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future water resources, especially for high altitude mountainous glacier melting affected basins
in the climate change context. In the current study, a novel hybridized machine learning method,
extended marine predators algorithm (EMPA)-based ANN (ANN-EMPA), is developed for streamflow
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estimation in the Upper Indus Basin, a key mountainous glacier melt affected basin of Pakistan. The
prediction accuracy of the novel metaheuristic algorithm (EMPA) was also compared with several
benchmark metaheuristic algorithms, including the marine predators algorithm (MPA), particle swarm
optimization (PSO), genetic algorithm (GA), and grey wolf optimization (GWO). The results revealed
that the newly developed hybridized ANN-EMPA outperformed the other hybrid ANN methods in
streamflow prediction. ANN-EMPA improved the root mean square error, mean absolute error and
Nash–Sutcliffe efficiency of ANN-PSO by 4.8, 4.1 and 0.5%, ANN-GA by 6.2, 5.6 and 0.6%, ANN-
GWO by 3.7, 4.4 and 0.5%, and ANN-MPA by 3.2, 7.5 and 0.3%, respectively. Month number (MN)
was also examined as input to the best models to assess its impact on the prediction precision.
Obtained results showed that MN generally slightly improved the models’ accuracy. Results also
showed that temperature-based inputs provided better prediction accuracy than only streamflow as
inputs. Therefore, the ANN-EMPA model can be used for streamflow estimation from temperature data
only when long-term streamflow data is unavailable.

© 2022 Elsevier B.V. All rights reserved.

Nomenclature section

Abbreviations

ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural networks
ARMA Auto Regressive Moving Average
BRTs Bagged regression trees
BNN Bayesian neural network
CARTs Classification and regression trees
CF Control factor
ERNN Elman Recurrent Neural Network
EGEP Ensemble gene expression

programming
EMPA Extended Marine Predators Algorithm
FAD Fish Aggregating Devices Effect
GA Genetic Algorithms
GP Genetic programming
GWO Grey wolf optimization
W Inertia weight
LSSVM Least squares support vector machine
LSTM Long short-term memory
ML Machine learning
UIB Upper Indus Basin
MPA Marine Predators Algorithm
Max Maximum
Min. Minimum
MLR Multiple linear regression
MARS Multivariate adaptive regression splines
pm Mutation Percentage
mu Mutation probability
PSO Particle swarm optimization
R Random number
Std. dev. Standard deviation
SS Stepsize
GBRTs Stochastic gradient boosted regression

trees
Sflow Streamflow
SVR Support vector regression
RB Vector with random number
v Velocity
WAPDA Water and Power Development Author-

ity
SWAT Water Assessment Tool

Parameters

C1 Cognitive coefficient
C2 Cognitive coefficient
P Constant
N Data quantity
−→
Ei Elite location
α Grey wolf leaders Alpha
Ω Grey wolf position Omega
I Iterations
−→
R L Levy’s motion
−−→
Xmax Maximum bounds of the dimensions.
−−→
Xmin Minimum bounds of the dimensions.
f Object function
−→
U Random vector
Qo Real values
ω Rest of wolves Omega
Q Streamflow
β Subordinate wolves Beta
Qc Target values
−→
R Uniform number in [0,1]
δ Variable to control the differential vari-

ation
T Various temperature

Symbols

⊗ Entry wise multiplication

1. Introduction

Streamflow (Sflow) forecasting is crucial for most water re-
sources management and river sustainability practices [1]. It is
also important to water resource planners, hydrologists, emer-
gency response providers, water system managers, and policy-
makers. Sflow is significantly influenced by multifaceted stochastic
processes, such as temperature, rainfall and seasonal changes, and
nonlinear watershed responses [2,3]. Hence, Sflow forecasting is
tedious, especially with sufficient lead times. Pagano et al. [4]
outlined the challenges to accurate Sflow forecasting as the au-
tomation of real-time data acquisition process, Sflow models being
mere simplifications of the actual processes, and uncertainty
in Sflow prediction processes. Two rainfall-runoff modelling ap-
proaches are currently available for Sflow forecasting; these are the
physical-based and data-based models. The physical-based mod-
els include the relevant physical laws that govern Sflow generation
and watershed response. Therefore, they require enough effort for
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implementation, parameterization, and calibration. Sometimes,
they also may need many experimental data. The Sflow forecasting
performance of process-based models is more reliable than the
other prediction techniques [5]. Still, the major issues are their
simplification and a large volume of data requirements [6].

The data-driven computerized models, including machine
learning (ML) and statistical models, revealed a sophisticated
progression in modelling Sflow [7–10]. These empirical models are
easy to implement since they are based on previous observa-
tions and are not dependent on the physical processes [11]. The
statistical models strive to establish the input–output relation-
ship with any internal process assumption [12]. The statistical
models are easier to develop and offer more reliable predic-
tions when trained on robust and representative datasets. Sflow
forecasting using different statistical models has been widely
reported. Some statistical models include the Auto Regressive
Moving Average (ARMA), wavelet support vectors, and functional
regressions [13–16]. The auto-regressive or time series mod-
els rely on the observed Sflow and precipitation to approximate
the complex nonlinear hydrologic processes [17,18]. Time series
models assume the present event’s dependence on the previous
events, often accustomed to seasonality and error functions [19].
Training and testing time series models also demand a large ob-
servational dataset [19,20]. Hence, they show less accuracy if the
input data is not within the calibration data range [21]. However,
auto-regressive models have been successfully applied for fore-
casting many hydrologic processes. For instance, the ARMAmodel
has been used by Toth et al. [22] for real-time flood prediction.
The study reported better performance of ARMA model than the
simple physically-based models.

