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Abstract

Motivation: Cancer subtype diagnosis is crucial for its precise treatment and different subtypes need different thera-
pies. Although the diagnosis can be greatly improved by fusing multiomics data, most fusion solutions depend on
paired omics data, which are actually weakly paired, with different omics views missing for different samples.
Incomplete multiview learning-based solutions can alleviate this issue but are still far from satisfactory because
they: (i) mainly focus on shared information while ignore the important individuality of multiomics data and (ii) can-
not pick out interpretable features for precise diagnosis.

Results: We introduce an interpretable and flexible solution (LungDWM) for Lung cancer subtype Diagnosis using
Weakly paired Multiomics data. LungDWM first builds an attention-based encoder for each omics to pick out import-
ant diagnostic features and extract shared and complementary information across omics. Next, it proposes an indi-
vidual loss to jointly extract the specific information of each omics and performs generative adversarial learning to
impute missing omics of samples using extracted features. After that, it fuses the extracted and imputed features to
diagnose cancer subtypes. Experiments on benchmark datasets show that LungDWM achieves a better performance
than recent competitive methods, and has a high authenticity and good interpretability.

Availability and implementation: The code is available at http://www.sdu-idea.cn/codes.php?name=LungDWM.

Contact: guoxian85@gmail.com or kingjun@sdu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Lung cancer is the leading cause of worldwide cancer death and has
the highest incidence rate among different cancer types (Howlader
et al., 2020). Non-small cell lung cancer (NSCLC) is the most typical
lung cancer, it accounts for 85% of lung cancer patients, and small
cell lung cancer takes the other 15%, the 5-year survival rate of
NSCLC patients is only 13% (Zappa and Mousa, 2016). NSCLC
can be further categorized into three major histopathological sub-
types: 45–50% Adenocarcinoma (LUAD), 30–35% squamous cell
carcinoma (LUSC) and 5–10% large cell (undifferentiated) carcin-
oma, which require different treatments. For example, small cell car-
cinoma often needs chemotherapy due to poor surgical treatment;
LUAD needs surgical treatment or targeted therapy for effective
intervention; while LUSC has bleeding and fewer mutations, so anti-
angiogenesis drugs and targeted therapies are often ineffective, but
immunotherapy can achieve good prognostic effects. Therefore, the
accurate diagnosis of lung cancer subtypes is of paramount
importance.

Many techniques have been proposed to diagnose lung cancer
subtypes, such as computed tomography (CT), pathological examin-
ation and so on (Howlader et al., 2020). Among them, the histology
image in the pathological examination is the golden standard for
cancer malignancy and subtypes diagnosis. With the advance of
sequencing technologies, liquid biopsy has become a non-invasive
and effective way for early cancer diagnosis and targeted therapy
(Crowley et al., 2013). Besides, detection techniques at different bio-
logical levels have also been used, for example assessing single nu-
cleotide variation, DNA methylation (Hao et al., 2017) and miRNA
expression quantification (Ahmed et al., 2021).

With the surge of artificial intelligence (AI) techniques and mul-
tiomics data, AIþomics-based techniques have been explored for
subtype diagnosis (Lehman and Wu, 2021; Menyhárt and Gy}orffy,
2021). To name a few, Coudray et al. (2018) trained a deep CNN
on tiled patches of whole-slide images collected from TCGA
(Weinstein et al., 2013) for lung cancer subtype diagnosis. Hao et al.
(2017) applied the LASSO classifier to distinguish the tumor and
normal tissues of four common cancers using genome-wide DNA
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methylation data. These single-omics-based methods can only par-
tially uncover the pathology, while complex cancers are jointly
caused by multiple-level molecules. In addition, single-omics data
are often noisy, incomplete and with low coverage, multiomics data
can not only overcome these negative impacts but also provide a
more holistic biological atlas.

More recent efforts fuse multiomics data by multiview learning
(MVL) to improve the diagnosis performance. Existing MVL-based
solutions mainly build on canonical correlation analysis, cotraining,
matrix factorization and multiple kernel learning to integrate het-
erogeneous omics data (Gligorijevi�c and Pr�zulj, 2015; Li et al.,
2018). However, they typically can only capture the shallow correla-
tions among omics. Deep MVL-based methods can mine more com-
plex correlations and thus have also been applied for cancer
diagnosis and prognosis prediction (Yang et al., 2021). For example,
MDNNMD (Sun et al., 2019) integrates multiomics data by a score-
level fusion of the prediction results for breast cancer prognosis pre-
diction. Mobadersany et al. (2018) merged the image and genomics
data into a Cox proportional hazards model to predict patient out-
comes. LungDIG (Wang et al., 2021b) combines image and genom-
ics data for interpretable lung cancer subtype diagnosis. However,
due to the high cost of monitoring facilities (i.e. CT and gene test),
invasive examinations (i.e. pathological biopsy and thoracentesis),
legal and ethical constraints, multiomics data are mostly weakly
paired (also termed as modal missing or incomplete multiomics
data), with several omics of the same samples missing, which are
ubiquitous in reality and break the prerequisite of completely paired
omics data for canonical MVL solutions.

