS, ratio [63].

one with a higher CB position and exhibits strong reduction
ability. These two semiconductors have staggered band
structure configurations. Z-scheme heterojunction system
can be categorised into three types as denoted in Table 4: (i)
traditional Z-scheme photocatalysts, (ii) all-solid-state Z-
scheme, and (iii) direct Z-scheme. The type of the Z-scheme
heterojunction photocatalyst depends on the type of charge
carrier mediator used [140,141]. There are clear distinctions
between different types of Z-scheme photocatalyst which can
be discussed in terms of working mechanism, the synthetic
process, properties, and applications [68,81,140].

In the traditional Z-scheme heterojunction system, the
coupling of two semiconductors is basically based on the use
of a shuttle redox ion mediator, acting as electron transfer
between two semiconductors. Redox mediators or electron
shuttles are generally organic molecules that can undergo a
reversible oxidation and reduction process [142]. In this
context, the shuttle redox mediator acts as a connector con-
sisting of an acceptor and donor pair to aid the photocatalytic
process without having the two semiconductors in contact
with each other, as illustrated in Fig. 11 (a). For instance, Fe*/
Fe?*, Co3*/ Co?*, 10% /1", NO3> / NO?™ are the most common
redox coupled ion mediators used in the photocatalytic water
splitting system. Upon light irradiation, the electrons will be
transferred from the O, generating photocatalyst to H,
generating photocatalyst through the mediators where the

photogenerated holes in the VB of PC I and electrons in the CB
of PC Il will be consumed by the electron donor species (D) and
electron acceptor species (A) respectively. The reserved elec-
trons in the CB of PCI and holes in the VB of PCII, which
possess a strong redox ability, will correspondingly undergo
the reduction and oxidation process. The separation of both
the oxidation and reduction part ultimately enhanced the
photocatalytic activity of the photocatalyst [81]. However, the
existence of the back reaction of the redox mediator, light-
shielding effect, slow charge carrier transfer rate, and unsta-
ble redox mediator are the challenges that minimise their
efficiency as the prime system in photocatalysis [67,68].

On the other hand, electron mediators in the all-solid-state
Z-scheme are typically in solid form, assisting the migration
of electrons from one semiconductor to the other, as shown in
Fig. 11 (b). The introduction of a conductor between PC I and
PC II is known as Ohmic contact [143]. The all-solid-state Z-
scheme system can possess high redox ability and increases
the spatial separation of the electron-holes [144]. This system
can be considered the best replacement for the traditional Z-
scheme system because, without A/D pair, the backward re-
action and the shielding effect can be prevented. The photo-
generated electrons and holes in CB of PC Il and VB of PC I will
be recombined and eradicated through the ohmic contact.
Therefore, the reserved electrons in the CB of PC I and holes in
VB of PC II, holding a powerful redox ability will participate in
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the reduction and oxidation process. The mediator provides
the pathway for preserving more electrons and holes to un-
dergo redox reaction and leading to a significant increase in
the photocatalytic performances. In addition, this system can
work both in the gas and liquid phase environment, which
extends their applicability from water splitting to solar cells,
photodegradation, and CO, conversion [140]. However, the
main limitation of this heterojunction system is the use of an
expensive noble metal as the mediator.

Direct Z-scheme is one of the most advanced heterojunction
systems in which the concept was first introduced by Gratzel in
2001 [145]. Since then, the direct Z-scheme heterojunction sys-
tem has been extensively studied over the years. In this system,
the backward reaction and the shielding effects cannot occur
due to the absence of the redox mediator. Upon light irradiation,
the photogenerated electrons in the CB of PC II will be recom-
bined with holesin the VB of PC1 at the heterostructure interface,
as shown in Fig. 11 (c). The higher transfer efficiency, powerful
oxidative holes, and reductive electrons to undergo redox reac-
tion enhanced the photocatalytic activity [146,147].

In the context of the Z-scheme system in LDH-based pho-
tocatalyst, Li et al. fabricated g-C3N4/ZnAl-LDH composite by
utilising pDA as the redox mediator through polydopamine
cross-linkingmethod presented in Fig. 11 (d) [148]. The addition
of pDA as an electron transferring medium impressively has-
ten the electron transfer efficiency. The uniform dispersion of
active metal Zn and Alin the calcined ZnAl LDH was denoted to
contribute to the strong structural ‘memory effect’, which
benefits its structural reconstruction [149]. Additionally,
calcining LDH will convert them into mixed metal oxide due to
the removal of —OH groups in the interlamellar space, deacti-
vating its layered structure [150]. On the other hand, rehyd-
rating the calcined LDH will restore its LDH properties and
reconstruct its native layered structure due to the unique
structural ‘memory effect’ exhibitby LDH [151]. The calcination
process favourably increases the active phase dispersion in
LDH, thereby augmenting the energy conversion efficiency in
the reconstructed LDH. Additionally, enhanced photocatalytic
activity was observed under optimal calcination temperature
at500°C, which theoretically due to the generation of the active
phase, exposing more redox-active sites. The synergy between
PdA as electron mediator and calcined ZnAl LDH imparted a
prominent role in improving the overall photocatalytic effi-
ciency by providing an additional path for electron transfer and
facilitate the separation of photogenerated charges.

The study of all-solid-state Z-scheme heterojunction system
was extended by Sahoo et al. by constructing WOs/ZnCr LDH
with the noble metal Ag as an electron mediator [99]. This group
so far has reported the highest hydrogen generation in the LDH-
based composite Z-scheme systems. As observed in Fig. 11 (e),
the hydrogen evolution rate substantially improved up to
29 375 umol g~*h™'. Higher photoactivity observed in this Z-
scheme system is primarily due to the outstanding photo-
chemical properties exhibited by WOs/ZnCr LDH, which can
reasonably be explicated as follows. Strongelectron conductivity
in Ag boosted the mobility of the photoinduced charges and
increased the light absorption spectrum, owing to its surface
plasmon resonance (SPR) effect [152]. Additionally, the Schottky
barrier and SPR effect induced by metallic Ag fundamentally
facilitate the transfer of electrons from WOs;_, towards ZnCr LDH