Several ML algorithms have also been applied in the modelling
of nonlinear hydrologic processes; for instance, artificial neural
networks (ANN) [23,24], support vector regression (SVR) [25,26],
genetic programming (GP) [27], and adaptive neuro-fuzzy infer-
ence system (ANFIS) [28,29]. They have been investigated for
different hydrological applications, such as sediment transport
modelling [30–32], rainfall-runoff modelling [9,33], and drought
prediction [34–37].

Sudheer et al. [38] reported the ANN-based models for daily
rainfall-runoff prediction in India. The study first identified the
exogenous input parameters relating to different kinds of auto-
correlation in Sflow and rainfall data series. Their results showed
ANN-based models’ better performance than the multiple linear
regression (MLR) and ARMA models. Demirel et al. [39] reported
ANN-based daily Sflow forecasting in Portugal; they reported bet-
ter suitability of the ANN models than the semi-distributed Soil
and Water Assessment Tool (SWAT) model in predicting peak
discharge. The use of three ML models (Bayesian neural network
(BNN), SVR and Gaussian process) for daily Sflow forecasting of
a catchment of British Columbia has been reported by Rasouli
et al. [40]. The study considered MLR the benchmark model and
showed nonlinear models’ superiority to MLR, with BNN as the
best among the nonlinear models.

Erdal and Karakurt [41] investigated two ensemble learning
models’ performance, bagging and stochastic gradient boosting,
in Sflow forecasting and compared their performance with the
classification and regression trees (CARTs) and SVR models. The
monthly Sflow forecasting performance of the bagged regression
trees (BRTs) and stochastic gradient boosted regression trees
(GBRTs) models were found better than those of CART and SVR
models. In another study, the monthly Sflow forecasting perfor-
mance of three ANN models was evaluated by Mehr et al. [42].
Their results revealed the generalized regression ANN, radial basis
function, and feed-forward back-propagation models are suitable
for modelling successive station Sflow . Yaseen et al. [43] devel-
oped a hybrid ML model by merging the Grey model with a

rolling Sflow forecasting method over the tropical region. The study
also integrated two ANN algorithms, i.e., Elman Recurrent Neural
Network (ERNN) and back-propagation and found the hybrid ML
model with ERNN to achieve better prediction accuracy than the
model with back-propagation algorithm. Sflow pattern forecasting
using three ML models (multivariate adaptive regression splines
(MARS), the M5 Model Tree, and the least squares support vector
machine (LSSVM)) was examined by Kisi et al. [44] in Turkey. The
study showed the LSSVM model to provide better Sflow forecasting
relying on climate signal information.

Although many ML-based Sflow forecasting models have been
developed for different climate zones and time scales, the mo-
tivation to explore new models in this research domain is still
in progress. Recently, an ensemble gene expression program-
ming (EGEP) model has been introduced by Rahmani-Rezaeieh
et al. [45] for 1- and 2-day ahead Sflow prediction. The new
model’s performance was benchmarked with classic GP and ANN
models. The new EGEP model performed better than the com-
parative models. Cheng et al. [46] reported daily and monthly
Sflow forecasting using ANN and long short-term memory (LSTM)
models with a long lead-time. The study showed that the LSTM
model achieved better lead-time Sflow prediction but was inef-
ficient in multi-month prediction due to the unavailability of
a large monthly dataset for model training. Hence, LSTM was
presented as a suitable tool for daily Sflow forecasting to make
strategic water resource management decisions. Sflow forecasting
using a SWAT-Variable Source Area model (SWAT-VSA), ANN,
ARMA, and a Bayesian ensemble model has been reported by
Wagena et al. [47]. The study found that the total Sflow and
peak flow is better predicted by the SWAT-VSA and ANN mod-
els while low flows are underpredicted. The hybridization of
two or more models demonstrated a remarkable progression in
Sflow forecasting by several researchers in the literature [48–52].
Recent development conducted on monthly Sflow forecasting us-
ing a hybrid Gaussian mixture model-extreme gradient boosting
(GMM-XGBoost) model was performed by Ni et al. [53]. The GMM
was used for Sflow clustering into several groups based on a tree-
based model and XGBoost to fit each cluster’s data. The novel
algorithm’s accuracy was benchmarked with standalone SVM and
XGBoost models. The study’s outcome suggested the suitability
of the XGBoost for Sflow forecasting as it generally performed
better than the SVM. The developed GMM-XGBoost model was
also a better alternative for reliable and accurate predictions to
aid optimal water resources management. Based on the reported
literature review, the current research attempted to develop a
new hybrid ML model by integrating ANN with the newly ex-
plored nature-inspired optimization algorithm, Marine Predators
Algorithm (MPA) for Sflow forecasting. First, the MPA was en-
hanced based on the mutation and crossover operators (EMPA),
and then hybridized with ANN to produce a robust hybrid pre-
dictive model. Several optimization algorithms were used as the
benchmark for validation, such as particle swarm optimization
(PSO), GA: genetic algorithm, GWO: grey wolf optimization.