Incomplete MVL (iMVL)-based techniques have been studied to
fuse weakly paired omics data (Li et al., 2018). Yuan et al. (2012)
proposed two iMVL methods, namely incomplete multisource fea-
ture learning (iMSF) and score completion (ScoreComp) to diagnose
Alzheimer’s disease. iMSF divides multiomics data into several
learning tasks according to the omics availability and trains a unique
classifier for each task, then learns the shared features across omics.
ScoreComp separately trains a base classifier for each omics, then
estimates missing prediction scores using other scores predicted by
base classifiers. CG19 (Cheerla and Gevaert, 2019) first encodes the
patient’s multiomics data into vectors of the same dimension, maxi-
mizes the similarity of feature vectors from the same patient and
minimizes those from different patients, then uses the Cox network

to predict the prognosis of cancer. CPM-GAN (Zhang et al., 2022)
imputes missing data through generative adversarial network (GAN;
Goodfellow et al., 2014), then maps different views into a shared
representation for disease diagnosis. GIMPP (Arya and Saha, 2021)
incorporates multiomics encoder networks and a bimodal attention
mechanism to learn shared latent representations, and further uses
GAN to generate missing data based on shared representations to
diagnose cancer.

Those iMVL-based methods have confirmed the benefit of fusing
incomplete multiomics data, but still face three challenges. First,
most methods mainly pursue the shared/complementary features
across omics but neglect the individuality of each omics (Arya and
Saha, 2021; Cheerla and Gevaert, 2019; Zhang et al., 2022). Given
the variety of subtypes, the balance of individual and shared features
of multiomics data enables the model to have a better diagnostic
performance. Second, existing solutions rely on too stringent prereq-
uisites to be applied in practice, such as excluding samples with
missing omics (Arya and Saha, 2021; Wang et al., 2021a), complet-
ing samples for at least one omics (Yuan et al., 2012) and building
models based on data availability (Wang et al., 2020; Yuan et al.,
2012). Third, although deep iMVL methods often perform better
than shallow ones (Cheerla and Gevaert, 2019; Rappoport and
Shamir, 2019; Zhang et al., 2022), their interpretability and authen-
ticity remains to be improved, which prohibits their applications in
evidence-based diagnosis.

To address these challenges, we propose an approach called
LungDWM (Lung cancer subtype Diagnosis using Weakly paired
Multiomics data) and present the conceptual framework in Figure 1.
LungDWM firstly trains an attention-based encoding network for
each omics to extract the shared/complementary features across
omics and to pick out key features for subtype diagnosis. To account
for the variety of subtypes, it introduces an individual loss to extract
the specific features of each omics. In addition, it designs a genera-
tive adversarial strategy to impute the missing omics using extracted
features and thus enables flexible diagnosis. LungDWM finally fuses
the extracted and imputed features to diagnose subtype.
Experimental results on TCGA data show that LungDWM achieves
a better diagnosis with good interpretability [Accuracy of 0.942,
area under the receiver operating characteristics curve (AUROC) of
0.961, F1-Score of 0.937 and area under precision-recall curve
(AUPRC) of 0.958] than competitive approaches (Arya and Saha,

Fig. 1. Schema framework of LungDWM: (a) multiomics data encoding module uses an attention-based encoder to extract omics features hv
i from weakly paired multiomics

data X , and balances the shared and specific features in hv
i by jointly optimizing the shared loss (SLoss) and individual loss (ILoss); (b) missing omics data generating module

leverages the attention weights and available omics data to impute the missing omics data, and enhances the data integrity; (c) cancer subtype diagnosis module fuses extracted

multiomics data to diagnose subtype by multilayer perceptron (MLP)

Lung cancer subtype diagnosis 5093

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/22/5092/6706786 by U
niversiti Teknologi M

alaysia user on 30 M
ay 2023



2021; Cheerla and Gevaert, 2019; Sun et al., 2019; Wang et al.,
2021b; Yuan et al., 2012; Zhang et al., 2022), it also has a better
performance on the Severe Acute Respiratory Syndrome
CoronaVirus 2 (SARS-CoV-2) data (Su et al., 2020). LungDWM
can aid pathologists to identify potential causal and therapeutic sites
via attention weights learned from multiomics data.

