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In this work, an automated knee bone segmentation model is proposed. A mask region-based 

convolutional neural network (RCNN) algorithm is developed to segment the bone and reconstructed into 

3D object by using Marching-Cube algorithm. The proposed method is divided into two stages. First, the 

Mask RCNN is introduced to segment subchondral knee bone from the input MRI sequence. In the second 

stage, the segmented output from Mask R-CNN is fed as input to the Marching cube algorithm for the 3D 

reconstruction of knee subchondral bone. The proposed method achieved high dice similarity scores for 

femur bone 95.35%, tibia bone 95.3%, and patella bone 94.40% using a Mask R-CNN with Resnet-50 as 

backbone architecture. Improved dice similarity scores for femur bone 97.11%, tibia bone 97.33%, and 

patella bone 97.05% are obtained by Mask RCNN with Resnet-101 as backbone architecture. It is noted 

that the Mask RCNN framework has demonstrated efficient and accurate knee subchondral bone 

detection as well as segmentation for input MRI sequences.  

Keywords: Mask Region-based Convolutional Neural Network; Osteoarthritis, Magnetic resonance 

imaging; Knee Bone Segmentation  

 

 

I. INTRODUCTION 

 
Osteoarthritis (OA) is a chronic disease mostly diagnosed in 

the knee joints of elderly, female, and overweight people. OA 

responsible for 2.4% of all years lived with disability and was 

ranked as the 10th leading contributor to global years lived 

with disability. The monitoring of knee-osteoarthritis 

progression is possible by measuring pre-structural and 

structural changes associated with ligaments, articular 

cartilage, meniscus, subchondral bones, and synovial fluid. 

Although most of the OA evaluations are based on simple 

radiographic assessment techniques (X-ray), researchers 

have demonstrated that knee OA can effectively measure by 

utilising Magnetic Resonance (MR) Imaging (Hong-Seng  et 

al., 2017). The relationship between the progression of knee 

OA and changes in the shape of knee subchondral bone is 

reported by the Foundation of National Institute of Health 

osteoarthritis biomarkers consortium. Therefore, knee 

subchondral bone segmentation methods have received 

increasing attention. In recent years, methods based on 

convolutional neural networks (CNNs) have led to dramatic 

improvements in knee subchondral bone detection and 

segmentation methods (Hong-Seng et al., 2020). 

Liu et al. (2018) described Deep CNN and 3D Deformable 

pipeline for pixel-wise multi-class cartilage and bone 
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classification. In Liu et al. (2018) work, the SegNet 

framework (Deep CNN) was selected as the automated bone 

and cartilage segmentation. The 3D deformable technique 

was used to create a smooth surface for musculoskeletal 

structures. Deniz et al. (2018) presented an automatic 

proximal femur segmentation algorithm based on 2D and 3D 

deep CNNs. Lee et al. (2018) presented the BCD-NET method 

cartilage segmentation using bone-BCC difference (BCD) 

extraction and bone-cartilage-complex (BCC) approach. The 

performance of the BCD-Network was improved by using 

multi-view 2.5D segmentation on three orthogonal planes 

namely sagittal (S), coronal (C), and axial (A) planes. 

Zhou et al. (2018) presented a segmentation algorithm 

consisted of CNN, 3D fully connected conditional random 

field (CRF), and 3D simplex deformable approach. The 

combined architecture was used to improve the performance 

of knee joint tissue segmentation. Ambellan et al. (2019) 

introduced a robust and accurate segmentation of bone and 

cartilage consisting of 3D Statistical Shape Models (SSMs) 

adjustment, 2D U-Net, 3D U-Net, and SSM post-processing 

pipeline. This paper presented a fully automated 

segmentation method for knee bone and cartilage by 

combining the advantages of SSM-based regularisation with 

CNN-based classification of voxel intensities. However, 

existing U-Net (Deniz et al., 2018), SegNet (Liu et al., 2018), 

RetinaNet (Lin et al., 2017), BCD-NET (Lee et al., 2018) and 

other deep stacking networks (DSN) are facing spatial 

information loss due to a semantic gap between the 

corresponding levels of encoder-decoder for knee bone 

segmentation. Besides, these methods suffer from poor 

segmentation performance for smaller ROIs. 

In this research work, a mask region-based convolutional 

neural network (R-CNN) He et al. (2017) framework is 

developed for knee subchondral bone detection, localisation, 

and segmentation from MR images. The Mask R-CNN 

framework produces a more accurate segmentation mask for 

each bone instance due to the backbone network, Feature 

Pyramid Network (FPN), Region Proposal Network (RPN), 

Region of Interest (ROI) Classifier & Bounding Box 

Regression and Segmentation Masks as building processing 

block. Each processing block in Mask R-CNN is responsible 

to detect, localise, segment knee subchondral bone from 

different image appearances, imaging artifacts of multiple 

MRI sequences. Mask R-CNN network preserves spatial 

information for knee bone instance segmentation because 

there is no semantic gap between encoder-decoder stages. 