The paper is organized as follows. A brief description of the
case study area is provided in Section 2. The data used in the
study and their sources are also provided in this section. This
follows the method section, where all the ML and optimization
algorithms used in this study are described. Besides, the new
method proposed for improving Sflow prediction is also described
with a flowchart. The obtained results are presented in Section 4.
Finally, conclusions made from the study are given in Section 5.

2. Case study

The Upper Indus Basin (UIB) of northern Pakistan was se-
lected as a case study for the current study. The UIB is con-
sidered the breadbasket of Pakistan due to its crucial role in
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Fig. 1. The location of the Upper Indus Basin in northern Pakistan.

Pakistan’s agriculture and socio-economic development. The UIB
is located between 32.48o–37.07◦N and 72.11o–81.83◦E, covering
a basin area of 65,400 km 2 with a mean altitude of 3750 m.
The UIB is surrounded by the world’s three highest mountainous,
Hindukush, Karakorum and Himalayas. One of Pakistan’s main
hydropower installed projects, the Tarbela dam with 4888 MW
generation capacity, is situated at the basin’s upstream. Therefore,
this basin is also called the Tarbela basin, with a river length of
1150 km above the Tarbela reservoir.

The UIB contribute 70% of the flow to the Tarbela reservoir,
mainly through glacier melt. Hence, the temperature has a sig-
nificant impact on the basin’s streamflow. Due to a large amount
of glacier melt, accurate streamflow estimation is challenging in
this mountainous snow-fed basin. Therefore, this study selected
this basin to apply the proposed robust models. For streamflow
data, hydraulic gauging station Alam bridge (with 1280 elevation)
in the UIB basin was chosen (Fig. 1). This station is located at
the confluence of two main streams of UIB (Hunza and Gilgit).
Therefore, it is a key location in the basin.

The temperature data recorded at Gilgit meteorological station
(at 1460 Elevation) and streamflow data at Alam Bridge Stream-
flow Station for 35 years (1974–2008) were collected from the
Water and Power Development Authority (WAPDA) of Pakistan.
A brief statistical summary of the data is provided in Table 1.
For better application of selected methods, 35 years dataset was
divided into three proportions with a ratio of training 70% (1974–
1998), validation 15% (1999–2003) and testing 15% (2004–2008),
as shown in Fig. 2.

3. Methods

A brief description of the ML method (ANN) and optimization
algorithms (PSO, GA, DE, GWO, MPA and EMPA) is given in this
section.

3.1. Artificial Neural Networks (ANN)

This algorithm was formulated by Pitts [54], based on a com-
putational model for neural networks called threshold logic.
Rosenblatt [55] proposed a single layer perceptron to model

Table 1

The statistical summary of the data used in the study for the period 1974–2008.

Statistics Whole data Training Validation+Testing

Streamflow, m3/s

Mean 611.1 606.4 622.7
Min 76.1 79.6 76.1
Max 2738 2738 2541
Median 233.0 220.2 274.0
Skewness 1.253 1.289 1.160
Std. dev 674.6 687.2 642.1

Temperature, ◦C

Mean 15.8 15.7 16.1
Min 1.10 1.10 2.41
Max 30.7 30.7 27.9
Median 16.3 16.1 16.6
Skewness −0.090 −0.062 −0.164
Std. dev 8.17 8.27 7.90

human brain functioning, recognize objects, and process visual
data. The learning capabilities and pattern-matching properties
of ANN endorsed them to solve many problems that otherwise
would have been very difficult or impossible to solve by stan-
dard statistical methods and computational techniques [56]. In
addition to getting perceptions of the human brain’s functionality,
ANNs can be an independent tool. Thus till the 1980s, ANNs
were used for various purposes. ANN works by establishing a
connection between different nodes called neurons arranged in
different layers interconnected and assigned with randomized
weights capable of solving simple mathematical calculations [57].
These nodes identify the relation between the targeted values and
the input data sets [58]. Input signals received by these neurons
are organized in different layers to convert them into a single
output. This output is further transferred to the other layer to
conduct the same process and provide the output [59].

Generally, ANN comprises input, hidden, and output layers
(Fig. 3). Each layer consists of several nodes and neurons with as-
signed weights to perform simple operations to compute the out-
put [60]. ANNs are adaptive systems and thus suitable for mod-
elling the constantly changing population, segmentation, clas-
sification [61]. ANN has been widely used in solving real-life
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Fig. 2. Time series of streamflow and temperature data used in the study.

problems such as forecasting precipitation, droughts, streamflow,
groundwater level, pollutant concentration etc. [62–67].

3.2. Genetic Algorithms (GA)

GA is an optimization and search method developed based
upon the characteristics of living beings’ biological evolution. Hol-
land [68] introduced the theoretical concept of this probabilistic
model in 1970. It forms the underlying people into excellent
people and makes every individual liable. The fitness function
measures the degree of every individual’s brilliance adapt to
the environment. GA has been applied in many research areas
like environmental, statistics, applied mathematics, and expert
systems for solving intrigue problems. The decision search hyper-
planes of GA is a k-dimensional issue. The hereditary calculations
ideally apportion preliminaries to the hyperplanes to find the
ideal solution [69,70]. The main formation of GA is as below.