2 Materials and methods

2.1 Overview and formulation
LungDWM diagnoses cancer subtypes by attention-based deep
iMVL and GAN to integrate the weakly paired multiomics data.
Figure 1 shows the basic workflow of our model. First, LungDWM
uses an attention-based encoder to extract the omics features hv

i

from weakly paired multiomics data X , and leverages the joint opti-
mization of shared loss (SLoss) and individual loss (ILoss) to balance
the shared and specific features in hv

i . Second, it leverages the atten-
tion weights and available omics data to impute the missing omics
data and enhances the data integrity. Finally, it fuses extracted mul-
tiomics data to diagnose subtype by multilayer perceptron. The
mainly used symbols are listed in Table 1.

2.2 Multiomics data encoding module
To effectively integrate multiomics data, we build an attention-
based encoder for each omics, which can not only maps heteroge-
neous features of different omics into a shared feature space but also
helps these encoders not over-/under-fit to individual omics data. In
addition, the encoder can alleviate the impact of missing and noisy
features (Vincent et al., 2010). The encoding process is formulated
as follows:

h
v
i ¼ f v

Uðxv � xv
i Þ; (1)

where f v
Uð�Þ is the feature encoding network of the v-th omics para-

meterized with f v
U; hv

i 2 R
q is the encoded representation of xv

i ; � is
the element-wise multiplication operator. xv 2 R

dv are the attention
weights to pick out informative features, they are processed by
Softmax to prevent the local optima problem caused by a too large
weight of the significant position.

To enable the attention weights and encoded feature vectors
with good authenticity and diversity, we optimize the feature encod-
ing network by introducing a shared loss (SLoss) and an individual
loss (ILoss). For the shared loss, we construct a feature evaluation
network f v

X on hv
i and quantify the loss based on the evaluated sub-

type given by f v
X and the ground truth as:

SLoss ¼
XV
v¼1

PN
i¼1 Kv

i Lsðf v
Xðh

v
i Þ; yiÞPN

i¼1 Kv
i

; (2)

where Lsðf v
Xðh

v
i Þ; yiÞ is a loss function (cross entropy loss is used

here) that measures the representation ability of h
v
i , and Kv

i 2 f0; 1g
indicates whether xv

i of the i-th patient is missing or not. SLoss aims
to induce consistent predictions close to the ground truths, no mat-
ter the particular omics data are available or not. We use SLoss to
jointly optimize the feature evaluation network and the attention-
based encoder networks. By doing so, we can not only optimize the
attention layers and encoder networks toward extracting

informative features from multi-omics data that contribute to sub-
type diagnosis but also improve the interpretation and authenticity.

SLoss mainly focuses on the shared/complementary features
across omics and down-weights specific features of each omics.
Given the variety among subtypes of the same cancer, it may over-
ride the diversity of cancer subtypes, which is crucial for precise can-
cer subtype diagnosis. The individuality and commonality of
multiomics data should be jointly used for accurate diagnosis (Tan
et al., 2021). Given that, we further propose the individual loss
(ILoss) to rectify h

v
i to maintain the diversity of subtypes by balanc-

ing individual and shared features as follows:

ILoss ¼
XV

v¼1

PN
i¼1 Kv

i Reluðk� cosðhv
i ; hiÞÞPN

i¼1 Kv
i

; h i ¼
PV

v¼1 Kv
i hv

iPV
v¼1 Kv

i

; (3)

where cosðhv
i ; hiÞ is the cosine similarity between hv

i and shared feature

vector hi. When the similarity is larger than the individual factor

kð�1 � k � 1Þ; hv
i are more similar to the shared ones, and thus

avoid over-individualization; otherwise, hv
i under-weights specific fea-

tures. Therefore, we use Reluð�Þ activation function to transform this
loss to 0. SLoss aims to extract shared and complementary information
from multiomics data. Using only ILoss to learn specific features may
make the feature encoder module paying more attention to noisy/spe-
cific features in each omics data, which are not conducive to the disease
diagnosis. Through the joint optimization of SLoss and ILoss,
LungDWM can extract the shared and specific features from multio-

mics data. In return, fhv
i g

V
v¼1 maintains the diversity of cancer subtypes

and enables an accurate diagnosis.