The 3D subchondral bone generated from the output of the 

marching cube model was used to predict the risk of 

developing knee osteoarthritis and to detect osteoarthritis 

progression up to the knee replacement stage (Gait et. al., 

2016; Mackay et al., 2017).  

The structure of paper is organised as follow: Section II 

explains the materials and methods, Section III describes the 

experimental results of knee subchondral bone segmentation 

and 3D visualisation and Section IV concludes the work. 

 

II. METHODOLOGY 

 

A. Image Dataset 

 
MR image of knee from the Osteoarthritis Initiative (OAI) 

(Peterfy et al., 2008), dataset was used to train and test the 

knee bone segmentation model. 

 

 

Figure 1. Original image with the ground-truths. (a) MR 

image sequence, (b) Femur bone mask, (c) Tibia bone mask, 

and (d) Patella bone mask 

 
Figure 1 shows the MR image with ground-truth labels for 

each class. The MR image sequences were captured by using 

double echo steady-state (DESS) in the sagittal plane with the 

following specification details: matrix size of 384x384, in-

plane resolution of 0.36x0.365 mm, slice thickness of 0.7 

mm, a repetition time/echo time of 16.3/4.7 ms, flip angle of 

25, and bandwidth (BW) of 185 Hz/pixel, and field-of-view of 

140x140 mm. To perform Knee bone segmentation and 3D 



ASM Science Journal, Volume 17, 2022  
 

3 

visualisation, the MR images and their respective ground 

truth mask play an important role.  

 

B. Architecture of the Proposed Knee Bone 
Segmentation 

 
The R-CNN (Girshick et al., 2014), a fast R-CNN (Girshick et 

al., 2015) and faster R-CNN (Ren et al., 2015) are the deep 

neural network to show that CNNs can achieve better object 

detection performance on the PASCAL VOC Challenge. But 

the R-CNN model is computationally difficult to train due to 

its architecture complexity and fast R-CNN model required 

selective search as bottleneck process.  It was observed that 

Faster R-CNN has poor performance for pixel-level object 

classification. 

In this work Mask R-CNN algorithm is introduced for knee 

subchondral bone segmentation. The process flow of the 

subchondral bone segmentation model is depicted in Figure 

2. The proposed algorithm is consisting of two stages namely 

subchondral bone segmentation and 3D visualisation. In the 

first stage, MR images with ground truth labels are provided 

as input to the Mask R-CNN. Here, Mask R-CNN is used to 

generate the three types of output such as Class label, 

bounding box (BBox), a segmented mask for knee bone. In 

the second stage, the segmented knee subchondral bone 

mask from 160 samples are collectively used for 3D 

visualisation. 

 

Figure 2. Process flow of the proposed Mask R-CNN 

subchondral bone segmentation model 

 

C. Subchondral Bone Segmentation 

 
The Mask R-CNN framework consists of two steps; the first 

step generates the proposal which likely to contain a knee 

subchondral bone from the input MR image. The second step 

predicted the class of generated proposals, created masks, 

and bounding box for input MR image. Figure 3 illustrates the 

different processing block of Mask R-CNN algorithm.  

 

Figure 3. Subchondral Bone Segmentation using Mask R-

CNN algorithm 

 
Mask R-CNN consists of ResNet50 or ResNet101 and 

Feature Pyramid Network (FPN) as backbone modules. The 

Resnet-50 or Resnet-101 network was introduced to tackle 

vanishing gradient with the help of a residual block and 

represented as: 

( )  ,           (1)i sxY F x W W= +  

The identity mapping is multiplied by a linear projection W 

to expand the channels of shortcut to match the residual. This 

allows for the input x and F(x) to be combined as input to the 

next layer. However, the Feature pyramid network takes a 

single-scale image of arbitrary size as input, and outputs 

proportionally sized feature maps at multiple levels, in a fully 

convolutional fashion with the help of the following equation. 

Here 384 is the size of the input MR image, and k0 is the 

target level on which a ROI with w × h = 384×384 should be 

mapped. The algorithm uses the size of the 256 top-down 

layers to create features pyramid. 

0 2log ( ) x3         (2)84k k wh= +  

The Region Proposal Network (RPN) scans over the 

backbone feature map in a sliding window fashion and 

predicts the ROI that likely contains knee subchondral bone 

(Anchors). The predicted region proposals are then reshaped 

using a ROI align layer which is then used to classify the 

image within the proposed region and predict the offset 

values for the bounding boxes. The ROI Classifier & Bounding 

Box Regressor module runs on ROI that contains 

subchondral bone to predict two outputs (i.e. output class and 
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BBox regressor) for each ROI in the Knee MR image provided 

by RPN. Mask R-CNN generates a mask for each class 

separately and the loss function is used per pixel sigmoid and 

binary loss. 