(a) Individual fitness evaluation

(b) Gene pool formation
(c) Recombination and mutation

The working procedure of GA is illustrated in Fig. 4. For more
detail information, the readers are referred to original source [68].

3.3. Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is conceptualized from nat-
ural living creatures’ social movement to find a food source. This
food searching conduct is related to an advanced search for non-
direct conditions in an open esteemed pursuit space. Kennedy
and Eberhart in 1995 [71] developed PSO as the new model
for global optimization. This model has become very popular
in many areas of research. Researchers worldwide use PSO by
adjusting its parameters. In the PSO, particles go through the
hunt space and try to find the neighbourhood’s position (Fig. 5).
This neighbourhood is defined for every separate particle as the
subset of particles. The Euclidean neighbourhood is used in the

5



R.M.A. Ikram, A.A. Ewees, K.S. Parmar et al. Applied Soft Computing 131 (2022) 109739

Fig. 3. A simple perceptron neural network.

Fig. 4. The working procedure of GA.

first developed model to communicate particles to calculate the
particles’ distance. The Euclidean model deserted for less com-
putationally models when the exploration centre is moved [72,
73]. The readers can reach more information from the original
source [71].

3.4. Grey wolf optimization (GWO)

Grey wolf optimization (GWO) is a recently developed evolu-
tion model based on the reproduction of grey wolves. There is a
higher position and management of the grey wolves in the pack.
Mirjalili et al. [74] developed this GWO metaheuristic model. It
imitates the hunting habits and social ladder of grey wolves by
introducing α, β , Ω , and ω. For the constrained wildlife populace,
the problem is finding a feasible solution for the cost-efficient
level of habitat safety. These constraints need a high likelihood
of getting the goal populace size. The prey position is evaluated
by α, β , Ω and it updates its values around the prey. At the last
position, α, β , Ω define the circle of the search space. The major
aim of this GWO model is to find the prey by the shortest possible
path [75–77]. The following four processes are used to find the
possible shortest path.

A. Exploration B. Enclosing prey

C. Hunting D. Exploitation prey
The process to find the best shortest path is discussed using a

flow chart in Fig. 6.

3.5. Marine Predators Algorithm (MPA)

The nature-inspired marine predators algorithm (MPA) opti-
mization uses three steps to model the whole life of prey and
predator. These three steps are based upon the prey and preda-
tor’s velocity proportion, vital for transmitting the optimization
development. A high-velocity proportion is an important charac-
teristic in the first step, while unity and low-velocity proportions
are in the second and third steps, respectively. These stages are
identified with the guidelines administered on hunter and prey
development while addressing hunter and prey development in
nature. Besides, MPA employs another stage known as Fish Ag-
gregating Devices Effect (FAD) to avoid local minima. The details
of the stages are as follows [78].

(a) High-Velocity proportion: In this step of high velocity
(v ≥ 10), prey travels faster than predator as prey moves
quickly to find its food until the predator moves. Here
initial iterations for investigation matters are vital for the

6



R.M.A. Ikram, A.A. Ewees, K.S. Parmar et al. Applied Soft Computing 131 (2022) 109739

Fig. 5. The working procedure of PSO.

Fig. 6. The working procedure of GWO.

optimization process. Mathematically it can be described
as below.

While I <
1

3
Max I I = iterations (1)

−→
SSi = RB ⊗

(

−→
Ei − RB ⊗

−→
Pi

)

; i = 1, 2, 3, . . . , n. (2)

SS = stepsize, RB = Vector having random number,

⊗ = entry wise multiplication

−→
Pi =

−→
Pi + P .

−→
R ⊗

−→
SSi

P = 0.5 (Constant) ,
−→
R = uniformnumber in [0, 1] (3)

here I is the present iteration. In this stage, the progression
size or development speed is more.

(b) Unity-Velocity Proportion: In the second stage, prey and
predator travel speeds are the same when both search for
their food. This stage is mid of optimization, with prey
being accountable for exploitation and predator for explo-
ration. This step can be developed mathematically for v ≈

1, and prey travels with Levy’s motion and predator move
in the Brownian motion as below:

For
1

3
Max I < I <

2

3
Max I (4)

For the first half of the populace

−→
SSi =

−→
R L ⊗

(

−→
Ei −

−→
R L ⊗

−→
Pi

)

; i = 1, 2, 3, . . .
n

2
. (5)

−→
Pi =

−→
Pi + P .

−→
R ⊗

−→
SSi (6)

For the second half of the populace

−→
SSi =

−→
R B ⊗

(

−→
R B ⊗

−→
Pi −

−→
Pi

)

; i =
n

2
,
n + 1

2
, . . . , n. (7)

−→
Pi =

−→
Ei + P .CF ⊗

−→
SSi, here CF =

(

1 − I
MaxI

)

(

2 I
MaxI

)

is

controlling unit step size for predator motion.
−→
R B ⊗

−→
Pi

emulates the hunter movement by the Brownian approach,
where the prey can refresh its area depending on the
Brownian hunter movement.