2.3 Missing omics data generating module
It is impractical and even infeasible to collect all omics data of the
same patients. In practice, only one or two omics data of the same
patient are available for the diagnosis. Therefore, multiomics data
of cancer samples are weakly paired. While recent iMVL-based
methods (Arya and Saha, 2021; Zhang et al., 2022) can impute
missing omics data from other omics by GAN, which is more adap-
tive to diverse input distributions. But they focus on generating all
features in the missing omics and thus have unnecessary losses.
Here, we leverage GAN with attention weights obtained in the
encoding module to only impute important omics features. In this
way, LungDWM can leverage available omics data to make a flex-
ible diagnosis and avoid the risk of using single-omics data alone.

A typical GAN consists of two subnets: a generative subnet Gð�Þ
that learns to generate missing omics features based on fhv

i g
V
v¼1 of

available omics, and a discriminative subnet Dð�Þ that recognizes
whether the features are from available omics or from Gð�Þ. We first
induce the potential features of a patient based on hv

i of all other
available omics as:

~h
v

i ¼
P

j2f1;...;Vg;j 6¼v Kj
ih

j
iP

j2f1;...;Vg;j 6¼v Kj
i

: (4)

Next, we input ~h
v

i into Gv to impute the missing data as:

~xv
i ¼ Gvð~h

v

i Þ: (5)

To maintain the generation ability, the v-th omics data are excluded

for inducing ~h
v

i . Gvð�Þ is the generator to generate the v-th omics

data, and ~xv
i 2 R

dv is the imputed feature vector.
Compared with traditional GAN, Wasserstein GAN-Gradient

Penalty (WGAN-GP; Gulrajani et al., 2017) not only solves the
training instability of GAN caused by the imbalance of training lev-
els of generator and of discriminator but also ensures the diversity of
generated data. So we adopt the Wasserstein distance to improve the
generative ability of Gv. In addition, to focus on important features
of generated omics data, we input the real and generated omics data
weighted by attention parameters into the discriminator subnet Dv,
and compute the distribution values of samples as:

Table 1. Mainly used symbols

Notation Description

X ¼ fXvgV
v¼1 A dataset with N samples and V types of omics data

Xv 2 R
N�dv The v-th omics data with dv-dimensional features

Y 2 f1; . . . ; sgN Subtypes of N patients

K 2 R
N�V Indicator matrix for weakly paired multi-omics data

xv
i 2 R

dv Feature vector of the i-th sample of Xv

~xv
i 2 R

dv Generated feature vector of xv
i

h
v
i 2 R

q q-Dimensional representation vector of xv
i
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Pv
r ¼

PN
i¼1 Kv

i Dvðxv � xv
i ÞPN

i¼1 Kv
i

; Pv
g ¼

PN
i¼1 Kv

i Dvðxv � ~xv
i ÞPN

i¼1 Kv
i

; (6)

where Dvð�Þ is a discriminator that takes the generated sample ~xv
i or

the real sample xv
i of v-th omics as input, and its output is the distribu-

tion value of the input sample in the 1D feature space. Pv
r and Pv

g are

the average distribution values of real and generated samples, respect-
ively. In addition, to meet the Lipschitz condition in WGAN (Arjovsky
et al., 2017), we apply gradient penalty to the discriminator by

randomly sampling as:

x̂v
i ¼ �xv

i þ ð1� �Þ~xv
i (7)

Lv
gp ¼

PN
i¼1 Kv

i ðkrx̂v
i
Dvðxv � x̂v

i Þk2 � 1Þ2PN
i¼1 Kv

i

; (8)

where x̂v
i is uniformly sampled through �ð0 � � � 1Þ along the line

between a pair of points from the real distribution xv
i and generative

one ~xv
i .rx̂v

i
Dvðxv � x̂v

i Þ is the gradient and Lv
gp is the average of gra-

dient penalty loss. Pv
r and Pv

g may be negative, we use a piecewise
function under the joint gradient penalty term to compute the dis-

crimination loss and generation loss as follows:

Lv
G ¼

a�Pv
g ;Pv

g > 0

�Pv
g ;Pv

g � 0

8<
: (9)

Lv
D ¼

aPv
g�Pv

r þ Lv
gp ;Pv

g � Pv
r < 0

Pv
g � Pv

r þ Lv
gp ;Pv

g � Pv
r � 0

;

8<
: (10)

a>1 is a scalar parameter to convert the negative loss into a positive
one, and the constraints on Lv

gp guide discriminator to make the dis-
tribution value of generated data close to but not exceed that of real

data during the optimization process. Finally, we use Lv
D and Lv

G of
V omics data to obtain the adversarial loss of LungDWM in the gen-

erating module as:

GLoss ¼
XV

v¼1
ðLv

G þ Lv
DÞ: (11)

Through the optimization of GLoss, we can gradually improve
the generator subnet in the process of generation and adversariation.
In addition, since the data used by discriminator are weighted by at-

tention parameters, which can down-weight the less important fea-
tures, our generator can more focus on important features and thus

improve the diagnosis authenticity.