            (3)cls box maskL L L L= + +  

 
The multi-task loss function L of Mask R-CNN is the 

addition of the loss of classification Lcls, localisation Lbox and 

segmentation mask Lmask during the training on each sampled 

ROI that makes Mask R-CNN more accurate. It is noted that 

the Mask R-CNN is used for providing significantly improved 

results than State-of-the-art methods for subchondral bone 

segmentation. 

 

D. 3D Visualisation using a Marching Cube 
Algorithm 

 
The segmented output is then used to for 3D visualisation in 

computer-aid diagnosis, architecture, medicals, and related 

areas by Volume rendering techniques namely marching cube 

algorithm [21]. The marching cube algorithm is divided into 

two stages. First, the algorithm locates the surface 

corresponding to a user-specified value and creates triangles. 

Second, to ensure a quality image of the surface, then 

calculate the normal to the surface at each vertex of each 

triangle. The algorithm scans two slices of images and creates 

a logical cube with four neighbouring pixels from both slices. 

The eight density value at the cube vertex is used to calculate 

the cube index. The cube index is considered as a pointer in 

the edge table to determine all edge intersections. To 

calculate the intersection points it requires to do linear 

interpolation: 

 

( ) ( ) ( )  1  _   1 2  1 / 2  1         (4)P P iso level v P P v v= + −  − −  

 
The linear interpolation is used to interpolate surface 

intersection along the edge. If P1 and P2 are the vertices of a 

cut edge and v1 and v2 are the scalar values at each vertex, the 

intersection point P is given by equation 4. After calculating 

Interpolate surface intersection along each edge, Algorithm 

Calculate normal for each cube vertex using central 

differences:  
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Where D (i, j, k) is the density at pixel (i, j) in slice k and ∆x, 

∆y, ∆z are the lengths of the cube edges. The final step in a 

marching cube algorithm is to interpolate the normal at the 

vertices of the triangles and mathematically it is representing 

as:  

( ) ( )1 2 1    1           8n ug u g= + −  

 
A three-dimensional representation of the subchondral 

bone can be visualised by drawing these triangles. Figure 4 

shows the basic pipeline of 3D modelling using the Marching 

cube. 

 

 

Figure 4. 3D reconstruction using the Marching cube 

algorithm 

 

III. RESULTS AND DISCUSSION 

 

A. Evaluation Metrics 

 
To obtain accurate 3D bone surface reconstruction, it is 

required to achieve accurate instance bone segmentation. 

Dice similarity coefficient (DSC), sensitivity and specificity 

are the benchmark evaluation matrices in knee segmentation 

model evaluation (Hong-Seng et al., 2019). The evaluation 

metrics are defined as follows: 

/ (      9)   ( )Sensitivity TP TP FN= +  

    /   (10)( )Specificity TN TN FP= +  

2 / (( ) (    FN TP))    (11)DSC TP TP FP= + + +  

 

where the TP (true positive) is the region that is correctly 

identified as bone tissue, the FN (false negative) is the region 

that is incorrectly identified as non-bone tissue, the FP (false 

positive) is the region that is incorrectly identified as bone 
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tissue, and the TN (true negative) is the region which is 

correctly identified as non-bone tissue. The results were 

compared with the ground truth of the test data set. To 

perform model training and testing we have used NVIDIA 

GTX 1070 GPU of 8 GB RAM with 1920 cores as high 

computational power system.  

 

A. Model Performance Results 
 

The Mask R-CNN implementation was built in Python with 

libraries Keras and TensorFlow (Abadi et al., 2016). The 

proposed algorithm is trained on 80 MR datasets with a total 

of 12,800 images. Then, the framework was tested on 10 

datasets. The parameters such as momentum, learning rate, 

and epochs for Mask R-CNN are set up at 0.9, 0.0001, and 

200, respectively. During training on the Mask R-CNN 

network, the learning rate is reduced by a factor of 10. The 

size of the fully connected layers in the classification graph is 

set as 1,024 for extracting knee bone class features. Our 

algorithm uses a bounding-box Non-max suppression 

threshold of 0.5 to filter RPN proposals. The RPN Anchor 

scales are set to (8, 16, 32, 64, 128) with an RPN anchor stride 

of one to detect knee bone class from input MR image. The 

decrease in the value of RPN Anchor scales leads to the 

detection of small bone class from MR images. However, too 

small RPN anchor scales miss out on larger knee bone 

instances. Table 1 shows the performance of the Mask R-CNN 

with Resnet-50 and Resnet-101 for sub chondral bone 

segmentation of femur, tibia and patella. The segmentation 

results obtained by using Mask R-CNN with Resnet-101 as 

backbone have better performance as compared to Resnet-

50. 