(c) Low-Velocity Proportion : The predator travels faster than
the prey with the high exploitation process for optimiza-
tion in the third stage. The velocity in this stage is 0.1, and
the predator follows Levy’s motion. This can be expressed
in the mathematical form as given below:

For I >
2

3
Max I (8)

−→
SSi =

−→
R L ⊗

(

−→
R L ⊗

−→
Ei −

−→
Pi

)

; i = 1, 2, 3, . . . , n. (9)

−→
Pi =

−→
Ei + P .CF ⊗

−→
SSi (10)

−→
R L ⊗

−→
Ei depicts Levy’s motion and uses Elite location

to recreate the hunter movement to refresh the prey’s
position.

(d) Fish Aggregating Devices Effect (FAD): The FAD is the lo-
cal optima point in this stage, whereas the MPA tries to
overcome this issue. The following equation mathemati-
cally presents the FAD:

−→
Pi =

{ −→
Pi + CF [

−−→
Xmin +

−→
R ] ⊗ (

−−→
Xmax −

−−→
Xmin) ⊗

−→
U if r ≤ FAD

−→
Pi + [FAD(1 − r) + r](

1

Pr −
−→
Pr2) if r > FAD

(11)

where FAD denotes the probability of effect of FAD.
−→
U

denotes a random vector contains [0, 1]. r is a random

value in [0, 1]. r1 and r2 random indexes of P.
−−→
Xmax and

−−→
Xmin

are maximum and minimum bounds of the dimensions.
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3.6. Extended Marine Predators Algorithm (EMPA)

The extended MPA is also a nature-inspired algorithm of op-
timization. The performance of the new proposed EMPA model
is better than the baseline MPA model. Minimax improvement
issues can depict numerous plan problems. Traditional strategies
for tackling these problems are restricted to the problem. As
of late, developmental calculations, especially coevolutionary ad-
vancement methods, have been applied to the minimax problem.
Another strategy for improving the minimax method utilizing
transformative calculations is recently proposed. This calculation
is better and has shown a vigorous post position improvement.

This paper proposes a extended version of MPA by extend-
ing the searching using the mutation and crossover operators
to facilitate more flexibility in discovering new points in the
search space. Thus, it overcomes the limitations of MPA like local
optimum trapping and premature convergence.

In EMPA, the original MPA is modified using a mutation oper-
ator in its structure which generates a mutation vector vmu using
the following formula:

vmu,i = vp1 + δ × (vp2 − vp3) (12)

where i = 1, 2, . . . ,N . v1, v2, and v3 are selected randomly from
the population. δ ∈ [0, 2] to control the differential variation.

The mutation vector is subsequently used in the crossover
stage by randomly updating a point in the current solution de-
pending on a crossover probability, which is set to 0.2 in this
study. The quality of the new vector is checked using the fitness
function. The new solution is used if the produced value is better
than the old fitness value; otherwise, the old one is retained.
Furthermore, the EMPA is applied to optimize the weights and
biases parameters of the ANN. The ANN-EMPA begins by defining
all parameters and receiving the experimental data divided into
the train, validate, and test sets. The EMPA searches for the ANN
model’s best weights and biases parameters to optimize the ANN.
The results are evaluated using Eq. (13) to test the candidate
parameters’ quality.

MSE =
1

N

N
∑

i=1

(Qoi − Qc i)
2 (13)

where Qo defines the real values, Qc defines the target values,
and N defines the sample size. The candidate parameters are
chosen based on the smallest error. The EMPA evaluates the pa-
rameters until reaching the maximum number of fitness function
evaluations. The selected parameters are then passed to optimize
the ANN model to start the testing phase. In this study, the
EMPA is tested in predicting daily streamflow. Three performance
measures were used to evaluate the performance of EMPA. Fig. 7
illustrates the entire process of the EMPA.

The computational complexity of the EMPA can be expressed
as in Eq. (14).

O(t(n ∗ d + mo + f ∗ n)) (14)

where mo = O(t∗d), t denotes the iterations number, n represents
population size, f denotes the objective function, and d is the
dimension of the problem.

4. Application and results

A novel ML method, ANN-EMPA, was applied for streamflow
prediction using temperature and streamflow data as inputs. The
outcomes of the new method were compared with the ANN
hybridized with marine predators algorithm (MPA), grey wolf

Table 2

Training and VT results of the ANN-PSO model.

Algorithm Hyperparameters Value

EMPA
FADs 0.2
P 0.5
beta 1.5
mutation 0.02

MPA
FADs 0.2
P 0.5
beta 1.5

PSO
w 1
wDamp 0.99
C1 1
C2 2

GA

pc 0.8
gamma 0.2
pm 0.3
mu 0.02
beta 8

GWO a in [0 2]

optimization (GWO), genetic algorithm (GA) and particle swarm
optimization (PSO) using the following statistical indices:

RMSE : Root Mean Square Error =







√

1

N

N
∑

i=1

[(Qo)i − (QC )i]2 (15)

MAE :MeanAbsoluteError =
1

N

N
∑

i=1

|(Qo)i − (QC )i| (16)

NSE :Nash − Sutcliffe = 1 −

∑N

i=1[(Qo)i − (QC )i]
2

∑N

i=1[(Qo)i − Q o]
2

, −∞ < NSE ≤ 1

(17)

where Qo,Qc,Q o are observed, computed and mean observed
streamflows, respectively, and N refers to data quantity. Initial
parameter values of each metaheuristic algorithm are reported
in Table 2. The general parameters of the experiments are as
follows: the population size is equal to 25, the objective function
is the RMSE, and the stopping criterion is 1250 fitness function
evaluation. The experiments were conducted using Matlab 2014,
running on ‘‘PC - Core i3’’ with ‘‘MS Windows 10’’ and 8 MB
of ram. We optimized both weights and biases parameters for
the ANN model. The parameter were set to: learning rate =

0.2, hidden layer = 10, max epochs = 1000, and the number of
weights and biases = 101.