2.4 Cancer subtype diagnosis module
Based on extracted features hv

i and the generated ones ~xv
i for a miss-

ing omics, we train the diagnosis network by fusing them as:

zv
i ¼ Kv

i hv
i þ ð1� Kv

i Þf v
Uðwv � ~xv

i ÞÞ (12)

zi ¼ ½z1
i ; z2

i ; . . . ; zV
i �; (13)

where zv
i 2 R

q is the representational feature vector of the v-th omics
that will be used for cancer subtype diagnosis for patient i. When xv

i

is available, we directly use its representation hv
i for subsequent

feature fusion; otherwise, we apply f v
U on generated ~xv

i to obtain its
representation for follow-up fusion. zi 2 R

q�V is the concatenated

features for cancer subtype diagnosis. Considering that hv
i are salient

features weighted by the attention mechanism and ~xv
i is generated

by h
j
i (j 6¼ v), we do not weight them here.

We then input zi into the cancer subtype diagnosis network to

predict the cancer subtype and compute the diagnosis loss (DLoss)
as:

DLoss ¼ 1

N

XN

i¼1
CEðfWðziÞ; yiÞ; (14)

where fWð�Þ is the diagnose network parameterized by
W; CEðfWðziÞ; yiÞ is the cross entropy loss function.

To this end, we formulate the objective function of LungDWM
as:

L ¼ min
U;X;G;D;W

SLossþ ILossþGLossþDLoss: (15)

By optimizing these modules, the missing omics data can be
more reliably imputed from the available ones, both the shared and
specific features are extracted from multiomics. As such,
LungDWM can capture and preserve the variety of cancer subtypes,
and give a more accurate and authentic diagnosis of cancer
subtypes.

3 Results and validation

We testify LungDWM on TCGA Lung cancer data and SARS-CoV-
2 data, and then perform ablation experiments to study the key
modules of LungDWM. We further evaluate the robustness of
LungDWM and other compared methods under different settings of
missing data, and investigate the authenticity of LungDWM for clin-
ical diagnostic.

3.1 Results on lung cancer subtype diagnosis
We downloaded the TCGA Lung Cancer data, including single nu-
cleotide variation, DNA methylation, miRNA and tissue whole slide
image, to quantitatively evaluate the performance of LungDWM.
We want to remark that our model can also fuse other types of
omics data (i.e. mRNA expression and copy number variation). The
cancer samples of small cell carcinoma and large cell carcinoma are
relatively scarce, and we did not collect samples of these two sub-
types from TCGA, so we only considered LUAD and LUSC subtype
data of NSCLC for experiments. For a comprehensive and compara-
tive evaluation, we take seven methods for comparison, including
vanilla MVL-based methods [MDNNMD (Sun et al., 2019) and
LungDIG (Wang et al., 2021b)] that only use well-paired omics data
to diagnose cancer subtypes; iMVL-based methods [iMSF (Yuan
et al., 2012), ScoreComp (Yuan et al., 2012), CG19 (Cheerla and
Gevaert, 2019), CPM-GAN (Zhang et al., 2022) and GIMPP (Arya
and Saha, 2021)] that diagnose subtypes using weakly paired omics
data. All compared methods were discussed in Section 1. For
MDNNMD and LungDIG, we separately used k-Nearest Neighbor
(kNN) and zero values to impute the missing omics data of individ-
ual patients, and termed the corresponding methods as MDNNMD-
kNN and MDNNMD-zero, LungDIG-kNN and LungDIG-zero.
The configurations of compared methods and details of used data-
sets are given in Supplementary Section S1 of Supplementary file.