Table 1. Performance of Mask R-CNN with Resnet-50 and 

Resnet-101 for subchondral bone segmentation for ten 

datasets. Femur is denoted as F, tibia is denoted as T and 

patella is denoted as P. 

          R-CNN with Resnet-50 R-CNN with Resnet-101 

    DSC Spec Sens DSC Spec Sens 

F 95.35 98.69 98.62 97.11 99.30 99.34 

T 95.3 99.25 98.24 97.33 99.42 99.27 

P 94.40 99.86 95.63 97.05 99.85 98.40 

 
   Table 2 shows the comparison of knee subchondral bone 

segmentation performance of baseline methods and Mask R-

CNN algorithm on the OAI dataset. The Mask RCNN model 

with ResNet-50 back-bone achieved DSC of femur bone 

95.35%, tibia bone 95.3%, and patella bone 94.40% on the 

validation dataset. Average DSC of femur bone 97.11%, tibia 

bone 97.33%, and patella bone 97.05% on the validation 

dataset by using Mask R-CNN with Resnet 101 as a backbone.  

Table 2. The knee Bone Instance Segmentation results for 

the validation set 

Method DSC SCORE 

   F    T    P 

(Zhou et al., 2018) 97.00 96.20 89.80 

(Liu et al., 2018)  

M-RCNN res-50 

M-RCNN res-101 

97.30 

95.35 

97.11 

84.40 

95.30 

97.33 

- 

94.40 

97.05 

 
Figure 5 illustrates the effectiveness or robustness of the 

Mask RCNN framework for subchondral bone segmentation. 

In Mask R-CNN architecture is necessary to generate MR 

images and their respective ground truth labels into the 

MSCOCO style dataset for training and testing the proposed 

method. The Mask R-CNN architecture consists of backbone 

and head network used for feature extraction and instance 

segmentation, respectively. For the subchondral bone 

segmentation experiment, the proposed algorithm used 

Resnet-50 or Resnet-101 with FPN as a feature learning 

model referring to the backbone of Mask R-CNN. The total 

number of layers available in architecture is the key 

difference between Resnet-50 and Resnet-101 networks. 

 

 
     (a)                         (b)                     (c)                   (d) 

Figure 5. Femur, patella, and tibia bones segmentation using 

the Mask RCNN. (a) MR-image sequence, (b) Bone mask 

with a class label for MR image, (c) Mask RCNN output for 

MR image, and (d) Bone mask with a background 
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From the experiment results, it was noticed that Resnet-50 

with FPN has less computational load than ResNet-101 as a 

backbone in Mask RCNN. It was observed that the 

performance of ResNet-101-FPN has better accuracy and 

speed than the ResNet-50- FPN model as a backbone 

network. This performance improvement was obtained 

because ResNet-101-FPN has a better representation of the 

feature map than ResNet-50-FPN due to the extra number of 

deep convolutional layers. 

The Top-down layers parameter is used to restore 

resolution with rich semantic information in bone instance 

segmentation. Therefore, the algorithm uses the size of the 

256 top-down layers to create a features pyramid. The ROI 

Align layer was introduced in Mask R-CNN for improvement 

in pixel-level accuracy for instance segmentation. The mask 

prediction branch is a straightforward framework consisting 

of a fully convolutional layer with a soft mask of size 28x28 

for fixed output. Then, the marching cube algorithm is 

introduced to 3D visualisation of knee subchondral bone. 

This algorithm helps to produce a triangle mesh by 

calculating iso-surfaces from discrete information. In the 

marching cube algorithm parameter like iso-value is set to 

200 and the cube size value is the same as the number of 

pixels for the MR-Image slice.  

 

IV. CONCLUSION 

 
The problem of localisation, segmentation, and 3D 

visualisation of knee bone using MR-Images is tackled. The 

Mask R-CNN framework is selected to perform bone instance 

segmentation algorithms. Mask R-CNN can preserve spatial 

information due to its fully-connectivity between features 

learning approach and Mask Network for knee bone 

segmentation. The Mask R-CNN framework can obtain 

uniform knee subchondral bone detection and segmentation 

for each bone class due to the best suitable value of RPN 

Anchor scales. Top-down layer parameter and ROI align used 

to generate rich semantic information and improvement in 

pixel-level performance in knee subchondral bone instance 

segmentation. The segmented output from Mask R-CNN of 

160 slices of MR images is a stack in parallel for the marching 

cube algorithm. The marching-cube algorithm is used for 3D 

knee subchondral bone visualisation by using MR images. 

The 3D knee subchondral bone is used for several 

applications such as knee replacement, monitor the risk stage 

for osteoarthritis, and determine treatment effects in trials of 

osteoarthritis. 
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