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Abstract: This work was aimed at optimizing the adsorbent
mass and contact time and evaluating the performance of
two-stage batch adsorber of NaOH-activated coconut shell
carbon for methylene blue removal. To decrease the dye
concentration from 1000 to 89.4 mg/L at any effluent vol-
umes, the two-stage adsorber displays a small mass saving
of 0.33% because of the high adsorbent affinity towards
methylene blue at 1.80 L/mg. Meanwhile, the contact time
can be minimized by 97.6% as opposed to that in one-stage
adsorber. The sensitivity analysis of affinity on mass mini-
mization shows a significant saving of 28.5% when the af-
finity is reduced to 0.01 L/mg. The response surface
methodology was used to optimize the two-stage absorber
for methylene blue removal, wherein the most significant
parameter is the contact time.

Keywords: activated carbon; adsorption; methylene blue;
performance evaluation; two-stage adsorber.

1 Introduction

There has been a burgeoning concern over the presence of
dyes in water streams. Several techniques for water

treatment, which include chemical oxidation, foam flota-
tion, ozonation, biological, photocatalytic, membrane
filtration, Fenton and photo-Fenton processes are avail-
able for wastewater treatment (Ratan, Kaur, and Adiraju
2018; Yagub et al. 2014). However, they often suffer from
high capital and maintenance costs. Among others, acti-
vated carbon adsorption has been recognized as effective
and cost-competitive treatment for water and air pollution
control. Activated carbon has been widely used as adsor-
bent owing to its highly porous nature that consists of high
specific surface and rich functionalities for adsorption of
color, odor and contaminants from water (Zubir and Zaini
2020).

The production of activated carbon can be divided
into physical and chemical activation. Physical activation
involves carbonization of carbonaceous precursor at
400–850 °C in an inert atmosphere, followed by activation
of the resulting char at 600–900 °C in the presence of
carbon dioxide and/or steam atmosphere. For chemical
activation, the feedstock is impregnated with dehydrating
agent, followed by activation under anoxic environment
(Ming-Twang et al. 2015). Activators such as phosphoric
acid, zinc chloride, potassium carbonate and sodium
hydroxide are commonly applied in chemical activation
to encourage pyrolytic decomposition and inhibit the
formation of tar, thus enhancing the yield of activated
carbon (Amran and Zaini 2020). To produce low-cost
activated carbon, agricultural residues like banana peel,
orange peel, peanut shell and coconut shell could be
considered as sustainable feedstock. They are abundantly
available with no added-value and are often discarded or
left to decay with time. These are carbonaceous materials
which can be the promising alternative for conventional
activated carbon. In addition, the use of eco-friendly
materials will aid in managing the solid waste pollution
and cutting the production cost of activated carbon.

A single-stage adsorber is often utilized to treat dye-
containing wastewater, and it has been accepted as stan-
dard protocol in adsorption studies (Zubir and Zaini 2020).
However, the setting is incapable to predict the optimum
mass and contact time, and also the removal performance at
different volumes and concentrations to satisfy the large-
scale operation. Oladipo and Ifebajo (2018) reported an
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improvement of tetracycline removal by magnetic chicken
bone biochar from 93% in single-stage adsorber to 96% in
two-stage adsorber. In a related work, the equilibrium time
for acid red 25 decreased from 895 min in single-stage
adsorber to 401min in two-stage adsorber (Oladipo andGazi
2015). Similar findings were recently reported in literature
(Bamatraf and Zaini 2021; Hijab et al. 2020; Palanisami et al.
2021). Nonetheless, the adsorptive properties of these ad-
sorbents are limited only to certain pollutants of interest. To
widen the research horizon, the present work was aimed at
designing a two-stage adsorber of NaOH-activated coconut
shell carbon that exhibits the outstanding performance and
affinity for methylene blue removal in one-stage adsorber
(Cazetta et al. 2011). The data on two-stage adsorber design
for this adsorbent are still unavailable in literature, thus
worth to be exploited for the wastewater treatment appli-
cation. The optimum adsorbent dosage and contact time,
and the most significant parameter of two-stage adsorber
were reported. The performance evaluation was discussed
to shed better understanding on the advantageous of two-
stage adsorber of NaOH-activated coconut shell carbon for
industrial dye-bearing wastewater treatment.