We utilize four canonical evaluation metrics: Accuracy,
AUROC, F1-Score and AUPRC to evaluate the diagnosis results of
compared methods. A larger value of these metrics indicates a better
performance. We assess the statistical significance at the 95% level
by paired t-test, use •/� to indicate that LungDWM performs better/
worse than the other method. Table 2 reports the average and stand-
ard deviation of Accuracy, AUROC, F1-Score and AUPRC of each
method on the Lung cancer dataset, where the best results are shown
in bold face. From these results, we can observe the followings:

i. iMVL-based methods are more effective for cancer subtype

diagnosis than MVL-based ones on weakly paired omics data.

LungDWM improves the Accuracy by 3.6%, AUROC by 3.6%,

F1-Score by 3.2% and AUPRC by 3.9% to the best MVL-based

method LungDIG-zero. Other deep iMVL methods also often

have better results than MVL-based ones. That is because

iMVL-based methods account for intrinsic incompleteness of
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multiomics data, and simply imputing the missing data with

zero or by kNN is not so effective.

ii. Deep learning-based methods have a good potential in diagnosis

than shallow ones. Compared with shallow iMSF and

ScoreComp, deep iMVL-based methods manifest a better diag-

nostic performance. Compared with ScoreComp, LungDWM

achieves the improvement of 3.0% in Accuracy, 4.6% in

AUROC, 4.4% in F1-Score and 4.5% in AUPRC. This is be-

cause deep methods can better capture complex correlations of

multiomics data.

iii. The attention-based deep models (i.e. LungDIG-kNN, LungDIG-

Zero, GIMPP and LungDWM) can better handle the overfitting

problem caused by the high-dimensional omics data than non-

attention-based ones. LungDWM improves the non-attention-

based method CPM-GAN in Accuracy by 2.1%, AUROC by

1.8%, F1-Score by 1.6% and AUPRC by 2.0%; it also has better

results than other attention-based solutions. This supports that

attention weights in LungDWM can better capture the significant

features of multiomics data for authentic diagnosis.

iv. Introducing the attention weights into GAN makes the gener-

ated data more helpful for subtype diagnosis. Compared with

CG19 without GAN, GAN-based iMVL methods (CPM-GAN,

GIMPP and LungDWM) have a clear better performance. This

is because GAN can generate missing omics using available

ones, and is adaptive to different distributions. In addition,

compared with other GAN-based methods, LungDWM

improves the Accuracy by 1.2%, AUROC by 0.9%, F1-Score

by 1.4% and AUPRC by 1.3% to the second best performer.

This fact proves that the attention weights help LungDWM to

more focus on important features, which are beneficial for can-

cer diagnosis using the generated omics data, rather than all fea-

tures. As a result, the extracted features from generated omics

are more helpful than other GAN-based solutions for cancer

subtype diagnosis.

v. The balance of specific and shared features is essential for the

precise diagnosis of cancer subtypes. Compared with the best

results among deep iMVL methods (CG19, CPM-GAN and

GIMPP), our LungDWM improves the Accuracy by 1.2%,

AUROC by 0.9%, F1-Score by 1.4% and AUPRC by 1.3%.

That is because other methods mainly focus on the shared/com-

plementary features across omics, alike our SLoss in Equation

(2) does. The ILoss can rectify the encoding network to explore

and preserve the shared and specific features of multiomics

data. For this advantage, the extracted features preserve the var-

iety of subtypes and enable more accurate diagnosis. Our abla-

tion study will further confirm this advantage.

Besides, we conducted experiments on SARS-CoV-2 dataset (Su
et al., 2020) to study the generalization of our LungDWM. The
results and analysis are provided in Supplementary Table S5 and
Section S2 of Supplementary file. In summary, these results prove
the effectiveness of LungDWM for precise cancer subtype diagnosis
using weakly paired omics data.

3.2 Ablation study
To study the contribution factors of LungDWM, we introduce five
variants: LungDWM-w/oAtns, LungDWM-w/oGANs, LungDWM-
GANs w/oAtns, LungDWM-w/oSLoss and LungDWM-w/oILoss,
which separately disregard the attentions in multiomics encoders,
GANs, attentions in GANs, SLoss and ILoss. Table 3 records the
average results of LungDWM and its variants.

We see that LungDWM outperforms its variants by a distinct
margin, which suggests that: (i) The attention mechanism helps the
encoder module to better mine the significant features from multio-
mics data for cancer subtypes diagnosis, and LungDWM-w/oAtns
has the largest performance drop. This proves the effectiveness of
the attention mechanism in LungDWM on learning high-quality
representations from omics data with a large number of missing and
noisy sites. (ii) The GAN module can impute the missing omics data
during the adversarial process and boost the fusion of weakly paired
multiomics data. (iii) Adding the attention weights into GAN helps
to focus on important features in the generated omics data that are
helpful for diagnosis, and making the generated data are more simi-
lar with the real one, and thus enables a high-quality imputation of
missing omics data. (iv) The leverage of SLoss and ILoss enables the
encoder module to extract and preserve both shared and comple-
mentary features, and specific features of respective omics, which
maintain the variety of cancer subtypes and improve the diagnosis
authenticity and precision.

