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Abstract - Planning and scheduling (PS) problems in
advanced manufacturing systems, such as flexible
manufacturing systems, are composed of a set of
interrelated problems, such as operation sequencing,
machine selection, routing, and online scheduling.
Operation sequencing deals with the problem of
determining in what order to perform a set of selected
operations such that the resulting sequence satisfies the
precedence constraints as well as alternative operation
constraints established by both the parts and operations.
In this paper, modified particle swarm optimization
(MPSO) has been used to generate a feasible operation
sequence for a real world manufacturing problem. In
addition, the directed mutation is used to accelerate the
individuals move toward the optimal solutions. The
quality of the result and its numerical performance is
discussed in comparison with a standard genetic
algorithm (SGA). After 10 runs, the result from SGA
show that the possibilities for the solution to fall in the
near optimal solution is about 30% compared with the
result from MPSO which always force the constrainis to
be fully satisfied.

Keywords: Operation sequencing, particle swarm
optimization, process planning and scheduling.

1 Introduction

Process planning is the activity of translating a set of
design  requirements and  specifications  into
technologically feasible instructions describing how to
manufacture a part [1]. Generally, a process plan contains
processes, process parameters, machines, routes, set-ups
and tools required for production of parts. Normally
process planning involve several or all of the following
activities: (1) selection of required operations; (2)
sequencing of selected operations; (3) selection of
required tools; (4) determining setup requirements; (5)
determining of operation parameters. Of these activities,
operation sequencing is the most complex due to the need
to consider several types of constraints and the size of the
resulting solution space.

The operation sequencing problem is the problem of
simultaneous selecting and sequencing operations
required to produce a part while satisfying the precedence
relations among operations [2].

There are several approaches have been used to
determine an optimal sequence include integer
programming [3], branch and bound [4], simulated
annealing [5], heuristic [6], ant colony optimization [7],
[8] and evolutionary techniques [2],[9],]10] .[11], [12].

2 Approaches and Methods

The overall goal of this research is the development of
an integrated planning and scheduling framework for a
real world manufacturing environment. Thus this
research involves two main research problems namely,
process planning and production scheduling. This paper
is more focusing on the former problem.

In this research, process planning is performed in two
stages: resource-independent planning and resource-
dependent planning. The purpose of resource-
independent stage is to provide a means for determining
the best set of plans for a part independent of the status of
the shop floor resources. Then later when production of
that part is released to the shop floor, the resource-
independent planning phase completes the planning tasks
(machine selection, route, parameter determination, etc.)
based on knowledge of what shop-floor resources are
available. Therefore, this paper is concerned with
defining a feasible operation sequences independent of
the availability of resources.

2.1

The task of operation sequencing is complicated by the
large number of interactions that exist between the
various factors which affect decision-making. According
to Usher and Bowden [2], the factors which are resource
independent shown in Table 1. As revealed in Table 1,
the constraints which affect sequencing can be divided
into those which address either the feasibility or
optimality of a sequence. This division permits the
construction of a system which applies the feasibility
constraints to the task of generating alternative
sequences, and the optimality criteria to the task of
judging the quality of the resulting alternatives. A
feasible sequence is one which does not violate any of the
feasibility constraints listed in Table 1.

Sequencing Constraints
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Table 1. Sequencing constraints
[Adopted from Usher and Bowden, 1996]

Location reference
Accessibility
Non-destruction
Geometric tolerance
Strict precedence

Feasibility constraints

Number of setups
Continuity of motion
Loose precedence

Optimality criteria

In this research, we only consider feasibility constraints,
because the optimality criteria will be considered in
another stage. The feasibility constraints adopted here are
shown in Table 2.

Table 2. New sequencing constraints

Location reference
Accessibility
Non-destruction
Strict precedence
Alternative constraint

Feasibility constraints

The location constraint is concerned with an examination
of the defined part features to determine what reference
face is used to locate each feature. This reference
identifies the necessity that the locating surface be
machined prior to the associated feature. In order to
machine a feature it must be accessible. The accessibility
constraint evaluates each feature's accessibility based on
the feature type and its location relative to other features.
Features are defined as either primary or secondary. The
primary features define the basic shape of the part
(diameters, tapers, etc) and secondary features provide
the detailed shape aspects (grooves, bends, etc.). The fact
that since a secondary feature is defined as residing on a
primary feature, it makes sense not to machine the
secondary feature until the primary feature has been
formed. Therefore, before a secondary feature, such as a
groove, is cut on the taper of the part, the taper (a primary
feature) must be machined to specifications.

The non-destruction constraint is concerned with
ensuring that a subsequent operation does not destroy the
properties of features machined in prior operations. This
type of problem is limited to the interactions that occur
between the secondary features which reside on the same
primary feature. One example would be the need to
tapering the parts prior to punching the parts.