to be recombined with holes. The formation of Ag—OH bond
between Ag NPs and ZnCr LDH favors the construction of Ag as
an electron mediator, assisting the flow of charge carriers
through the Z-scheme mechanism. The formation of an electron
conduction bridge by Ag NPs provides an interior direct channel
for an efficient electron transfer, augmenting the excitation en-
ergy. Furthermore, the oxygen vacancies in WO5_ significantly
provide support for anchoring Ag while serving as carriers
trapping site, which could reduce the reaction activation energy
for the photocatalysis process [153]. On the other hand, ZnCr LDH
was given attention due to its high quantum efficiency and
excellent photoabsorption ability as a stand-alone catalyst [154].
It was noted that the increase of the oxygen vacancies was
observed after hybridizing WO, with ZnCr LDH, effectively
enhances its electrical conductivity and hindered the recombi-
nation of photogenerated charges. The trivalent Cr ion was re-
ported to be the most active than other trivalent metal ions,
which plays a vital role in shifting the absorption range towards
the visible spectrum [155]. The presence of metal-to-metal
charge transfer in ZnCr LDH through oxo-bridged bimetallic
linkage positively contributes to the enhancement of the pho-
toabsorption ability [105]. Therefore, the coupling of WO5_, with
ZnCr LDH through Ag as an electron channeling bridge not only
hasten the electron transfer in the Z-scheme system but syner-
gistically boost the photocatalytic activity of the composites.

A very recent work by Megala et al. on the formation of
direct Z-scheme in the NiAlLDH/g-C3N4/Ag;PO4 revealed a dual
functionality exhibited by the ternary photocatalyst in accel-
erating the generation of hydrogen and oxygen [98]. The study
on the wettability of the composite, disclosing good hydro-
philicity properties exhibit by NiAl LDH/g-C3N4a/Ag;PO,
observed through the measured water contact angle. It was
denoted that surface wettability is highly linked with the cat-
alytic activity of the materials [156]. In this context, materials
with hydrophilic properties were reported to exhibit higher
photocatalytic performances. Additionally, the formation of
multi-heterojunction in NiAl LDH/g-C3N4/AgsPO,4 could greatly
enhance the absorption spectrum and efficiently constrain the
separation resistance thereby, extending the carriers lifetime.
In this dual Z-scheme system, AgsPO, serves as an oxidation
site in generating oxygen owing to more positive VB, while g-
C3N,; with more negative CB serves as a reduction site in
generatinghydrogen. On the other hand, NiAl LDH sandwiched
between g-C5N4/AgsPO, acting as carrier transfer in facilitating
the charges transmission. The mechanism of electron transfer
in ternary NiAl LDH/g-C3N4/AgsPO, Z-scheme system is
demonstrated in Fig. 11 (f). The production of hydrogen in this
unique dual Z-scheme system was reported to be 268 pmol
g 'h~! while oxygen evolution is 4330 umol g~th™".

In another study, Nayak et al. reported the formation of the
Z-scheme heterojunction system enhancing the photo-
catalytic hydrogen evolution of MoS,/NiFe LDH to 550.9 pmol
g 'h™! which is 10.9 times higher than pure bimetallic NiFe-
LDH [100], as shown in Fig. 11 (g). Through the Z-scheme
heterojunction system, the remaining electrons in the CB of
MoS, with a robust reduction ability participate in the reduc-
tion of H*to H, leading to enhanced photocatalytic activity. Z-
scheme system with Ag as electron transferring medium also
was reported by Chen et al. in the photocatalytic reduction of
Cr(VI) and observed a good photocatalytic stability without
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decrease in the efficiency after 5 cycles [63]. The construction
of Z-scheme system can be seen as the novel alternative to
substitute type II heterojunction system as this system
demonstrated strong redox ability and accord more catalytic
active center than conventional type II system.

S-scheme heterojunction

The step scheme, known as S-scheme, was first proposed by
Fu and co-workers in 2018 to overcome the shortcomings in
the Z-scheme and type II heterojunction system. S-scheme
system typically constituted of two n-type semiconductors
depicted as oxidation photocatalyst and reduction photo-
catalyst, respectively, relative to their band structure [157]. In
this system, reduction photocatalyst was assigned to those
having more negative conduction band, which predominantly
served in the production of solar fuels such as the generation
of hydrogen. On the other hand, the holes in oxidation pho-
tocatalyst plays a significant role in the oxidation reaction
commonly serves in the photodegradation process [65]. S-
scheme heterojunction has the same staggered band struc-
tures as those of type II heterojunction. However, in the S-
scheme system, the potential band's energies were bent to
provide an easy transfer of electrons at the interface driven by
the interfacial internal electric field (IEF) [7]. As discussed, type
II heterojunction exhibits weak redox ability due to the
accumulation of photogenerated electrons and holes in the CB

of oxidation photocatalyst and VB of reduction photocatalyst
[158]. Contrarily, in the S-scheme system, the useful electrons
at CB of reduction photocatalyst and holes at VB of oxidation
photocatalyst will be reserved, while the unused electrons and
holes will be recombined and eradicated at the interface,
thereby enhancing the redox ability [159].

The critical point in the S-scheme transfer route system is
that the semiconductor consisting of lower CB and VB posi-
tions of oxidation photocatalyst) should be paired with those
of higher CB and VB positions of reduction photocatalyst). As
depicted in Fig. 12 (a), once contact is formed, the electrons
from the reduction photocatalyst will disperse to oxidation
photocatalyst, creating an electron depletion and accumula-
tion layer near the interface of reduction and oxidation pho-
tocatalyst, generating a negatively and positively charge
interface. The formation of the IEF flowing from reduction
photocatalyst to oxidation photocatalyst will facilitate the
electrons flow against the field. Generally, a material that
manifests a larger work function will have a lower Fermi level.
In this context, when reduction and oxidation photocatalyst
forming an intimate contact, there will be upward shifting in
the Fermi level of oxidation photocatalyst and downward
shifting in the Fermi level of reduction photocatalyst, aligning
the Fermi level of both semiconductors. The bending of the
potential band energy substantially eliminates those unused
electrons and holes in CB of oxidation photocatalyst and VB of
reduction photocatalyst. Therefore, the remaining electrons
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at CB of reduction photocatalyst and holes in VB of oxidation
photocatalyst will participate in the redox reaction and
maintained a strong redox ability [101,159—161].