To further study the benefits of ILoss and its relation with SLoss,
we vary the hyperparameter k ð�1 � k � 1Þ in Equation (4), and
reveal the results in Figure 2. We observe that the balance of shared/
complementary and specific features of multiomics data (k ¼ 0:5)
can make the fused features more diverse, which improves the per-
formance by 2.5% in Accuracy, 2.1% in AUROC, 2.8% in F1-Score
and 8.6% in AUPRC than LungDWM with a large k¼1.
LungDWM also has an improvement of 1.6% on Accuracy, 1.6%
on AUROC, 1.8% on F1-Score and 1.9% on AUPRC with a small
k ¼ �1. This is because a too larger or smaller k is not conducive to
a more differential fusion of multiomics data. An extreme large k 	
1 forces these encoders to more focus on the shared/complementary
features across omics, and under-weight the specific ones; while k 	
�1 gives the opposite. Both extreme cases have a compromised per-
formance. Compared with the over-individuation of multiomics
data, over-emphasis on shared/complementary features across omics
results in a more severe performance drop (especially on AUPRC),
the latter loses a lot of specific information and leads to a severe
overfitting problem. This pattern confirms the necessity and effect-
iveness of extracting shared and specific features across omics for
preserving the diversity of cancer subtypes.

Table 2. Results of compared methods on diagnosing TCGA Lung cancer data

Accuracy AUROC F1-Score AUPRC

MDNNMD-kNN 0.86260.024• 0.91360.015• 0.86160.030• 0.90660.017•

MDNNMD-zero 0.88160.022• 0.92060.012• 0.87860.030• 0.90960.016•

LungDIG-kNN 0.89960.013• 0.91760.013• 0.89260.017• 0.91360.019•

LungDIG-zero 0.90960.014• 0.92760.012• 0.90760.015• 0.92260.016•

iMSF 0.89660.011• 0.91860.011• 0.88960.015• 0.91260.010•

ScoreComp 0.90160.013• 0.91360.015• 0.89760.016• 0.91660.016•

CG19 0.91460.007• 0.93060.009• 0.91360.007• 0.93060.010•

CPM-GAN 0.92360.017• 0.94460.015• 0.92260.016• 0.93960.016•

GIMPP 0.93060.013• 0.95260.014 0.92460.013• 0.94560.012•

LungDWM 0.94260.011 0.96160.011 0.93760.012 0.95860.014

Best results are shown in bold face.
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To further study whether LungDWM can effectively integrate
multiomics data, we record the diagnostic performance of the ori-
ginal single-omics data under the same sample pool. Particularly,
missing omics samples are filled with average values of available
samples in the same omics. In addition, we use GAN-imputed omics
data for diagnosis and report the results in Table 4. We can observe
that: (i) Compared with diagnostic results from single omics data
filled with average values, the GAN imputed omics data all enable a
better diagnosis performance and the most prominent improvement
is the image omics. This suggests that the omics data imputed by our
GAN module has the similar distributions as the available data and
can be used to enrich patient features, thereby improving the diag-
nostic performance. (ii) LungDWM can effectively integrate multio-
mics data for disease diagnosis. Compared to the diagnosis using
single omics data, LungDWM achieves a very significant perform-
ance improvement. This proves that the fusion of multiomics data
makes more diverse patient features, which reduces the interference
of noise and low coverage of single-omics data and gives more ac-
curate diagnosis.

For a more comprehensive study, we performed more experi-
ments on LungDWM by excluding one particular omics data and
multiomics data with different missing rates. We observe that
LungDWM can achieve more accurate diagnosis by effectively inte-
grating more types of omics data, and excluding transcriptomics or
image data has a serious performance drop than other omics data.
We also observe that LungDWM maintains a better robustness on
weakly paired multiomics data with different missing rates. The
results and analysis are provided in Supplementary Section S3 of
Supplementary file.