Temperature and streamflow data were split into three parts,
70% for training, 15% for validation and 15% for testing. Various
temperature (T) and streamflow (Q) combinations based on cor-
relation analysis were first considered as inputs (Table 3). For
inputs combinations of streamflow and temperature, autocorre-
lation function (ACF) and cross autocorrelation function (CCF) is
utilized on the time series of Q and T to evaluate the prominent
inputs combinations. From the ACF plots of Q and CCF plots
between Q and T, it is clearly visible that Q at one time lag,
eleventh and twelfth time lags have prominent influence on
current streamflow value, whereas the CCF plots clearly demon-
strates the T prominent influence on time t, at 1, 11 and 12
previous time lags. Therefore on the basis of both plots, five
inputs combinations selected i.e. (i) Qt-1, Qt-11; (ii) Qt-1, Qt-11,
Qt-12; (iii) Tt, Tt-1; (iv) Tt, Tt-1, Tt-11 and (v) Tt, Tt-1, Tt-11,
Tt-12.

Then, input combinations were obtained by combining the
optimal inputs of T and Q. Training and validation+test (VT) effi-
ciencies of the ANN-PSO are summarized in Table 3. The method

8
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Fig. 7. The flowchart of the proposed EMPA.

Fig. 8. ACF and CCF Plots.

showed the lowest RMSE (136.39 m3/s) and MAE (88.06 m3/s) and
the highest NSE (0.947) for the last input combination (Qt-1, Qt-
11, Qt-12, Tt, Tt-1, Tt-11, Tt-12) in the VT stage. The best T-based
ANN-PSO model showed better performance than the optimal

Q-based models. Combining T with Q as inputs considerably im-
proved the model’s efficiency in both training and VT stages. For
example, in the VT stage, RMSE, MAE and NSE improvement of
the optimal T-based model was 22.7, 13.7 and 3.3%, respectively.

9
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Fig. 9. Time variation graphs of the observed and predicted streamflows by different ANN-based models for the best input combination in the validation +testing
period.

Table 3

Training and VT results of the ANN-PSO model.

Input combinations Training Validation + Testing

RMSE MAE NSE RMSE MAE NSE

Qt-1, Qt-11 179.30 98.71 0.928 196.50 113.80 0.896
Qt-1, Qt-11, Qt-12 146.40 82.52 0.954 183.20 103.10 0.909
Tt, Tt-1 180.30 102.30 0.920 196.20 119.20 0.898
Tt, Tt-1, Tt-11 152.50 87.84 0.951 178.40 108.10 0.914
Tt, Tt-1, Tt-11, Tt-12 146.90 85.74 0.940 176.50 102.10 0.917
Qt-1, Qt-11, Qt-12 ,
Tt, Tt-1, Tt-11, Tt-12 (best Q, best T)

128.50 69.62 0.959 136.39 88.06 0.947

Mean 155.60 87.78 0.942 177.90 105.70 0.914

Table 4 gives the accuracy of ANN-GA method for the train-
ing and VT stages. This method also showed the best efficiency
(RMSE: 139.03 m3/s, MAE: 89.08 m3/s and NSE: 0.945 in test-
ing stage) for the last input combination (Qt-1, Qt-11, Qt-12,
Tt, Tt-1, Tt-11, Tt-12). Here also T-based ANN-GA model exhibited
relatively better performance than the Q-based model. Merging
both inputs (optimal T and optimal Q) improved the model per-
formance in the test stage by 21.7, 12.7 and 3.2% in RMSE, MAE
and NSE, respectively. It is clear from Tables 3 and 4 that the
ANN-PSO prediction accuracy was higher than the ANN-PSO in
S flow simulation (training stage) and estimation (VT stage).

As indicated in Table 5, the difference between T-input and
Q-input models was higher for the ANN-GWO. The differences
were 21.6, 26.4 and 4.8% in RMSE, MAE and NSE, respectively.
Merging the optimal T and Q inputs improved RMSE while the
T-input ANN-GWO showed lower MAE and higher NSE than the
all input model.

Table 6 reports the performance of ANN-MPA models for six
input cases. As evident from the table, the model accuracy was
almost the same for the optimal T-input (Tt, Tt-1, Tt-11, Tt-12)
and Q-input (Qt-1, Qt-11, Qt-12). Merging the optimal T and
Q inputs improved the accuracy significantly; RMSE and MAE
decreased by 23.7 and 15.6%, respectively, and NSE increased by
3.5%.