2 Methods

Isotherm and kinetic constants of one-stage adsorber were taken from
Cazetta et al. (2011). The optimization of two-stage adsorber design
using Langmuir isotherm and pseudo-second-order kinetic models
was performed using Microsoft Excel (Hijab et al. 2020; Mohammed
et al. 2012). Table 1 summarizes the isotherm and kinetic constants.

The schematic diagram of a two-stage adsorber is shown in
Figure 1.

Methylene blue solution at initial concentration Co (mg/L) and
volume Ls (dm

3) enters the stage 1, wherein Ss1 (g) coconut shell acti-
vated carbon is added to reduce the concentration to C1 (mg/L). In
stage 2, the effluent is further treatedwith SS2 (g) of activated carbon to
meet the final equilibrium concentration of C2 (mg/L). The mass bal-
ance relationship in each stage can be generally presented as,

qn = Ls

Ssn
(Cn−1 − Cn) (1)

where qn (mg/g) is the amount of dye adsorbed at stage n.
The equilibrium and kinetics of methylene blue adsorption onto

NaOH-coconut shell carbon obeyed Langmuir and pseudo-second-
order models. Hence, these equations were employed in the optimi-
zation of mass and contact time in two-stage adsorber design. The
Langmuir isotherm is given as,

qn = qmbCn

1 + bCn
(2)

where, qm (mg/g) is the methylene blue capacity at monolayer satu-
ration and b (L/mg) is the adsorption affinity. Substituting Eq. (2) into
Eq. (1) and rearrange, allows the determination of adsorbent mass in
each stage,

Ssn = L(Cn−1 − Cn)
bqmCn/1 + bCn

(3)

The pseudo-second-order model is given as,

qt = K2q2et
1 + K2qet

(4)

where qt (mg/g) is the adsorbent capacity at time t (min) and K2 (g/mg
min) is the rate constant. Substituting Eq. (4) into Eq. (1) and rear-
range, allows the determination of contact time in each stage,

tn =
(1/qeK2

)Ls(Co − Ce)
Ssnqe + Ls(Co − Ce) (5)

In the experimental work, one-stage adsorber was performed
using 25 mL of methylene blue solution at varying concentrations and
25mg of activated carbon. In the simulation of two-stage adsorber, the
highest Co is 1000 mg/L and different volumes of 25–1000 mL were
introduced to mimic the upscaling of two-stage adsorption system. In
stage 1 of the two-stage adsorber, a series of step-size decrement in dye

Figure 1: Schematic diagram of two-stage adsorber (Hijab et al. 2020).

Table : Langmuir and pseudo-second-order constants (Cazetta
et al. ).

Langmuir model Pseudo-second-order model

qm (mg/g) b (L/mg) qe (mg/g) K (g/mg min)

 .  .
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concentration from 1000 mg/L to Ce = 89.4 mg/L was structured for
each consecutive sorption system. The mass of activated carbon was
calculated for each decrement. For example, in sorption system
number 1, the design objective is to reduce the initial dye concentra-
tion from 1000 to 950mg/L. Similarly in sorption system numbers 2, 3,
and so on, the design objectives are to reduce the initial dye concen-
tration from 950 to 900 mg/L, 900 to 850 mg/L, and lastly down to
89.4 mg/L. While, in stage 2, the design objective for sorption system
number 1 is to reduce the concentration from 950 to 89.4 mg/L. The
same approach applies for determination ofminimum contact time for
two-stage adsorber.

Total mass of adsorbent to complete the removal in two-stage
adsorber is expressed as,

S1 + S2
L

= CO + bCOC1 − C1 − bC2
1

qmbC1
+ C1 + bC1C2 − C2 − bC2

2

qmbC2
(6)

and setting,

d (S1 + S2)/L
dC1

= 0 (7)

to yield,

0 = −qmb2C2
1 − qmbCO

(qmbC1)2 + 1 + bC2

qmbC2
(8)

rearranging and solving,

Co

C2
1

= 1
C2

(9)

The removal percentage, R was calculated by the following
equation.

R = 100(Co − C2

Co
) (10)

Different removal rates and final concentrations in the effluent
were set to allow the performance evaluation of two-stage adsorber at
optimal mass using Eqs. (6), (9) and (10). The most significant
parameter and confidence level were analyzed by response surface

methodology (RSM) of Minitab 17 Statistical software. A 2-level
factorial experimental design of RSM was employed to optimize the
two-stage adsorber in achieving a cost-competitive methylene blue
removal.