3.3 Model interpretation
To verify the authenticity of LungDWM for pathologists, we study
the attention weights xv obtained by LungDWM on genomics, epi-
genetics and transcriptomics data, these weights also signify the im-
portance of selected features for diagnosis. We separately sum the
attention weights of each omics data and average them under 10-
fold cross-validation, then select several feature sites with larger
weights for the following analysis and validation. For the genomics
data, we investigate 14 genes with the highest weights from 19 728
gene mutation sites. For the epigenetics data, we study 14 sites with
the highest weights among 9816 selected methylated CpG sites. As

for transcriptomics data, we select 16 miRNAs with the highest
weights among 1881 miRNAs. Some highly weighted molecules are
revealed in Figure 3a–c.

In the previous experiments, we proved that the attention
weights can improve the diagnosis performance by picking out im-
portant features from each omics data. For genomics data, we ini-
tially assigned the same weight (5.068e�5) to 19 728 genes sites.
After the model is optimized, the attention weights (after Softmax
normalization) under 10-fold cross-validation are averaged, and the
highest weight is 9.22 times larger than the initial one. This pattern
also applies to the attention weights of epigenetics and transcriptom-
ics data. The initial attention weights for 9816 CpG sites and 1881
miRNAs are 1.018e�4 and 5.316e�4. After optimization, they
have increased by 52% and 17%, respectively, than the initial one.
This fact shows that LungDWM can pick out important features for
diagnosing cancer subtypes and can aid pathologists to identify
causal and therapeutic sites via the attention weights learned from
multiomics data. More discussions and biomedical evidences of
these sites are given in Supplementary Section S4 of Supplementary
file.

We find a large number of highlighted sites have been verified to
be (potentially) associated with LUAD, LUSC and lung cancer. We
also find out some novel feature sites associated with lung cancer.
These prove the authenticity of LungDWM in subtype diagnosis and
its potential to assist pathologists for targeted therapy. In addition,
we perform statistics on these sites of genomics and epigenetics
group, and observe patients of different subtypes with varying muta-
tion propensities at these sites. These statistical results are consistent
with previous biological experiments (Herbst et al., 2018; Vargas
and Harris, 2016), and also justify the rationality of extracting
shared and specific features to preserve the variety of subtypes.

An miRNA can regulate the expression of multiple genes, and
the expression of a gene can also be regulated by multiple miRNAs.
We also analyze the gene sites captured by the genomics and epigen-
etics group, and miRNAs captured by the expression group, we
study the biological targets predicted by these miRNA targets with
24 gene sites in the genome and epigenetics group from TargetScan
database (McGeary et al., 2019), and create a heatmap in
Supplementary Figure S4 of Supplementary file. We find the identi-
fied miRNA targets are mostly associated with genes with mutation
sites and CpG sites. This not only further confirms the authenticity
of the identified important miRNAs by attention weights for lung
cancer subtype diagnosis but also proves that LungDWM can effect-
ively integrate correlated features of multiomics data, so as to make
accurate subtype diagnosis. More results are given in Supplementary
Section S4.3 of Supplementary file.

These results not only verify the authenticity and interpretability
of attention weights in multiomics data but also suggest the applica-
tion values of LungDWM for clinical diagnosis and targeted therapy.

4 Conclusion

In this article, we propose LungDWM for lung cancer subtype diag-
nosis using weakly paired multiomics data. LungDWM leverages
attention-based feature encoders to extract the shared and specific
features of multiomics data, imputes missing omics data from avail-
able ones through generative adversarial learning and makes the
subtype diagnosis by fusing real and imputed data. Experimental

Table 3. Results of LungDWM and its variants on TCGA Lung cancer data

Variant Accuracy AUROC F1-Score AUPRC

LungDWM-w/oAtns 0.91860.012• 0.86760.063• 0.91260.011 • 0.85660.077•

LungDWM-w/oGANs 0.92060.009• 0.94060.011• 0.91560.010• 0.93960.010•

LungDWM-GANs w/oAtns 0.93060.011• 0.94860.013 0.92360.009• 0.94860.012

LungDWM-w/oSLoss 0.92260.019• 0.94760.017 0.91860.021• 0.94160.019•

LungDWM-w/oILoss 0.92760.018• 0.94560.019• 0.92060.020• 0.94060.021•

LungDWM 0.94260.011 0.96160.011 0.93760.012 0.95860.014

Fig. 2. LungDWM under different values of individual factor k
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results show that LungDWM not only can more accurately diagnose
cancer subtypes than state-of-the-art methods but also enable a high
authenticity and good interpretability. We will expand LungDWM
for other cancers and to predict their prognosis in federated learning
framework to protect the privacy of multiomics data.
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