Q-input model showed higher performance for ANN-EMPA
(Table 7) than the T-input model. The improvement in RMSE, MAE
and NSE were 4.4, 2.6 and 0.7%, respectively. The ANN-EMPA with
the best T and Q inputs decreased RMSE of the Q-input model
from 166.889 to 131.80 m3/s or by 21%, MAE from 97.697 to
84.44 m3/s or by 13.6%, and decreased the NSE from 0.924 to
0.9532 or by 3.2%. For all input cases, the ANN-EMPA method
performed better than the others in the training and VT stages,
except for the 5th input combination (the best T-input case) of
the ANN-GWO. The performance of the methods was generally

10



R.M.A. Ikram, A.A. Ewees, K.S. Parmar et al. Applied Soft Computing 131 (2022) 109739

Fig. 10. Scatterplots of the observed and predicted streamflows by different ANN-based models for the best input combination in the validation +testing period.

consistent, and they provided the best accuracy for T and Q inputs
together. It is observed from Tables 3 to 7 that the performance of
the methods was generally good for only T input with NSE varies
from 0.916 to 0.958. This is very important as Sflow measurement
is often challenging due to technical problems, particularly in
developing countries. In case of lacking Q data, only temperature
data measured using a simple thermometer can be utilized to
estimate streamflow.

The ANN-PSO, ANN-GA, ANN-GWO, ANN-MPA and ANN-EMPA
methods are compared in Table 8 for the last input combination.
In this table, periodicity input (month number, MN) was also used
as input to see its influence on models’ performances in both
training and VT stages. Bold values in the table indicate the best
models (lowest RMSE and MAE and the highest NSE).
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Fig. 11. Taylor diagrams of the estimated streamflows by different ANN based models in the validation +testing period.

Fig. 12. Violin Charts estimated streamflows by different ANN-based models in the validation +testing period.

The MN generally improves the models’ accuracy slightly (im-
provement in RMSE of ANN-PSO, ANN-GA, ANN-GWO, and ANN-
EMPA was 0.6, 1, 0.4 and 2%, respectively), except the ANN-MPA.
The ANN-EMPA improved RMSE, MAE and NSE of ANN-PSO by
4.8, 4.1 and 0.5%, ANN-GA by 6.2, 5.6 and 0.6%, ANN-GWO by 3.7,
4.4 and 0.5% and ANN-MPA by 3.2, 7.5 and 0.3%, respectively. The
results clearly showed the better performance of ANN-EMPA in

estimating monthly streamflow. The other models can be ranked
as follows: ANN-MPA, ANN-GWO, ANN-PSO and ANN-GA, re-
spectively. The implemented methods’ performance was visually
compared in Figs. 9 and 10 using hydrograph and scatterplot.
Fig. 8 shows that the temporal variability of ANN-EMPA estimated
Sflow is very close to the observed flow. Two frames were selected
from the whole part as seen from the first time variation graph
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Fig. 13. Radar charts of the estimated streamflows by different ANN-based models in the training and validation +testing periods.

and these parts were zoomed in the bottom subplots. A closer
look at the series revealed that the ANN-EMPA could simulate the
low and most of the extremely high values well.

Fig. 9 shows that the ANN-EMPA estimates were near the
observed values and less scattered than the other alternative
models. The slope and bias coefficients of the ANN-EMPA were
near 1 and 0, respectively and R2 near 1 (0.9536), much better
than the ANN-MPA, ANN-GWO, ANN-PSO and ANN-GA. The Tay-
lor diagram in Fig. 11 reveals that the newly proposed method
(ANN-EMPA) has lower RMSE and higher correlation, and its
standard deviation is close to the observation.

Violin charts in Fig. 12 shows the similarity in the distribution
of models’ estimates with the observation. The similarity between
the distributions of the estimated and observed streamflows was
more for ANN-EMPA model. The methods were further compared
using radar charts (Fig. 13). The models’ differences in RMSE,
MAE, NSE and correlation coefficient (CC) were visually compared
using this graph. Fig. 13 also justifies the ANN-EMPA model’s
superiority to the ANN-MPA, ANN-GWO, ANN-PSO and ANN-GA
in streamflow estimation.

Overall, the ANN-EMPA performed superior to the other meth-
ods in streamflow estimation. This indicates that EMPA can better
optimize the weights/parameters of the ANN method in mapping
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Table 4

Training and VT results of the ANN-GA model.

Input combinations Training Validation + Testing

RMSE MAE NSE RMSE MAE NSE

Qt-1, Qt-11 180.40 99.34 0.928 195.90 113.60 0.897
Qt-1, Qt-11, Qt-12 149.70 83.76 0.952 186.70 104.00 0.906
Tt, Tt-1 182.30 103.2 0.918 198.10 120.90 0.896
Tt, Tt-1, Tt-11 148.80 86.12 0.952 179.60 109.30 0.913
Tt, Tt-1, Tt-11, Tt-12 146.20 85.97 0.941 177.60 102.10 0.916
Qt-1, Qt-11, Qt-12 ,
Tt, Tt-1, Tt-11, Tt-12 (best Q, best T)

130.20 70.10 0.958 139.05 89.08 0.945

Mean 156.30 88.08 0.941 179.50 106.40 0.912

Table 5

Training and VT results of the ANN-GWO model.