The effectiveness of the S-scheme system in expediting the
photocatalytic performances of LDH-based photocatalyst is
still lack of experimental evidence. Not many studies have
been reported on this system, supporting their efficacy on
photocatalytic hydrogen production. However, a very recent
study on the LDH-based S-scheme system by Tao et al. provide
insights on designing and fabricating novel S-scheme heter-
ojunction photocatalysts [7]. The construction of MoS,/CoAl
LDH via hydrothermal method positively improves the
hydrogen generation up to 17.1 ymol g~*h™*. Even though the
hydrogen production is not considerably high like those re-
ported in type II and Z-scheme, however, the fundamental
concept of this IEF-induced heterojunction system is a pri-
mary notion to improve the photocatalysis process. In this
study, the selection of paired semiconductors is vital to
establish the S-scheme electrons flow. CoAl LDH has been
selected as a primary photocatalyst due to its higher CB
-0.75 eV and VB of 1.35 eV. Besides, the constitutional Co-
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active sites in CoAl LDH inherently linked with excellent
photocatalytic properties [62,117]. On the other hand, propi-
tious features in 2D MoS, with matched band potential
(EB =0.12 eV, VB = 1.78 eV) for constructing S-scheme heter-
ojunction system denotes them as the best candidate for the
photocatalytic study [162]. A minimized charge-transfer
resistance observed in the composite of MoS,/CoAl LDH,
leading to an efficient flow of electrons following the S-
scheme system. As shown in Fig. 12 (b), the IEF pointing from
CoAl LDH (smaller work function) to MoS, (higher work
function), suggesting the flow of electrons from CoAl LDH to
MoS,. This hastens the transfer of charge carriers, directly
improving the photoabsorption stability due to a lengthen
carriers lifetime. Aside from the excellent electron trans-
ferring system exhibit by this hybrid composite, they also
possesses a unique architectural structure. The carnation-like
structure of the 3D hierarchical MoS,/CoAl LDH with multi-
dimensional domains inhibits the particle aggregation by
nanosphere MoS, [88]. Besides, the amorphous structure of
CoAl LDH provides a large number of catalytic active sites due
to the exposure of unsaturated surface atoms [163]. Therefore,
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Fig. 13 — (a) Energy level structure diagram of MoS, and Ti3C, (b) schematic illustration of photo-induced electron transfer
process at the heterojunction interface (c) rate of hydrogen evolution with different mass ratio of Ti3;C, to MoS, (d) SEM

image of 0.5% MoS,/Ti;C, [165].


https://doi.org/10.1016/j.ijhydene.2021.10.099
https://doi.org/10.1016/j.ijhydene.2021.10.099

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 47 (9099) 867*9OT 885

distinct properties of this hybrid photocatalyst favourably
contribute to the enhancement of photocatalytic activity.

In different studies, the same LDH precursor has been used
to construct an S-scheme heterojunction system with metal-
organic frameworks Ni-MOF-74 [101]. This hybrid Ni-MOF-
74/CoAl LDH revealed a 12.3 fold higher hydrogen produc-
tion than the composite of MoS,/CoAl LDH and 6.2 times
greater than pristine CoAl LDH. Excellent structural diversity
and properties to develop highly controllable nanostructures
as carriers nominate MOF as the best selection catalyst to be
coupled with CoAl LDH. Furthermore, it is undeniable that the
formation of IEF notably induced a strong interfacial contact
and facilitate the flow of charge carriers between the semi-
conductors, as shown in Fig. 12 (c). A dodecahedron hexahe-
dron structure of Ni-MOF-74 provides strong structural
supports for assembling CoAl LDH. Pristine CoAl LDH exhibit a
serious aggregation as designated in Fig. 12 (d), limiting the
construction of photocatalyst with higher photoabsorption
stability. However, hybridizing Ni-MOF-74 with CoAl LDH
notably annihilates the agglomeration of CoAl LDH nanolayer
as observed through the SEM image in Fig. 12 (e). Ni-MOF-74/
CoAl LDH not only possess excellent architectural structure
to induce high redox activities, however, homogeneous
dispersion of transition metal atom in this composite greatly
enhanced their solar absorption. It was disclosed that the
photoactivity of this hybrid composite predominantly de-
pends on the CoAl LDH. In this context, CoAl LDH plays a
primary role in maximizing visible light absorption to carry
out the catalytic reaction. Hence, the type of metal constituted
into LDH is significant not only to ensure the tunability of the
band potential to match the S-scheme system, but to obtain
good optical properties. The divalent metal ion Co in LDH-
based photocatalyst evidently improve the conductivity and
optical absorption due to the role of Co as a highly active
transition metal [164]. At the same time, trivalent metal Al
acting as a co-catalyst to support the catalytic reaction. High
dispersion of Co®" assembled with AI*" and their interaction
in the LDH layers synergistically enhances the catalyst sta-
bility and improve the solar absorption [25].

R-scheme heterojunction

R-scheme a new type of heterojunction first proposed by Yao
et al. in 2020. The R-scheme heterojunction is favourable to
improve the aggregation and electron transferring from the
conduction band of the first semiconductor to the active sites
of the second semiconductor. This directly facilitates the
separation of the photogenerated charges. In the R-scheme
heterojunction system, Yao and co-workers have fabricated
the Ti;C, MXene with MoS, nanosheets through hydrothermal
reaction and observed the mechanism of the charge transfer
in this system. It was ascribed that the TizC, MXene having
rich in oxidised surface groups, will favour a strong interface
contact heterojunction with the coupled semiconductors.
Similarly, like in the S-scheme system, the selection of the
suitable semiconductor to be coupled is the most significant
element in constructing this R-scheme system. It was denoted
that the intense physical and electronic coupling effect
enhanced the transferring of the charge carriers and provided
a spatial separation. They disclosed that the mechanism of

the photodegradation in the R-scheme system is obtained
through trapping experiments. As illustrated in Fig. 13(a—b),
under light irradiation, the electrons will be excited to the
conduction band of MoS,. The migration of electrons was
observed from the CB of MoS, to active sites of Ti;C, by a close-
contact heterojunction. This is due to the highly active Fermi
levelin Ti3C, than the CB potential of MoS,. The enhancement
of the photodegradation and photocatalytic hydrogen pro-
duction by 0.5% MoS,/Ti;C, was observed through this system
in which the sample reaches an optimum MO degradation of
97.4% after 30 min irradiation and hydrogen evolution rate of
380.2 umol h™* g~* under visible irradiation [165]. Fig. 13 (c)
depicts hydrogen production rate with 0.5% MoS,/TisC,
exhibit the highest. Even though the R-scheme heterojunction
system has shown a great improvement in photocatalytic
activity, there are not many literatures focusing on this het-
erojunction type, especially in photocatalytic hydrogen pro-
duction. Besides, this type also depicts similar carriers
mobility as those in metal-semiconductor configuration.
Therefore, the theoretical concept of this R-scheme system
needed to be studied in-depth to reveal the distinct charac-
teristics that could ameliorate the photocatalytic
performances.