3 Results and discussion

3.1 Optimum mass and contact time

Figure 2 displays the minimum mass required to achieve
the capacity of 916mg/g in two-stage adsorber for effluent
volume of 25 mL and methylene blue concentration of
1000 mg/L. The minimum mass was recorded at sorption
system 15 as 24.92 mg, which renders a saving of 0.33%.
To treat a 25 mL effluent, the stage 1 needs 19.1 mg of
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Figure 2: Mass optimization in two-stage adsorber of coconut shell activated carbon for the treatment of 1000 mg/L methylene blue dye in
25 mL solution.

Table : Minimum adsorbent required for one-stage and two-stage
adsorbers.

Volume of methylene blue (mL)    

Minimum mass in two-stage (mg) . .  

Actual mass in one-stage (mg)    

Saving in mass (mg) . . . .
Percentage saving (%) . . . .

Table : Effect of adsorption affinity on percentage saving of
adsorbent mass in two-stage adsorber (V =  mL).

Adsorption affinity, b (L/mg) . . . .
Minimum mass in two-stage (mg)    

Actual mass in one-stage (mg)    

Mass saving (mg)    .
Percentage saving (%) . . . .
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Figure 3: Time taken to treat 1000 mg/L
methylene blue dye in 25 mL solution using
two-stage adsorber of coconut shell acti-
vated carbon.

Figure 4: (a) Pareto chart and (b) optimization plot of the effect in two-stage adsorber of coconut shell activated carbon for the treatment of
1000 mg/L methylene blue dye in 25 mL solution.
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activated carbon, at which the concentration subsides
from 1000 to 300 mg/L, while the stage 2 consumes only
5.78 mg to complete the adsorption at equilibrium con-
centration of 89.4 mg/L. The amount of adsorbent is al-
ways higher at stage 1 because of the high concentration
gradient requirement for decreasing the load in stage 2 to
reach equilibrium. This holds for any effluent volumes.
Table 3 summarizes the saving in activated carbonmass at
different effluent volumes. Clearly, the deviation in mass
widens as the effluent volume increases. This highlights
the advantageous of two-stage adsorber to meet the same
performance at large-scale treatment of dye-containing
effluent (see Table 2).

The percentage saving is small because of the high
adsorption affinity, b of NaOH-coconut shell carbon to-
wards methylene blue. Affinity can be defined as to the
equilibrium ratio of the solid phase solute concentration
(mol/mg) to the liquid phase solute concentration (mol/L).

The higher the affinity, the greater the solid phase con-
centration as comparison to that in the bulk solution,
which reflects the effectiveness of adsorbent to remove dye
from water. A sensitivity analysis was performed to visu-
alize the effect of affinity on adsorbent mass to treat
1000 mL dye effluent in a two-stage adsorber. The affinity
values were arbitrarily decreased, and the pattern is sum-
marized in Table 3. Noticeably, the decrease in affinity in-
creases the gap between the mass required in one-stage
adsorber and that in two-stage adsorber. For adsorbent
with low affinity, more sites are needed to improve the
interaction probabilities between methylene blue mole-
cules and adsorbent surface, which can only be realized by
adding the mass. Conversely, the difference is small for a
high affinity adsorbent as demonstrated in this work.
Nonetheless, the amount of adsorbent can be significantly
minimized by means of two-stage adsorber design for a
cost-competitive process from an economic perspective.
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(a) removal percentages and (b) equilibrium
concentrations, C2.
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The respective dosages at stage 1 and stage 2 at opti-
mum mass of coconut shell activated carbon were used to
simulate the time taken to meet the removal of 916 mg/g
methylene blue in 25mL effluent bearing the concentration
of 1000 mg/L. The total contact time at every sorption
system number in the two-stage adsorber is shown in
Figure 3. The optimum contact time was recorded at sorp-
tion system 15 as 1.2 min. The decrease in concentration, Co
from 1000 to 300mg/L in stage 1 of two-stage adsorberwith
19.1 mg adsorbent requires 0.6 min as opposed to 4 min in
one-stage adsorber with 25 mg adsorbent (Cazetta et al.
2011). To accomplish the treatment to Ce = 89.4 mg/L, the

equilibrium time in two-stage adsorber is 1.2 min, as
compared to 50 min in one-stage adsorber, which brings a
97.6% cut in adsorption time. The contact time is longer in
one-stage adsorber because the adsorption rate subsides as
the concentration gradient diminishes with time, thus
slowing down the dye removal. Meanwhile, the split of
dosages in the two-stage adsorber is able to sustain the
high concentration gradient, thus increasing the rate and
reducing the adsorption time.