Another constraint considers strict precedence whereby
order is determined based on feature type and properties,
One example would be an eye forming whose properties
require the use of a bushing operation. However, before

162

bushing can be performed, there is a need to form the eye
first, and possibly reams, the internal part. The need for
these preparatory operations is actually determined
during operation selection. Therefore, the results of this
constraint will not actually influence the plan until the
operations are considered when writing out the sequence.
The last constraint pertains to the alternative operation
defined for the part. There are several alternative
operations performed on the parts. One example would
be one part only needs one type of end cutting, it is either
diamond cutting or width cutting; or it is either end
trimming or end grooving.

These feasibility constraints give us the capability to
define a set of precedence between the features of a part
resulting in the construction of a precedence relationship
matrix (PRM) to represent these precedence
relationships.

2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a new population-
based search algorithm based on the simulation of the
social behavior of the swarms in nature such as flocking
birds, schooling fish, etc. It was introduced by Russell
Eberhart and James Kennedy in 1995 [13]. It is easily
implemented in most programming languages and has
proven to be both very fast and effective when applied to
a diverse set of optimization problems. PSO combines
cognition model that values self experience and social
model that values experience of neighbors.

PSO has been applied successfully to a wide variety of
search and optimization problems like travel salesman
problem [14],[15], flow/job shop scheduling problem
[16],[17],[181,[19], university timetabling problem
[20][21], machining parameter optimization [22] and
generator maintenance scheduling [23].

A swarm consists of N particles flying around in a D-
dimensional search space. Each particle holds a position
(candidate solution to the problem) and a velocity (the
flying direction and speed of the particle). Each particle
successively adjust its position toward the global
optimum according to two factors: the best position
visited by itself (pbest) and the best position visited by
the whole swarm (gbesf). Each particle of PSO can be
considered as a point in the solution space. If the number
of particle is N, then the position of the i-th (=1,2...N )
particle is expressed as X,.. The best position passed by
the particle is pbest;. The velocity is expressed with V.
The best position of the swarm is gbest. Therefore,
particle i will update its own velocity and position
according to equations:

V" =wx ¥+ xrand(), x(pbest, - X') + ¢, xrand(), x (gbest - X')
..................... €))
1+ _ ! 1+]1
X, =X0+Y 2



where, V,'Jrl and V,' are velocities of particle i at time
t+1 and t, respectively. X ,'” and X' are positions of

particle / at time ¢+/ and 1, respectively. ¢, and ¢, are

two constant weighting factor related to pbest and gbest,
respectively. rand(), and rand(), are two random number
between 0 and 1. pbest; is pbest position of particle 4,
ghest is ghest position of swarm and w is the inertia
weight.

The basic PSO algorithms are as follow:

1. Initialize the swarm from the solution space (position
and velocity of each particle)

Evaluate fitness of each particle.

Modify gbest, pbest and velocity.

Move each particle to a new position.

Go to step 2, and repeat until convergence or a
stopping condition is satisfied.
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2.3 Comparison to Genetic Algorithms

There are several similarities and dissimilarities between
PSO and GA. They are as follow:
¢ Similarity
- Both algorithms start with a group of a randomly
generated population.
- Both have fitness values to evaluate the population.
- Both update the population and search for the
optimum with random techniques.
- Both do not guarantee success.
¢ Dissimilarity
- Unlike GA, PSO has no evolution operators such
as crossover and mutation.
In PSO, the potential solutions, called particles, fly
through the problem space by following the
current optimum particles.
- Particles update themselves with the internal
velocity.
- They also have memory, which is important to the
algorithm.
¢ Advantages
- PSO is easy to implement and there are few
parameters to adjust.
- Compared with GA, all the particles tend to
converge to the best solution quickly

2.4 Operation Sequence Coding

Application of an evolutionary search technique like
genetic algorithms (GA) or particle swarm optimization
(PSO) requires a method for representing a solution.
Since operation sequencing problem is an order-based
problem like travel salesman problem, we used path
representation to represent the sequence. In this problem
a sequence is represented as a list of n operations. If
operation ‘i’ is the j-th element of the list, operation ‘i’ is
the j-th operation to be performed. Hence, the sequence
3-2-5-6-1-4 is simple represented by 325614.

Then, we used this sequence as the position of a particle,
which is represented by X;. Thus, each position of a
particle i, X, is a sequence of operations to be performed,
in order to produce a part, as follows:

|13l9AIBCD]EFGHJ

Then velocity of each particle i, represented by V, is a
randomly generated mutation rate between 0 and V.
where Vo, = 0.5 * length(X,) and length(X) is the length
of the position X,.

The sequence of operations is bounded to the precedence
constraints. Table 3 shows the example of precedence
constraints for a number of processes. Oy,,..., Oy; is a set
of flexible-route operations which can be performed in
any order.

Table 3. Precedence constraints

Id Operation
O; | Shearing O:
O: | Center Hole Punching | 05 0:,05,05,0;
Os | Berlin Eye Forming nil

Precedes

O, | Short tapering 05,05,07
Os | End punching 04,0507
O | Bevel hole punch 0,.0:.0,
Q> | Diamond cut 0,,05.0;

There are several approaches have been used to represent
precedence relationships among features. They are
feature precedence graph (FPG) [2], rules [5] and
precedence relationship matrix (PRM) [8]. In this
research, we used another kind of precedence-relation
matrix as shown in Figure 1 to represents the constraints
and relationships between the operations.