Novel Hybrid-LDH nanocomposite
Metal loaded LDH precursor

One of the limitations exhibited by a single photocatalyst is
the inability to trap the electrons, increasing the ability for the
charge's recombination. The formation of surface defects
through metal loading can optimize solar absorption and
improve electron-holes separation efficiency [166,167]. The
metal loading could effectively improve the photocatalytic
activity's performances by forming the Schottky barrier and
surface plasmon resonances (SPR) [47,168]. The metals work
function value (9) is the energy required to transfer an electron
from Fermi level into the vacuum (the higher ¢, the lower
Fermi level energy), influencing the photocatalyst efficiency. It
was denoted that the formation of the Schottky barrier from
the metal loading positively affects the photocatalytic activity
of the composite [169]. The Schottky barrier could improve the
separation of the electron-hole pairs and inhibits the recom-
bination of the photoinduced charges [170]. Schottky barrier is
the junction formed at the interface between the metal and
the semiconductor, which acts as an electron trapping site.
Additionally, the metal loading on the semiconductor pro-
duces a visible light-activated photocatalyst system with a
plasmonic effect [171]. The loading of noble metal on the
photocatalyst has been regarded as an effective method to
expedite the charge separation and prolonging the lifetime of
the photoinduced charges. The primary noble metal such as
Ag, Au, and Pt contains a remarkable optical property espe-
cially the unique localised SPR properties, making them spe-
cial [172]. Additionally, two metals can also be loaded onto a
semiconductor, whereby each of the metal serves a different
function. For instance, one metal act as an electron trapping
site while another will provide the SPR effect by absorbing the
visible light [47].
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photocatalytic mechanism of Ag loaded ZnTi LDH for the degradation of NO and RhB [64] (c) photocatalytic mechanism of Ag/

NiCo-LDH [179].

Plasmonic material which is attributed to the surface
plasmonic resonance and Schottky barrier, are two primary
elements when designing a metal loading semiconductor
[173]. The advantages of Schottky junction and SPR effects on
plasmonic photocatalysis is denoted in Fig. 14 (a). Schottky
barriers are formed when a noble metal and semiconductor in
closed contact. There is a built-in internal electric field in a
region between the semiconductor-metal interfaces. The
emergence of the internal electric field facilitates the migra-
tion of electrons and holes in different directions once it
emerges near the Schottky junction [174]. Additionally, the
metal region will be served as electron trapping to provide
more active sites for the photoreactions [175]. Hence, the
Schottky barrier could suppress the electron-hole recombi-
nation and prolong the lifetime of the photoinduced charges.
Another notable feature exhibited by the noble metal is the
localised surface plasmon resonance, representing the strong
oscillation of the metal's free electrons in phase with the
varying electric field of the incident light [176]. SPR could
improve and broaden the light absorption spectrum towards
visible light, especially in the low band gap photocatalyst.
Besides, SPR aid in prolonging the exciton time, expedites the

redox reaction rate and the mass transfer. In the photo-
catalysis system, noble metals received considerable atten-
tion mainly due to the induced SPR absorption and Schottky
barrier [176]. For instance, Li et al. disclosed the synergistic
effect between the noble metal such as Ag, Au, Pt, and Pd with
the semiconductor metal oxide (TiO,@ZnO) [177]. It was
observed that all the hybrid noble metal-metal oxide photo-
catalyst shows a positive result. However, the incorporation of
Ag and Au on the TiO,@ZnO photocatalyst has shown an
astounding result compared to other noble metals in which
the light absorption was shifted to the highest extend.
Generally, pristine LDH exhibits weak solar to energy
conversion, limiting their role as a prime photocatalyst for the
water-splitting process. In order to improve the solar con-
version efficiency of the LDH based photocatalyst, Zhu et al.
fabricated a noble metal-modified LDH by loading Ag on the
surface of the ZnTi LDH with different percentage loading (0,
1,2, and 3 wt %)) [64]. The mechanism of electron transferring
and trapping is denoted in Fig. 14 (b). Based on the UV—vis
diffuse reflectance spectrum, the addition of Ag on the sur-
face of the ZnTi LDH successfully shifted the absorption
spectrum from the UV region to the Visible region (500—600)
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nm. It was firmly believed that the SPR effect of the Ag NP
could amplify the absorption of the visible light resulting in
the remarkable photocatalytic degradation of RhB and NO. In
another study, Tonda et al. decorated Ag NP with NiAl-LDH/g-
C3N, photocatalyst through in situ hydrothermal methods
[178]. The synergistic combination of Ag with NiAl-LDH/g-
C3Ny resulting in an exceptional photocatalytic activity than
pure g-C3N, and pristine NiAl-LDH. The results demonstrated
the significance of Ag NP in promoting the electron transfer
and facilitate the separation. Similarly, Wang et al. reported
that the incorporation of Ag NP into NiCo-LDH enhanced
photocatalytic performances. The lower PL intensity was
observed in Ag/NiCo-LDH photocatalyst, which indicates an
excellent electrical conductivity and induced SPR effect highly
attributed to the facile separation of electron-hole pairs [179].