Figure 4 displays the effect of parameters by RSM. In
Pareto chart (Figure 4(a)), any effects that extend beyond
the reference line are significant (Lamido, Alhassan, and
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Lawal 2021). Therefore, the most significant parameter in
each stage of adsorber is the contact time. This is in line
with the analysis of variance (ANOVA table is not shown),
where the contact time shows a p-value <0.05. From the
optimization plot (Figure 4(b)), a 100% removal of meth-
ylene blue at Co = 1000 mg/L in 25 mL solution can be
achieved at the optimum contact times of 0.68 and
0.97 min in stages 1 and 2 are, respectively, with the opti-
mum adsorbent dosages of 49.3 and 13.5 mg, respectively.
When d value is equal to 1, it statistically indicates a 100%
removal efficiency. Thus, a 99% methylene blue removal
was attained using the two-stage adsorber based on a 95%
confidence level.

3.2 Performance evaluation

Figure 5 exhibits the effects of initial concentration, Co on
intermediate concentration leaving stage 1, C1 at different
removal percentages and equilibrium concentrations, C2.
The linear lines display a decrease in gradient as the
removal percentage increases to 99%. Also, the magnitude
of C1 decreases as the removal percentage increases.
Similarly, C1 increases as the target equilibrium concen-
tration increases. A small C1 signifies a larger load of acti-
vated carbon used in stage 1 to allow the adsorption of
remaining effluent in stage 2 at low equilibrium. The pro-
files provide useful insight into the effectiveness of a two-
stage adsorber to be employed at industrial scale to
accomplish a bigger removal percentage of concentrated
dye effluent.

Figure 6 depicts the effects of initial concentration
on total mass for different removal percentages and

equilibrium concentrations in two-stage adsorber. The
simulation was executed at effluent volume of 25 mL. The
same patterns could also be expected for any effluent
volumes. Generally, the higher removal percentage de-
mands for more quantity of activated carbon to attain the
desired separation. The variation in dosage to meet the
target removal percentage is not significant at low initial
concentrations between 20 and 200 mg/L.

The changes in mass requirement can be seen for
different removal percentages as the concentration rises to
2000 mg/L. However, the gap in optimum dosage is still
narrowed for 95–99% removal, implying the effectiveness
of adsorbent to overcome the mass transfer resistance in
liquid phase at high concentration gradient. A rising trend
is also depicted in Figure 5(b), unlocking the parallel trend
of optimum mass in two-stage adsorber, which increases
with initial concentration.

Figure 7 illustrates the relative removal at stage 2
against that at stage 1. Obviously, stage 1 exhibits a greater
efficiency for dye removal than stage 2 because the former
endows a higher concentration gradient to boost the sep-
aration. Often, stage 2 is operating at low equilibrium to
reach the final concentration. The efficiency at stage 2 in-
creases with equilibrium concentration for any removal
rates. It suggests that the overall efficiency of a two-stage
adsorber is significant in stage 2 at low removal percentage.

4 Conclusions

Two-stage adsorption system was designed to optimize
adsorbent mass and contact time for methylene blue
removal by NaOH-activated coconut shell carbon. The
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decrease in mass is only 0.33% because of the excellent
affinity of activated carbon towards methylene blue. The
sensitivity analysis forecasts a 30% decrease in mass if the
affinity is 0.01 L/mg. On top of that, the time taken to attain
the equilibrium in two-stage adsorber was considerably
minimized from 50 min to approximately 1.2 min. The two-
stage adsorber capitalizes the use of adsorbent for overall
adsorption performance and reduces the costs of opera-
tion. The range of optimal conditions by response surface
methodology is essential for the flexibility of the adsorp-
tion process. The performance evaluation provides better
insights into the scaling-up of two-stage adsorber for in-
dustrial dye-containing wastewater treatment.
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