Input combinations Training Validation + Testing

RMSE MAE NSE RMSE MAE NSE

Qt-1, Qt-11 178.60 97.43 0.930 194.60 112.90 0.898
Qt-1, Qt-11, Qt-12 144.90 82.60 0.955 177.90 101.40 0.914
Tt, Tt-1 177.30 100.4 0.929 193.20 116.20 0.901
Tt, Tt-1, Tt-11 145.60 84.49 0.954 175.80 101.50 0.919
Tt, Tt-1, Tt-11, Tt-12 145.00 84.75 0.942 175.50 100.65 0.926
Qt-1, Qt-11, Qt-12 ,
Tt, Tt-1, Tt-11, Tt-12 (best Q, best T)

126.30 67.13 0.961 134.70 86.75 0.948

Mean 152.90 86.13 0.945 176.30 105.90 0.913

Table 6

Training and VT results of the ANN-MPA model.

Input combinations Training Validation + Testing

RMSE MAE NSE RMSE MAE NSE

Qt-1, Qt-11 177.20 96.61 0.931 194.60 112.70 0.898
Qt-1, Qt-11, Qt-12 142.50 80.39 0.956 174.90 101.10 0.917
Tt, Tt-1 174.30 99.25 0.931 191.30 115.50 0.903
Tt, Tt-1, Tt-11 139.80 81.83 0.958 179.90 109.90 0.913
Tt, Tt-1, Tt-11, Tt-12 144.90 84.75 0.944 174.80 101.50 0.920
Qt-1, Qt-11, Qt-12,
Tt, Tt-1, Tt-11, Tt-12 (best Q, best T)

124.20 66.11 0.963 133.40 85.71 0.952

Mean 150.50 84.82 0.947 174.80 104.40 0.917

Table 7

Training and VT results of the ANN-EMPA model.

Input combinations Training Validation + Testing

RMSE MAE NSE RMSE MAE NSE

Qt-1, Qt-11 176.90 95.80 0.933 193.10 112.20 0.900
Qt-1, Qt-11, Qt-12 134.10 80.01 0.961 166.90 97.69 0.924
Tt, Tt-1 172.30 98.24 0.934 189.10 114.90 0.904
Tt, Tt-1, Tt-11 142.60 83.12 0.956 177.70 107.00 0.915
Tt, Tt-1, Tt-11, Tt-12 128.50 75.73 0.964 169.50 98.30 0.928
Qt-1, Qt-11, Qt-12,
Tt, Tt-1, Tt-11, Tt-12 (best Q, best T)

121.10 63.60 0.967 131.80 84.44 0.953

Mean 145.90 82.75 0.952 172.20 102.70 0.922

Table 8

The comparison of best models with and without periodicity for the training and VT periods.

Models Training Validation + Testing

RMSE MAE NSE RMSE MAE NSE

Best ANN-PSO 128.40 69.62 0.959 136.40 88.06 0.947
Best ANN-PSO, MN 140.40 75.75 0.957 135.60 82.71 0.950

Best ANN-GA 130.20 70.10 0.958 139.10 89.08 0.945
Best ANN-GA, MN 141.30 76.18 0.957 137.60 84.01 0.949

Best ANN-GWO 126.30 67.13 0.961 134.70 86.75 0.948
Best ANN-GWO, MN 139.50 74.65 0.958 134.10 82.95 0.950

Best ANN-MPA 124.20 66.11 0.963 133.40 85.71 0.952

Best ANN-MPA, MN 138.70 73.84 0.958 134.90 86.47 0.951
Best ANN-EMPA 121.10 63.6 0.968 131.80 84.44 0.953
Best ANN-EMPA, MN 132.50 69.06 0.962 129.10 79.29 0.955

MN: Month number.
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Fig. 14. Convergence accuracy of the metaheuristic algorithms utilized for streamflow prediction.

streamflow from temperature and previous streamflow informa-
tion. The main advantage of the introduced algorithm is its three
phases optimization. In every phase, the predator’s optimum
movement policy is utilized to identify the step size to catch
the prey. The MPA design imitates the rules and foraging the
marine predator’s strategy to indicate a nature-inspired meta-
heuristic. This made it very close to the prototype (Faramarzi et al.
2020).

The convergence accuracy of the metaheuristic algorithms is
also compared in Fig. 14 for different input combinations. It is
clear from the figure that the EMPA is faster than the other
algorithms and it is followed by the MPA. The PSO algorithm
starts slowly and then at the end it provides better convergence
compared to the GA.

5. Concluding remarks

The suitability of a new method, extended marine preda-
tors algorithm (EMPA) - based ANN (ANN-EMPA), in streamflow
prediction has been investigated in this study by comparing its
performance with the hybrid ANN-MPA, ANN-GWO, ANN-GA and
ANN-PSO methods. Temperature and streamflow data of different
lags were utilized as inputs, and optimal lags were decided based
on correlation analysis. The derived conclusions of the study are
as follows.

- The statistical indices and visualization methods suggested
superior performance of ANN-EMPA than the other hybrid
ANN methods in streamflow prediction. The accuracy rank
of the methods (from the best to worst) is as follows:
ANN-EMPA > ANN-MPA > ANN-GWO > ANN-PSO > ANN-GA.

- Temperature-based models showed better accuracy than
streamflow-based models. It improved the NSE from 0.916
to 0.958. This is significant in practical applications, espe-
cially in regions where streamflow measurement is difficult
or available data contains many missing values.

- The best models were obtained by using both temperature
and streamflow (Qt-1, Qt-11, Qt-12, Tt, Tt-1, Tt-11, Tt-12) as
inputs.
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