A very recent report by Zhu et al. on the synergistic inter-
action of Ru with MgAl-LDH revealed that the introduction of
metal support promotes high photocatalytic activity and
selectivity [180]. Note that the selection of semiconductor
support is significant for the metal dispersion and stabilizer.
The use of Ru species with suitable semiconductor support
could maximize the atom efficiency, and the Ru coordination
can be tuned to expose the base sites at the surface, pre-
venting the addition of extra bases. In different studies, Carja
et al. have developed a series Au loaded LDH to study the ef-
fects of noble metal loading on the photocatalytic hydrogen
performances of bimetallic Au/ZnAl LDH and trimetallic Au/
ZnCeAl LDH [181]. It was revealed that the presence of the
third element Ce, is responsible for the higher catalytic ac-
tivity of the LDH-based composite. The composite of Au/
ZnCeAl LDH successfully generates 1.35 fold higher hydrogen
than the composite of Au/ZnAl LDH with the same percentage
loading of Au. However, both composite shows a positive

Core Shell

Core-Shell

hydrogen increment than without the incorporation of Au. It
was pointed out that the size of Au NP could affect the cata-
lytic performances of the composites. This is because larger
Au NP could lead to a lower number of joint active sites be-
tween Au and the support, resulting in lower photocatalytic
efficiency. Besides, it was also remarked that the lower the
specific surface area of Au NP, the lower the photocatalytic
hydrogen efficiency of the composites. On the other hand, Au
loading on the composite CaFe,04/CoAl LDH by Das et al.
revealed a higher hydrogen generation than those reported by
Carja et al. It was disclosed that the hydrogen generation by
Au@CaFe,0,/CoAl LDH soaring up to 379.1 umol g*lh’l.
Higher photocatalytic efficiency was attributable to the
confinement effects induced by Au NP, assisting the transport
of electrons. The negative shifting in the binding energy of Au
observed through the XPS spectra highly indicate that the
electrons were transferred from the surface of Au to the het-
erojunction surface, promoting photocatalytic activity. It was
noticed that Au deposition resulted in a well-maintained
crystal structure of the composite. Besides, it was further
noted that the good interaction between CoAl LDH and Au,
preventing the sintering of the metal and hexagonal structure
of LDH, provide strong support for Au deposition.

Additional studies by Wang et al. on the decomposition of
formaldehyde using Pt/NiFe-LDH/rGO revealed that the hier-
archical honeycomblike structures could efficiently degrade
the formaldehyde. This is associated with the better disper-
sion of NiFe LDH with rGO and the addition of noble metal Pt
enhancing the photocatalytic performances [182]. Even
though the use of noble metal in photocatalysis has proven to
show an outstanding photocatalytic performance, the scarcity
and high cost of the noble metal limit their industrial
commerciality [183]. Therefore, studies have been conducted
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Fig. 15 — Overview of core-shell photocatalyst in terms of the composition, morphology and its advantages.
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to replace the noble metal with the same functioning low-cost
metal. Some promising noble-free metal features the same
characteristics as noble metals, including Cr, Mn, Fe, Co, and
Ni. The utilization of MXene from the family of MAX phases
successfully induced an excellent photocatalytic activity and
even superior to those by the noble metals [184,185]. Besides,
employing noble free metal such as Mn has also shown a
positive contribution in augmenting the photocatalytic activ-
ity of LDH-based composite. For instance, Mendoza et al. have
developed a noble free metal Mn—Zn/Al LDH to study 4-
chlorophenol photodegradation [186]. They have remarked
that the incorporation of metallic Mn inducing an excellent
photocatalytic activity. However, they also disclosed that 1%
maximum of Mn content could be incorporated onto the LDH
photocatalyst. Additionally, increasing the Mn content by
more than 1% is not possible in this case as the instability of
Mn to form an oxide [187]. However, with an appropriate
content of Mn, the LDH crystalline structure could be pre-
served, and the physicochemical and photocatalytic proper-
ties are improved. Therefore, after scrutinizing the available
literature, it was apparent that the studies of metal loading
LDH in photocatalytic hydrogen production are minimal.
However, it was noticed that the composite of Au@CaFe,04/
CoAl LDH by Das et al. yields the best catalytic activity. It was
mainly due to the incorporation of noble metal Au expediting

the transfer of electrons in the composite. Besides, LSV anal-
ysis confirming that CB of LDH can easily trap the hot electron
from Au NP thus facilitating water splitting reaction.

Novel core-shell nanocomposite

Hybrid core-shell photocatalyst shows a constructive devel-
opment over decades due to its significant advantages. The
fabrication of core-shell nanostructure could improve the
physicochemical properties and functionality of the photo-
catalyst [188]. Compared to the single element photocatalyst,
the development of hybrid core-shell structure depicts the
revamped advancement of the composite materials in terms
of unique chemical composition, optical performances, and
electronic properties. Core-shell nanomaterials offer great
functionality in various fields such as photocatalysis, energy
storage, optoelectronics, and bionanotechnology. Fig. 15 de-
picts the overview of the development in the core-shell
nanomaterials.

The fabrication of the core-shell nanocomposites could
optimize the contact efficiency in between the metal and
support, minimising sintering effects (agglomeration) of
nanoparticles. In this context, the photochemical efficiency
will be greatly enhanced through the unique combination of
morphological contact and heterojunction. It was highly
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noted that the formation of the interface between the core and
the shell could narrow the band gap [189], enhance the ab-
sorption of visible light, provide a transfer pathway for the
photogenerated charges [190], and reduce the recombination
rate of the electrons-holes [191]. Core-shell semiconductors
theoretically are nanoscales assemblies with the difference in
the chemical composition between the shell and the core re-
gion [192].

Core-shell nanocomposites were mainly fabricated into a
spherical form [193] and nanorods/nanowires [188,194].
However, according to Gosh et al., the advancement in the
core-shell nanostructure's fabrication technique has led to the
development of various architectural designs and shapes of
the core-shell nanocomposites. Fig. 16(a—k) illustrated the
various morphological designs of the core-shell nano-
structure. Chronologically, the core-shell hybrid photocatalyst
construction started with the blooming of the single nano-
particle semiconductors, having a better photochemical
property than their bulk counterparts. The evolution of the
nanoparticles in the late 1980s led to the discovery of het-
erogeneous or composite semiconductors with better effi-
ciency than preceding single nanoparticle semiconductors.
Later in the 1990s, researchers synthesized a multilayer
semiconductor with an improved optical and electronic
properties leading to the adoption of “core-shell” terminology
[195]. Since then, the core-shell hybrid semiconductors have
been tremendously studied, and many improvements have
been made to this class of semiconductors to improve their
performances, especially in photocatalytic water splitting
[196—199]. Fig. 16 (1) shows the chronological development of
the single nanoparticle photocatalyst to the core-shell
structure.