1 2
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21 - 0 0 0 % 0 0 0 O 0 0 0O O B G O 0 0 0 0 0 0
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S|t - 1 - 0% 0 0 b 0 v o0 oo - - 0 0 0 0 0 ¢
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Flrn 1 - - - - - 1 - 1 1 1 1 - 0 0 0 0 0 0 0 0
Gfr 1 - - - - - 1 - 1 ¢t 1 1 1 - ¢ ¢ ¢ 0 ¢ 00
Hf1 11 - - - - -t - L 111 1 i - ¢ ¢ 0 0
2 S s e e S e e e e LU (O N (B
Jrr 11 1t 11y 1t 111 0t L1t 00 00
K1 v 1 1 ¢ L 1t 1 vt ) 3y 1110 - ¢ 00
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Figure 1. Precedence-relation matrix
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The value of the matrix is either

0 if i can precede j

pi=4l

- if i and j are two alternative operations

if i can not precede j

We use mutation operator to make changes to the
sequence. Mutation is a unary operator that introduces
random modifications of the sequence in order to add
diversity to the solution. During the past decade, several
mutation operators have been proposed for permutation
representation, such as inversion, insertion, displacement,
and reciprocal exchange mutation.

In order to preserve valid sequence, here we used
reciprocal exchange method which swaps two values in
the sequence. The algorithms will randomly choose two
mutation points and swap the values in those particular
points.

As shown in Figure 2, reciprocal exchange mutation
selects two positions at random and swaps the
values on these positions.

Two mutation points randomly chose

Parent 1 A]ZlE Illle 4 1¢ II é

Two values swapped Q
oftspring 1 (A 2 4Lt In]alelcli 18]

Figure 2. Mutation using reciprocal exchange

Then, the new positions or sequences of next generation
are produced by following several steps:

« Movement of the particles is processed by the
following procedure (Adopted from [20]):
1. Each particle (X;) must be randomly swap two
operations for ¥, times.
Sies =V, * mutation (X))
2. Randomly copy a sequence of operations from
the local best (P,) to particle (S,-,).
W,.1=rand* copy (S..., P)
3. Randomly copy a sequence of operations from
the global best (G,) to W.,.
X =rand * copy (Wi, G))

2.5 Fitness Function

For our problem, the fitness of a sequence is obtained by
computing the cost of penalty for the constraints violation
according to the sequence. Thus our objective function is
to

n=1 n

minz Z Dy i jinthe sequence

=t j=i+1

subject to the precedence constraints represented by
precedence-relation matrix (PRM) shown in Figure 1.

3 Results and Discussion

The goal of sequencing is to find an operation sequence
which satisfies the constraints mentioned in the previous
section. The constraints have been represented in the
form of precedence-relation matrix (PRM).

In order to demonstrate the practicability and efficiency
of the proposed algorithm, different numerical
simulations are tested and evaluated. The algorithm is run
on a personal computer with an Intel Pentium IV, 512MB
RAM, on Microsoft Windows 2000 Professional. The
codes are written in the LISP language.

Each trial run of our program started with a randomly
created generation of individuals. The program was
allowed to evolve this generation up to 50 times.

In order to show the effectiveness of the proposed
algorithms, several runs have been done to be compared
with the result from standard genetic algorithms (SGA).

Run 1

Penalties

1 6 1116 21 26 31 36 41 46

Generations

Figure 3. Modified PSO vs Standard GA (Run 1)

Figure 3-5 show the comparison results for Modified
PSO vs Standard Genetic Algorithms (SGA).

The graphs show that in each trial modified PSO found
the solution earlier than SGA.

Run 2

8
o
S
S

Penaltie;
o
(=]
o

Generations

Figure 4. Modified PSO vs Standard GA (Run 2)

As stated earlier, PSO have a number of initial solutions
which represented by a number of particles and every
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particles strive to get their own optimal solution. The
results shown in Figure 3-5 prove that the cooperation
among the particles assist the algorithms to converge
earlier, compared to SGA which only have one candidate
solution to be manipulated in order to get the optimal
solution.

Run 3

Ganenations

Figure 5. Modified PSO vs Standard GA (Run 3)

This is of the most significant advantage for PSO
compared to GA. With a number of candidate solutions
PSO can come out with a near optimal solution faster
than GA. However, the author believes that GA also can
perform this advantage through parallel structure. Hence,
we conclude that the performance of PSO is comparable
with parallel GA.

4 Conclusions

This paper discusses the implementation of modified PSO
to solve operation sequencing problem. The results of this
work also show that the modified PSO found the solution
faster than SGA. It is believe that the cooperation among
a number of particles help the algorithms to find the
optimal solution faster than SGA.
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