Core-shell nanoparticles are divided into two types, which
were differentiated based on the band offset. Typically, in the
type-I core-shell nanoparticles, the electrons-holes are
confined in the cores. As a result, the shell having higher CB
and lower VB energy than that of the core. There is an opposite
difference in the band energy of either the shell or the core. In
contrast, the type-II core-shell structures have both the VB
and CB energy in the core higher or lower than those of the
shell. Hence, the electrons and the holes are separated be-
tween the core and the shell. This makes type-II core-shell
nanoparticles fundamentally favoured due to increased sep-
aration between the charge carriers and the exciton lifetime
[201]. In terms of the synthesis of the core-shell structure,
different methods have been developed over the years. How-
ever, “bottom-up” techniques are substantially favoured even
though the fabricated designed can be achieved through the
“top-down” method. In the bottom-up method, the core and
the shell can be synthesized in a stepwise or one-pot fashion
that combines several steps into one. The materials are syn-
thesized from their basic units, which depends on their
intrinsic chemical properties, allowing optimal control over
their shape and size [191,202].

The core-shell structure is typically composed of metal
cores such as Zn, Cu, Au, Ag, Pt, Pd, Ni, and Fe wrapped with
semiconductor metal oxides as the shell such as ZnO, TiO,,
Sn0,, Cu,0, Fe,05, and SiO,. However, the fabricated core and
the shell can also be composed of different materials such as

organics, inorganics, and inorganic-organic [203]. The

synergistic combination of core-shell nanoarchitecture pro-
motes a higher photocatalytic efficiency, improves their op-
tical properties and photostability [200]. Note that the
thickness of the core-shell structure significantly affects the
photocatalytic performances in which it controls the effective
band gap through quantum confinement effects [201]. The
thickness of the designed photocatalyst's core-shell structure
influences their optical, electrical, and photocatalytic prop-
erties, directly affecting their photocatalytic water splitting
performances [204]. Niu et al. fabricated a hybrid TasNs@PANI
core-shell photocatalyst and observed that the polyaniline's
shell thickness (PANI) dramatically affects the hydrogen pro-
duction yield. They disclosed that the monolayer of the shell
photocatalyst (PANI) could improve the separation of photo-
induced charges and provide a better electron transfer be-
tween the shell and the core of TasNs [205]. Fig. 17 (a)
illustrated the H, evolution on noble metal/metal oxide core
and Cr,03 shell structured nanoparticles.

Hybrid core-shell LDH structures usually exhibit superior
photocatalytic performances than their intrinsic structures
[206,207]. LDH suffered from difficult adjustments over their
structural, architectural, and morphological properties, min-
imising their photocatalytic solar conversion efficiency.
Therefore, finding a suitable electron acceptor and developing
a core-shell LDH photocatalyst are the critical factors in
escalating the charge separation and photocatalytic perfor-
mances [208]. Recently, Wang et al. constructed a hybrid core-
shell (CoO/NiCo-LDH) in the form of a core-shell nanowire.
They observed that the electrons from the core (CoO) could
efficiently be transferred to the shell (NiCo-LDH) nanosheet
due to the effective interface between both CoO and NiCo-LDH
[82]. This resulting in higher separation efficiency and prolong
the charge carriers lifetime. The electrons are confined on the
surface of NiCo-LDH and then undergoing a reduction reac-
tion to generate 1500 umol g~'h™' of hydrogen yield. In
another study, Ziarati et al. developed another type of core-
shell photocatalyst by integrating TiO, with CoAl-LDH form-
ing an oxygen vacancy “yolk-shell” structure [208]. The fabri-
cation of yolk-shell LDH structure assembled by sequential
solvothermal, hydrogen treatment, and hydrothermal prepa-
ration steps revealed a high photoreduction efficiency without
a noble metal co-catalyst. The void space is shown in Fig. 17 (b)
and (c) could be served as a nanoreactor resulting in effective
diffusion of any solvents or substrates into the porous sur-
faces. The unique architecture of this 3D mesoporous yolk-
shell with oxygen vacancy could enhance the photostability,
absorption of the light spectrum and increase the solar energy
conversion. The oxygen vacancies (Vo) in metal oxides could
improve the electron donor density and electrical conductiv-
ity, acting as an electron acceptor to reduce the recombination
rate of the photoinduced charges [209].

The fabrication of the metal core and semiconductor shell
nanocomposites provides significant advantages as it could
improve the stability against the aggregation, increase the
corrosion resistance of the nanocomposites and eliminate
unwanted dissolution in practical reactions. Furthermore, the
noble metal core could act as electron trapping and increase
the lifetime of the photoinduced charges, which directly
enhance the overall photocatalytic efficiency [177,210]. For
instance, Li et al. designed an inorganic metal core (Ag) with
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an inorganic semiconductor shell (ZnAl LDH) to study the
photocatalytic activity of the hybrid nanocomposites [211].
They disclosed that the enhancement of the photocatalytic
activity was primarily attributed to the formation of the
Schottky barrier between the noble metal Ag and ZnAl LDH
and the surface plasmon resonance effect of the Ag nano-
particles. The SEM image of Ag/ZnAl LDH is represented in
Fig. 17 (d), and the mechanism of the electrons transfer
pathway was illustrated as in Fig. 17 (e). Recently, Yang et al.
studied the formation of direct Z-scheme heterojunction in a
metal-oxide-semiconductor core-shell structure of CoAl-LDH
with Cerium oxide [212]. It was highlighted that the built-in
electric field across the CeO, and the LDH assist the efficient
migration of the charge carriers in the Z-scheme

heterojunction, improving the overall photocatalytic effi-
ciency. The development of the Z-scheme core-shell nano-
structures was proven to improve physical and chemical
stability, increase more exposed actives sites, and provide a
spatial separation.

It can be disclosed that the fabrication of core-shell LDH-
based composite needed comprehensive studies to address
their efficiency in photocatalytic hydrogen production. Addi-
tionally, there is a lack of studies that focus on improving the
photocatalytic activity in LDH-based composite through
morphological and architectural tuning. However, the con-
struction of hybrid core-shell CoO/NiCo-LDH by Wang et al.
gain scientific interest due to the high photocatalytic activity
exhibit by the composite. This unique hybrid composite does
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not only induced a higher crystallinity structure and purity
but possesses a large surface area. Furthermore, the deposi-
tion of NiCo LDH as a shell wrapping the CoO provides
abundant catalytic active sites for enhancing the redox reac-
tion. Besides, the dispersion of active metal Ni and Co on LDH
is responsible for excellent solar utilization and outstanding
photocatalytic hydrogen production.

Self-assembly layer-by-layer LDH nanosheets

Layer-by-layer (LBL) is the technique for the fabrication of LDH
nanosheet film, in which the sheets are stacked together to
form a multilayer film. LBL assembly has attracted funda-
mental and technological viewpoints due to its simplicity and
low-cost equipment, providing a photoactive surface for film
fabrication [214]. Besides, the film thickness can be controlled
at molecular and nanometric scales through LBL assembly.
Generally, the LDH film will be deposited onto various sub-
strates and other surface materials to form a hybrid LDH. After
delamination, positively-charged LDH nanosheets can be a
good model system in the LBL assembly to construct various
nanocomposites [215].

The assembly of LBL is based on several types of driving
forces. This includes electrostatic force [216], covalent
bonding [217], hydrogen bonding [218], coordination bonding
[219] and charge interaction. Most of the studies reported on
the LDH LBL were based on the electrostatic driving force as-
sembly known as electrostatic self-assembly (ESA). The basic
principles for the ESA LBL for the LDH, schematically illus-
trated as in Fig. 18(a—c); 1) The solid substrate is immersed
into the solutions containing anionic polymer; 2) The
negatively-charged polymer is adsorbed to the surfaces of the
positively-charged substrate due to the strong electric field; 3)
The substrate coated with the anionic polymer is then
exposed to the positively-charged exfoliated LDH nanosheet;
4) The layer is formed when the substrate's charges become
saturated, resulting in the charge compensation; 5) Adsorp-
tion ends when the charge of the substrate is reversed
[220,221]. Some of the polyanionic charged species usually act
as a building block for the LBL assembly of LDH includes poly
(styrenesulfonate) (PSS) [216], poly (vinylsulfate) (PVS) and
polyacrylic acid (PAA) [222].

In the context of the development in LDH hybrid through
LBL assembly, Gunjakar et al. first developed LBL-ordered
nanohybrids composed of two inorganic 2D nanosheets, a
positively charged ZnCr-LDH with negatively charged layered
titanate nanosheets [154]. They observed the improvement in
terms of chemical stability and visible light absorption. Note
that the highly porous hybrid structure could be formed from
the ESA between the two inorganic nanosheets in which the
porosity can be controlled by tuning the ratio of both indi-
vidual components. Even though this LBL-hybrid structure
exhibits remarkable optical properties, yet the hydrogen pro-
duction yield is still low. This might be due to the low pho-
tocatalytic activity observed in ZnCr-LDH, as reported by
Zhang et al. [97]. However, in terms of morphological
improvement, this composite structure exhibit more efficient
structural organisation. The formation of mesoporous LBL
structure of LDH significantly contributes to a higher photo-
catalytic activity. It was denoted that materials with

mesoporous structure exhibit large surface area and high
surface pore, which provide more adsorption and active sites
for the photocatalytic reaction [60]. Besides, assembling two
sheet-like crystals layer-by-layer contributes to many
exposed catalytic active sites and effectively promotes the
catalytic reaction. The more ordered hybrid structure facili-
tates the transfer of electron-hole towards the catalytic site
thereby, increasing the separation efficiency. Furthermore,
the difference in the surface charges of layered titanate and
LDH enable them to form a strong electronic coupling and
improve the physical contact. Additionally, increasing the
strong electronic contact between the semiconductors pro-
motes spatial separation and inhibit the recombination of the
photoinduced charges.

In another study, LDH has been developed into a CdS-
pillared ZnCr-LDH nanohybrid. This is done by assembling
the CdS nanoparticles into the interlayer of ZnCr-LDH through
ESA [95]. It was observed that the pillared nanohybrids exhibit
an increase in the surface area (86 m? g-!) compared to its
pristine structure (33 m? g-!) and forming ‘the house-of-
cards type stacking, correspond to those reported by Gunja-
kar et al. as shown in Fig. 18 (d). This highly mesoporous
nanohybrid having an astounding photocatalytic activity with
the generation of hydrogen of 374 umol g-*h™". It was highly
suggested that the construction of the hybrid LDH through LBL
assembly could improve the hybrid photocatalyst
morphology, increase the solar light conversion, and enhance
the photocatalytic of hydrogen generation. However, selecting
suitable assembling substrates and paired semiconductors
should be taken into account to ensure the high efficiency of
the hybrid photocatalyst. The study of LDH hybrid LBL opens
new routes in promoting a higher photocatalytic activity
through morphological and structural tuning. The unique
formation between the positively-charged and negatively-
charged semiconductors layers facilitate a strong electronic
contact. This subsequently fosters the transfer of photoin-
duced charges between the semiconductors. Therefore, it can
be summarised that constructing a layer-by-layer LDH
through ESA, could generate a unique house-of-cards-type
structure with good light-harvesting ability, high porosity
structure and provide good electronic contact between the
semiconductors.

Conclusion and future recommendations

The depletion and the scarcity of fossil fuels have become
major concerns as their utilization has reached almost the
maximum of global energy demand. Photocatalytic hydrogen
production by layered double hydroxide has been considered
as one of the best alternatives to provide sustainable and
renewable energy sources. It was highly denoted that enor-
mous efforts have been directed to develop a highly efficient
LDH-based photocatalyst. It was revealed that higher photo-
catalytic efficiency is not only dependent on the hetero-
junction type but also the synergy between light intensity,
design of photoreactor, and sacrificial reagents used. Never-
theless, the type of heterojunction constructed could play a
significant role in expediting the performances of LDH based
composites. For instance, Z-scheme heterojunction system
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inducing strong redox capabilities compared to those of type II
might be the leading attribution for the increased in photo-
catalytic activity. From the thermodynamics viewpoint, the
construction of Z-scheme system could preserve the elec-
trons/holes with higher redox potential by sacrificing the non-
effective electron-hole pairs. These electron-hole pairs will be
eradicated at the VB of reducing photocatalyst and CB of
oxidation photocatalyst thus, inducing a stronger redox re-
action. Besides, the synergistic integration inherently improve
the overall photocatalytic efficiency through the following
aspects: 1) the presence of oxygen vacancies hinder the
recombination of photogenerated charges and improve elec-
trical conductivity, 2) trivalent metal ion of LDH, promotes the
shifting of the absorption range towards the visible spectrum,
3) enhancement in photostability associated with the metal-
to-metal charge transfer in LDH, 4) higher quantum effi-
ciency of individual LDH (e.h., ZnCr LDH), and 5) the presence
of electron mediator e.g., Ag, facilitating the electron transfer
and synergistically boost the photocatalytic activity of the
composites.

Additionally, the review presented describes the main
challenges in photocatalytic water splitting, the hydrogen
production mechanism, thermodynamics analysis, and
different modifications made on the LDH-based photocatalyst
to improve its efficiency. The summary of literature about the
modification and future approaches has been presented as
follow:

e The formation of heterojunction has been denoted as one
of the best ways to overcome the limitations manifested by
the pristine LDH. Integrating LDH-based photocatalyst
with other metal semiconductors could improve the solar
absorption spectrum, expedite the spatial separation of the
charge carriers, and boost photocatalytic activity. The se-
lection of the hybrid semiconductor should be given more
attention. Details such as the band potential, energy level,
work function, band gap width, structural diversity, and
the photocatalyst type should be considered when
designing a heterojunction system photocatalyst. The
mentioned elements positively affect the photocatalytic
efficiency also the type of heterojunction that will be
constructed.

e The temperature, light, band gap, CB and VB are the critical

elements in favouring the water-splitting reaction. It is

highly noted that understanding the fundamental of a

redox reaction is significant in the photocatalysis field. For

a reaction to be thermodynamically stable, the water

reduction and oxidation potential should fall within the

photocatalyst band gap. The efficiency of the photocatalyst
greatly affected by its band gap energy. Therefore, the band

gap should be within 1.23 eV < Eg < 3.26 eV in fabricating a

thermodynamically favoured photocatalyst. Besides, the

reduction and oxidation potential should not exceed the
range of the band gap.

Core-shell nanomaterials offer great functionality in

various fields, and the construction of core-shell nano-

architecture could optimize the photochemical efficiency
of LDH-based photocatalysts. However, the progress to-
wards the application of core-shell structure in LDH-based
photocatalyst for photocatalytic hydrogen generation is

still limited. The effectiveness of core-shell structure in
promoting a higher photocatalytic hydrogen generation is
still vague. Thus, more studies needed to be conducted to
study the catalytic properties of the core-shell structure.
The interconnection between the morphology of the core-
shell structure and their effects on photocatalytic perfor-
mances also needed to be further explored. Besides, while
designing the core-shell nanostructures, aspects needed to
be considered are the composition and heterojunction
formation between the shell and the core, the morphology
of the LDH hybrid nanostructure, and the shell's thickness
which will positively affect the photocatalytic of hydrogen
production.

e Metal-loaded LDH is associated with the formation of the
Schottky barrier and surface plasmon effect. The integra-
tion of plasmonic materials onto the LDH based photo-
catalyst could enhance photocatalytic hydrogen
production. The Schottky barrier serves as an electron
trapping site to augment the photo-induced charges
migration and prolong the exciton time. Meanwhile, SPR
effect by the noble metal aid in shifting the solar absorp-
tion towards the visible spectrum. Despite the advantages
of the noble metal and its role in boosting photocatalytic
performances, the high prices and scarcity of the materials
limiting its application and commerciality. Thus, a rigorous
investigation is needed on the noble-free metal that ex-
hibits the same functionality as the noble metal butis more
affordable and abundant. Employing MXenes from the
family of MAX phase to substitute the noble metals should
be given full consideration. MXenes have been reported to
exhibit great functionality over various technological ap-
plications due to their noble metal-like characteristics.
They are highly sought after due to their abundancy, cost-
affordability and excellent optical properties. Besides,
higher conductivity and unique compositional configura-
tion in MXenes could substantially drive the solar absorp-
tion towards the visible spectrum. They could also serve as
electron trapping sites, thus maximizing the separation
and inhibiting the recombination of photogenerated
charges in LDH-based composite.

Besides, future perspectives on LDH photocatalyst has
been deliberated to render them a notable place in photo-
catalytic hydrogen production.

e Maintaining a higher crystallinity and broken the ag-
gregation in the LDH nanosheet is still a major chal-
lenge. Controlling the compositional constitution of the
divalent and trivalent metal ions in the LDH photo-
catalyst was observed to enhance its crystallinity
structure. Different synthesis techniques were reported
to develop LDH with different crystallinity structure.
Future development on the synthesis procedure that
could provide LDH with a higher crystallinity structure
should be given attention. Furthermore, theoretical and
analytical analysis on characterizing the crystal struc-
ture of LDH should be deeply studied. This is to give
fundamental explication on the crystallography of LDH,
which could be beneficial for enhancing their structural
properties.
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e Theoretical understanding of the photocatalytic mecha-
nism of LDH is still indistinct with less computational
analysis supporting the inter-relation between the changes
in the coordination of the hydroxide layers, compositional
factors of divalent and trivalent ions and the electronic
band structure upon photocatalysis.

e LDH containing active transitional species such as Ni, Cu,
Co and Cr shows excellent photostability and higher pho-
toactivity over other metals institutions. Therefore, future
investigation based on the theoretical modelling should be
given attention to studying the effect of each metal con-
stitutions not only on bimetallic and trimetallic LDH, but
attention should be focused on constructing tetrametallic
LDH with how configuring each metal elements affecting
the lattice of LDH, the chemical ordering and stability.
Besides, the diffusion mechanism of the intercalated ions
at the interlayer, their interaction with the brucite layers in
LDH and their effects on catalytic reaction should be
elucidated through more computational evidence.
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